File size: 6,096 Bytes
05ca552 d0ce882 05ca552 bcc70ee 7e594de f990ec0 946ae28 a051380 108ebf6 05ca552 a051380 05ca552 3d7ab9b 05ca552 108ebf6 3d7ab9b 05ca552 82f8486 05ca552 e45a98d 007e73b 993cd5c 82f8486 ba5d2e8 e45a98d 71377f2 05ca552 9ea3009 1225aff 4c97218 d8a3d97 f637e8b d8a3d97 e45a98d 7843b8f c365e68 05ca552 e45a98d c365e68 e45a98d c365e68 e45a98d b297a29 d104ddb b297a29 2408667 b297a29 5517957 04a826a b297a29 d104ddb 16e5121 4b354da e1033d0 4b354da 16e5121 25e159d b297a29 e3e69da a624675 5517957 a624675 e3e69da b297a29 05ca552 bdca464 e3e69da bdca464 9365df7 007e73b e45a98d c365e68 e45a98d 4a13b86 e45a98d 4b354da bdca464 50d06b5 bdca464 e45a98d bdca464 9cd8b4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import gradio as gr
from PIL import Image
from io import BytesIO
import torch
import os
#os.system("pip install git+https://github.com/fffiloni/diffusers")
from diffusers import DiffusionPipeline, DDIMScheduler
from imagic import ImagicStableDiffusionPipeline
has_cuda = torch.cuda.is_available()
device = "cuda"
pipe = ImagicStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
safety_checker=None,
#custom_pipeline=ImagicStableDiffusionPipeline,
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
).to(device)
generator = torch.Generator("cuda").manual_seed(0)
def train(prompt, init_image, trn_text, trn_steps):
init_image = Image.open(init_image).convert("RGB")
init_image = init_image.resize((256, 256))
res = pipe.train(
prompt,
init_image,
guidance_scale=7.5,
num_inference_steps=50,
generator=generator,
text_embedding_optimization_steps=trn_text,
model_fine_tuning_optimization_steps=trn_steps)
with torch.no_grad():
torch.cuda.empty_cache()
return "Training is finished !"
def generate(prompt, init_image, trn_text, trn_steps):
#init_image = Image.open(init_image).convert("RGB")
#init_image = init_image.resize((256, 256))
#res = pipe.train(
# prompt,
# init_image,
# guidance_scale=7.5,
# num_inference_steps=50,
# generator=generator,
# text_embedding_optimization_steps=trn_text,
# model_fine_tuning_optimization_steps=trn_steps)
#with torch.no_grad():
# torch.cuda.empty_cache()
res = pipe(alpha=1)
return res.images[0]
title = """
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-top: 7px;">
Imagic Stable Diffusion • Community Pipeline
</h1>
</div>
<p style="margin-top: 10px; font-size: 94%">
Text-Based Real Image Editing with Diffusion Models
<br />This pipeline aims to implement <a href="https://arxiv.org/abs/2210.09276" target="_blank">this paper</a> to Stable Diffusion, allowing for real-world image editing.
</p>
<br /><img src="https://user-images.githubusercontent.com/788417/196388568-4ee45edd-e990-452c-899f-c25af32939be.png" style="margin:7px 0 20px;"/>
<p style="font-size: 94%">
You can skip the queue by duplicating this space or run the Colab version:
<span style="display: flex;align-items: center;justify-content: center;height: 30px;">
<a href="https://huggingface.co/spaces/fffiloni/imagic-stable-diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
</span>
</p>
</div>
"""
article = """
<div class="footer">
<p><a href="https://github.com/huggingface/diffusers/tree/main/examples/community#imagic-stable-diffusion" target="_blank">Community pipeline</a>
baked by <a href="https://github.com/MarkRich" style="text-decoration: underline;" target="_blank">Mark Rich</a> -
Gradio Demo by 🤗 <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a>
</p>
</div>
"""
css = '''
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
'''
with gr.Blocks(css=css) as block:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
prompt_input = gr.Textbox(label="Target text", placeholder="Describe the image with what you want to change about the subject")
image_init = gr.Image(source="upload", type="filepath",label="Input Image")
with gr.Row():
trn_text = gr.Slider(0, 500, step=50, value=250, label="text embedding")
trn_steps = gr.Slider(0, 1000, step=50, value=500, label="finetuning steps")
with gr.Row():
train_btn = gr.Button("1.Train")
gen_btn = gr.Button("2.Generate")
training_status = gr.Textbox(label="training status")
image_output = gr.Image(label="Edited image")
#examples=[['a sitting dog','imagic-dog.png', 250], ['a photo of a bird spreading wings','imagic-bird.png',250]]
#ex = gr.Examples(examples=examples, fn=infer, inputs=[prompt_input,image_init,trn_steps], outputs=[image_output], cache_examples=False, run_on_click=False)
gr.HTML(article)
train_btn.click(fn=train, inputs=[prompt_input,image_init,trn_text,trn_steps], outputs=[training_status])
gen_btn.click(fn=generate, inputs=[prompt_input,image_init], outputs=[image_output])
block.queue(max_size=12).launch(show_api=False) |