Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,9 @@
|
|
1 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
4 |
import torch
|
@@ -20,7 +25,51 @@ pipe.enable_xformers_memory_efficient_attention()
|
|
20 |
pipe.enable_model_cpu_offload()
|
21 |
pipe.enable_attention_slicing()
|
22 |
|
23 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
prompt,
|
25 |
negative_prompt,
|
26 |
conditioning_image,
|
@@ -57,12 +106,63 @@ def infer(
|
|
57 |
|
58 |
return output_image
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
with gr.Blocks() as demo:
|
61 |
gr.Markdown(
|
62 |
"""
|
63 |
-
# ControlNet on Brightness
|
64 |
|
65 |
-
This is a demo on ControlNet based on brightness.
|
66 |
""")
|
67 |
|
68 |
with gr.Row():
|
@@ -73,8 +173,10 @@ with gr.Blocks() as demo:
|
|
73 |
negative_prompt = gr.Textbox(
|
74 |
label="Negative Prompt",
|
75 |
)
|
76 |
-
|
77 |
-
label="Conditioning
|
|
|
|
|
78 |
)
|
79 |
with gr.Accordion('Advanced options', open=False):
|
80 |
with gr.Row():
|
@@ -116,7 +218,7 @@ with gr.Blocks() as demo:
|
|
116 |
submit_btn.click(
|
117 |
fn=infer,
|
118 |
inputs=[
|
119 |
-
prompt, negative_prompt, conditioning_image, num_inference_steps, size, guidance_scale, seed
|
120 |
],
|
121 |
outputs=output
|
122 |
)
|
@@ -134,7 +236,7 @@ with gr.Blocks() as demo:
|
|
134 |
],
|
135 |
outputs=output,
|
136 |
fn=infer,
|
137 |
-
cache_examples=
|
138 |
)
|
139 |
gr.Markdown(
|
140 |
"""
|
|
|
1 |
from PIL import Image
|
2 |
+
import os
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from moviepy.editor import *
|
7 |
import gradio as gr
|
8 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
9 |
import torch
|
|
|
25 |
pipe.enable_model_cpu_offload()
|
26 |
pipe.enable_attention_slicing()
|
27 |
|
28 |
+
def get_frames(video_in):
|
29 |
+
frames = []
|
30 |
+
#resize the video
|
31 |
+
clip = VideoFileClip(video_in)
|
32 |
+
|
33 |
+
#check fps
|
34 |
+
if clip.fps > 30:
|
35 |
+
print("vide rate is over 30, resetting to 30")
|
36 |
+
clip_resized = clip.resize(height=512)
|
37 |
+
clip_resized.write_videofile("video_resized.mp4", fps=30)
|
38 |
+
else:
|
39 |
+
print("video rate is OK")
|
40 |
+
clip_resized = clip.resize(height=512)
|
41 |
+
clip_resized.write_videofile("video_resized.mp4", fps=clip.fps)
|
42 |
+
|
43 |
+
print("video resized to 512 height")
|
44 |
+
|
45 |
+
# Opens the Video file with CV2
|
46 |
+
cap= cv2.VideoCapture("video_resized.mp4")
|
47 |
+
|
48 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
49 |
+
print("video fps: " + str(fps))
|
50 |
+
i=0
|
51 |
+
while(cap.isOpened()):
|
52 |
+
ret, frame = cap.read()
|
53 |
+
if ret == False:
|
54 |
+
break
|
55 |
+
cv2.imwrite('kang'+str(i)+'.jpg',frame)
|
56 |
+
frames.append('kang'+str(i)+'.jpg')
|
57 |
+
i+=1
|
58 |
+
|
59 |
+
cap.release()
|
60 |
+
cv2.destroyAllWindows()
|
61 |
+
print("broke the video into frames")
|
62 |
+
|
63 |
+
return frames, fps
|
64 |
+
|
65 |
+
def create_video(frames, fps):
|
66 |
+
print("building video result")
|
67 |
+
clip = ImageSequenceClip(frames, fps=fps)
|
68 |
+
clip.write_videofile("_result.mp4", fps=fps)
|
69 |
+
|
70 |
+
return "_result.mp4"
|
71 |
+
|
72 |
+
def process_brightness(
|
73 |
prompt,
|
74 |
negative_prompt,
|
75 |
conditioning_image,
|
|
|
106 |
|
107 |
return output_image
|
108 |
|
109 |
+
def infer(video_in, prompt,
|
110 |
+
negative_prompt,
|
111 |
+
conditioning_image,
|
112 |
+
num_inference_steps=30,
|
113 |
+
size=768,
|
114 |
+
guidance_scale=7.0,
|
115 |
+
seed=1234
|
116 |
+
):
|
117 |
+
|
118 |
+
# 1. break video into frames and get FPS
|
119 |
+
break_vid = get_frames(video_in)
|
120 |
+
frames_list= break_vid[0]
|
121 |
+
fps = break_vid[1]
|
122 |
+
#n_frame = int(trim_value*fps)
|
123 |
+
n_frame = len(frames_list)
|
124 |
+
|
125 |
+
if n_frame >= len(frames_list):
|
126 |
+
print("video is shorter than the cut value")
|
127 |
+
n_frame = len(frames_list)
|
128 |
+
|
129 |
+
# 2. prepare frames result arrays
|
130 |
+
result_frames = []
|
131 |
+
print("set stop frames to: " + str(n_frame))
|
132 |
+
|
133 |
+
for i, image in enumerate(frames_list[0:int(n_frame)]):
|
134 |
+
|
135 |
+
image = Image.open(image).convert("RGB")
|
136 |
+
image = np.array(image)
|
137 |
+
output_frame = process_brightness(image,
|
138 |
+
prompt,
|
139 |
+
negative_prompt,
|
140 |
+
conditioning_image,
|
141 |
+
num_inference_steps=30,
|
142 |
+
size=768,
|
143 |
+
guidance_scale=7.0,
|
144 |
+
seed=1234
|
145 |
+
)
|
146 |
+
print(output_frame)
|
147 |
+
|
148 |
+
image = Image.open(output_frame)
|
149 |
+
#image = Image.fromarray(output_frame[0])
|
150 |
+
image.save("_frame_" + str(i) + ".jpeg")
|
151 |
+
result_frames.append("_frame_" + str(i) + ".jpeg")
|
152 |
+
print("frame " + str(i) + "/" + str(n_frame) + ": done;")
|
153 |
+
|
154 |
+
|
155 |
+
final_vid = create_video(result_frames, fps)
|
156 |
+
|
157 |
+
|
158 |
+
return final_vid
|
159 |
+
|
160 |
with gr.Blocks() as demo:
|
161 |
gr.Markdown(
|
162 |
"""
|
163 |
+
# ControlNet on Brightness • Video
|
164 |
|
165 |
+
This is a demo on ControlNet based on brightness for video.
|
166 |
""")
|
167 |
|
168 |
with gr.Row():
|
|
|
173 |
negative_prompt = gr.Textbox(
|
174 |
label="Negative Prompt",
|
175 |
)
|
176 |
+
video_in = gr.Video(
|
177 |
+
label="Conditioning Video",
|
178 |
+
source="upload",
|
179 |
+
type="filepath"
|
180 |
)
|
181 |
with gr.Accordion('Advanced options', open=False):
|
182 |
with gr.Row():
|
|
|
218 |
submit_btn.click(
|
219 |
fn=infer,
|
220 |
inputs=[
|
221 |
+
video_in, prompt, negative_prompt, conditioning_image, num_inference_steps, size, guidance_scale, seed
|
222 |
],
|
223 |
outputs=output
|
224 |
)
|
|
|
236 |
],
|
237 |
outputs=output,
|
238 |
fn=infer,
|
239 |
+
cache_examples=False,
|
240 |
)
|
241 |
gr.Markdown(
|
242 |
"""
|