Spaces:
Paused
Paused
File size: 3,500 Bytes
1cd3497 2768572 79883d7 2768572 537ba12 2768572 79883d7 c42d6a9 1cd3497 ab7ed04 1cd3497 ab7ed04 30dd27d ab7ed04 30dd27d 1cd3497 79883d7 2768572 1cd3497 f905233 1cd3497 06a5b99 f905233 ab7ed04 c42d6a9 9b98523 1cd3497 8ea3b63 1cd3497 ab7ed04 1cd3497 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import gradio as gr
import subprocess
from moviepy.editor import VideoFileClip
def convert_to_mp4_with_aac(input_path, output_path):
# Load the video
video = VideoFileClip(input_path)
# Set the output format to mp4 with AAC codec
video.write_videofile(output_path, codec="libx264", audio_codec="aac")
return output_path
def load_audio(audio_listed):
return f"data/audio/{audio_listed}"
def execute_command(command: str) -> None:
subprocess.run(command, check=True)
def infer(audio_input, image_path):
output_name = "acknowledgement_english@M030_front_neutral_level1_001@male_face"
command = [
f"python",
f"inference_for_demo_video.py",
f"--wav_path={audio_input}",
f"--style_clip_path=data/style_clip/3DMM/M030_front_neutral_level1_001.mat",
f"--pose_path=data/pose/RichardShelby_front_neutral_level1_001.mat",
f"--image_path={image_path}",
f"--cfg_scale=1.0",
f"--max_gen_len=30",
f"--output_name={output_name}"
]
execute_command(command)
# Convert video to compatible codecs
input_file = f"output_video/{output_name}.mp4"
output_file = f"{output_name}.mp4"
result = convert_to_mp4_with_aac(input_file, output_file)
return result
with gr.Blocks() as demo:
with gr.Column():
gr.HTML("""
<h2 style="text-align: center;">DreamTalk</h2>
<p style="text-align: center;"></p>
""")
with gr.Row():
with gr.Column():
image_path = gr.Image(label="Image", type="filepath", sources=["upload"])
gr.Examples(
examples = [
"data/src_img/uncropped/face3.png",
"data/src_img/uncropped/male_face.png",
"data/src_img/uncropped/uncut_src_img.jpg"
],
inputs=[image_path]
)
audio_input = gr.Audio(label="Audio input", type="filepath", sources=["upload"])
audio_list = gr.Dropdown(
label="Choose an audio (optional)",
choices=[
"German1.wav", "German2.wav", "German3.wav", "German4.wav",
"acknowledgement_chinese.m4a", "acknowledgement_english.m4a",
"chinese1_haierlizhi.wav", "chinese2_guanyu.wav",
"french1.wav", "french2.wav", "french3.wav",
"italian1.wav", "italian2.wav", "italian3.wav",
"japan1.wav", "japan2.wav", "japan3.wav",
"korean1.wav", "korean2.wav", "korean3.wav",
"noisy_audio_cafeter_snr_0.wav", "noisy_audio_meeting_snr_0.wav", "noisy_audio_meeting_snr_10.wav", "noisy_audio_meeting_snr_20.wav", "noisy_audio_narrative.wav", "noisy_audio_office_snr_0.wav", "out_of_domain_narrative.wav",
"spanish1.wav", "spanish2.wav", "spanish3.wav"
]
)
audio_list.change(
fn = load_audio,
inputs = [audio_list],
outputs = [audio_input]
)
run_btn = gr.Button("Run")
with gr.Column():
output_video = gr.Video(format="mp4")
run_btn.click(
fn = infer,
inputs = [audio_input, image_path],
outputs = [output_video]
)
demo.launch() |