diff --git "a/model_lib/ControlNet/ldm/models/diffusion/ddpm.py" "b/model_lib/ControlNet/ldm/models/diffusion/ddpm.py"
new file mode 100644--- /dev/null
+++ "b/model_lib/ControlNet/ldm/models/diffusion/ddpm.py"
@@ -0,0 +1,2602 @@
+"""
+wild mixture of
+https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
+https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
+https://github.com/CompVis/taming-transformers
+-- merci
+"""
+
+import torch
+import torch.nn as nn
+import numpy as np
+import pytorch_lightning as pl
+from torch.optim.lr_scheduler import LambdaLR
+from einops import rearrange, repeat
+from contextlib import contextmanager, nullcontext
+from functools import partial
+import itertools
+from tqdm import tqdm
+from torchvision.utils import make_grid
+from pytorch_lightning.utilities.distributed import rank_zero_only
+from omegaconf import ListConfig
+import pdb
+from model_lib.ControlNet.ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
+from model_lib.ControlNet.ldm.modules.ema import LitEma
+from model_lib.ControlNet.ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
+from model_lib.ControlNet.ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
+from model_lib.ControlNet.ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
+from model_lib.ControlNet.ldm.models.diffusion.ddim import DDIMSampler, DDIMSampler_ReferenceOnly
+
+
+__conditioning_keys__ = {'concat': 'c_concat',
+                         'crossattn': 'c_crossattn',
+                         'adm': 'y'}
+
+
+def disabled_train(self, mode=True):
+    """Overwrite model.train with this function to make sure train/eval mode
+    does not change anymore."""
+    return self
+
+
+def uniform_on_device(r1, r2, shape, device):
+    return (r1 - r2) * torch.rand(*shape, device=device) + r2
+
+
+class DDPM(pl.LightningModule):
+    # classic DDPM with Gaussian diffusion, in image space
+    def __init__(self,
+                 unet_config,
+                 timesteps=1000,
+                 beta_schedule="linear",
+                 loss_type="l2",
+                 ckpt_path=None,
+                 ignore_keys=[],
+                 load_only_unet=False,
+                 monitor="val/loss",
+                 use_ema=True,
+                 first_stage_key="image",
+                 image_size=256,
+                 channels=3,
+                 log_every_t=100,
+                 clip_denoised=True,
+                 linear_start=1e-4,
+                 linear_end=2e-2,
+                 cosine_s=8e-3,
+                 given_betas=None,
+                 original_elbo_weight=0.,
+                 v_posterior=0.,  # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
+                 l_simple_weight=1.,
+                 conditioning_key=None,
+                 parameterization="eps",  # all assuming fixed variance schedules
+                 scheduler_config=None,
+                 use_positional_encodings=False,
+                 learn_logvar=False,
+                 logvar_init=0.,
+                 make_it_fit=False,
+                 ucg_training=None,
+                 reset_ema=False,
+                 reset_num_ema_updates=False,
+                 ):
+        super().__init__()
+        assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"'
+        self.parameterization = parameterization
+        print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
+        self.cond_stage_model = None
+        self.clip_denoised = clip_denoised
+        self.log_every_t = log_every_t
+        self.first_stage_key = first_stage_key
+        self.image_size = image_size  # try conv?
+        self.channels = channels
+        self.use_positional_encodings = use_positional_encodings
+        self.model = DiffusionWrapper(unet_config, conditioning_key)
+        count_params(self.model, verbose=True)
+        self.use_ema = use_ema
+        if self.use_ema:
+            self.model_ema = LitEma(self.model)
+            print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
+
+        self.use_scheduler = scheduler_config is not None
+        if self.use_scheduler:
+            self.scheduler_config = scheduler_config
+
+        self.v_posterior = v_posterior
+        self.original_elbo_weight = original_elbo_weight
+        self.l_simple_weight = l_simple_weight
+
+        if monitor is not None:
+            self.monitor = monitor
+        self.make_it_fit = make_it_fit
+        if reset_ema: assert exists(ckpt_path)
+        if ckpt_path is not None:
+            self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
+            if reset_ema:
+                assert self.use_ema
+                print(f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
+                self.model_ema = LitEma(self.model)
+        if reset_num_ema_updates:
+            print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
+            assert self.use_ema
+            self.model_ema.reset_num_updates()
+
+        self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
+                               linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
+
+        self.loss_type = loss_type
+
+        self.learn_logvar = learn_logvar
+        logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
+        if self.learn_logvar:
+            self.logvar = nn.Parameter(self.logvar, requires_grad=True)
+        else:
+            self.register_buffer('logvar', logvar)
+
+        self.ucg_training = ucg_training or dict()
+        if self.ucg_training:
+            self.ucg_prng = np.random.RandomState()
+
+    def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
+                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+        if exists(given_betas):
+            betas = given_betas
+        else:
+            betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
+                                       cosine_s=cosine_s)
+        alphas = 1. - betas
+        alphas_cumprod = np.cumprod(alphas, axis=0)
+        alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
+
+        timesteps, = betas.shape
+        self.num_timesteps = int(timesteps)
+        self.linear_start = linear_start
+        self.linear_end = linear_end
+        assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
+
+        to_torch = partial(torch.tensor, dtype=torch.float32)
+
+        self.register_buffer('betas', to_torch(betas))
+        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+        self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
+
+        # calculations for diffusion q(x_t | x_{t-1}) and others
+        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
+        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
+        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
+        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
+        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
+
+        # calculations for posterior q(x_{t-1} | x_t, x_0)
+        posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
+                1. - alphas_cumprod) + self.v_posterior * betas
+        # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
+        self.register_buffer('posterior_variance', to_torch(posterior_variance))
+        # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
+        self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
+        self.register_buffer('posterior_mean_coef1', to_torch(
+            betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
+        self.register_buffer('posterior_mean_coef2', to_torch(
+            (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
+
+        if self.parameterization == "eps":
+            lvlb_weights = self.betas ** 2 / (
+                    2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
+        elif self.parameterization == "x0":
+            lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
+        elif self.parameterization == "v":
+            lvlb_weights = torch.ones_like(self.betas ** 2 / (
+                    2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)))
+        else:
+            raise NotImplementedError("mu not supported")
+        lvlb_weights[0] = lvlb_weights[1]
+        self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
+        assert not torch.isnan(self.lvlb_weights).all()
+
+    @contextmanager
+    def ema_scope(self, context=None):
+        if self.use_ema:
+            self.model_ema.store(self.model.parameters())
+            self.model_ema.copy_to(self.model)
+            if context is not None:
+                print(f"{context}: Switched to EMA weights")
+        try:
+            yield None
+        finally:
+            if self.use_ema:
+                self.model_ema.restore(self.model.parameters())
+                if context is not None:
+                    print(f"{context}: Restored training weights")
+
+    @torch.no_grad()
+    def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
+        sd = torch.load(path, map_location="cpu")
+        if "state_dict" in list(sd.keys()):
+            sd = sd["state_dict"]
+        keys = list(sd.keys())
+        for k in keys:
+            for ik in ignore_keys:
+                if k.startswith(ik):
+                    print("Deleting key {} from state_dict.".format(k))
+                    del sd[k]
+        if self.make_it_fit:
+            n_params = len([name for name, _ in
+                            itertools.chain(self.named_parameters(),
+                                            self.named_buffers())])
+            for name, param in tqdm(
+                    itertools.chain(self.named_parameters(),
+                                    self.named_buffers()),
+                    desc="Fitting old weights to new weights",
+                    total=n_params
+            ):
+                if not name in sd:
+                    continue
+                old_shape = sd[name].shape
+                new_shape = param.shape
+                assert len(old_shape) == len(new_shape)
+                if len(new_shape) > 2:
+                    # we only modify first two axes
+                    assert new_shape[2:] == old_shape[2:]
+                # assumes first axis corresponds to output dim
+                if not new_shape == old_shape:
+                    new_param = param.clone()
+                    old_param = sd[name]
+                    if len(new_shape) == 1:
+                        for i in range(new_param.shape[0]):
+                            new_param[i] = old_param[i % old_shape[0]]
+                    elif len(new_shape) >= 2:
+                        for i in range(new_param.shape[0]):
+                            for j in range(new_param.shape[1]):
+                                new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
+
+                        n_used_old = torch.ones(old_shape[1])
+                        for j in range(new_param.shape[1]):
+                            n_used_old[j % old_shape[1]] += 1
+                        n_used_new = torch.zeros(new_shape[1])
+                        for j in range(new_param.shape[1]):
+                            n_used_new[j] = n_used_old[j % old_shape[1]]
+
+                        n_used_new = n_used_new[None, :]
+                        while len(n_used_new.shape) < len(new_shape):
+                            n_used_new = n_used_new.unsqueeze(-1)
+                        new_param /= n_used_new
+
+                    sd[name] = new_param
+
+        missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
+            sd, strict=False)
+        print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
+        if len(missing) > 0:
+            print(f"Missing Keys:\n {missing}")
+        if len(unexpected) > 0:
+            print(f"\nUnexpected Keys:\n {unexpected}")
+
+    def q_mean_variance(self, x_start, t):
+        """
+        Get the distribution q(x_t | x_0).
+        :param x_start: the [N x C x ...] tensor of noiseless inputs.
+        :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
+        :return: A tuple (mean, variance, log_variance), all of x_start's shape.
+        """
+        mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
+        variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
+        log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
+        return mean, variance, log_variance
+
+    def predict_start_from_noise(self, x_t, t, noise):
+        return (
+                extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
+                extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
+        )
+
+    def predict_start_from_z_and_v(self, x_t, t, v):
+        # self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
+        # self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
+        return (
+                extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
+                extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
+        )
+
+    def predict_eps_from_z_and_v(self, x_t, t, v):
+        return (
+                extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v +
+                extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t
+        )
+
+    def q_posterior(self, x_start, x_t, t):
+        posterior_mean = (
+                extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
+                extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
+        )
+        posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
+        posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
+        return posterior_mean, posterior_variance, posterior_log_variance_clipped
+
+    def p_mean_variance(self, x, t, clip_denoised: bool):
+        model_out = self.model(x, t)
+        if self.parameterization == "eps":
+            x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
+        elif self.parameterization == "x0":
+            x_recon = model_out
+        if clip_denoised:
+            x_recon.clamp_(-1., 1.)
+
+        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
+        return model_mean, posterior_variance, posterior_log_variance
+
+    @torch.no_grad()
+    def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
+        b, *_, device = *x.shape, x.device
+        model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
+        noise = noise_like(x.shape, device, repeat_noise)
+        # no noise when t == 0
+        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+    @torch.no_grad()
+    def p_sample_loop(self, shape, return_intermediates=False):
+        device = self.betas.device
+        b = shape[0]
+        img = torch.randn(shape, device=device)
+        intermediates = [img]
+        for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
+            img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
+                                clip_denoised=self.clip_denoised)
+            if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
+                intermediates.append(img)
+        if return_intermediates:
+            return img, intermediates
+        return img
+
+    @torch.no_grad()
+    def sample(self, batch_size=16, return_intermediates=False):
+        image_size = self.image_size
+        channels = self.channels
+        return self.p_sample_loop((batch_size, channels, image_size, image_size),
+                                  return_intermediates=return_intermediates)
+
+    def q_sample(self, x_start, t, noise=None):
+        noise = default(noise, lambda: torch.randn_like(x_start))
+        return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
+                extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
+
+    def get_v(self, x, noise, t):
+        return (
+                extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
+                extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
+        )
+
+    def get_loss(self, pred, target, mean=True):
+        if self.loss_type == 'l1':
+            loss = (target - pred).abs()
+            if mean:
+                loss = loss.mean()
+        elif self.loss_type == 'l2':
+            if mean:
+                loss = torch.nn.functional.mse_loss(target, pred)
+            else:
+                loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
+        else:
+            raise NotImplementedError("unknown loss type '{loss_type}'")
+
+        return loss
+
+    def p_losses(self, x_start, t, noise=None):
+        noise = default(noise, lambda: torch.randn_like(x_start))
+        x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+        model_out = self.model(x_noisy, t)
+
+        loss_dict = {}
+        if self.parameterization == "eps":
+            target = noise
+        elif self.parameterization == "x0":
+            target = x_start
+        elif self.parameterization == "v":
+            target = self.get_v(x_start, noise, t)
+        else:
+            raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported")
+
+        loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
+
+        log_prefix = 'train' if self.training else 'val'
+
+        loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
+        loss_simple = loss.mean() * self.l_simple_weight
+
+        loss_vlb = (self.lvlb_weights[t] * loss).mean()
+        loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
+
+        loss = loss_simple + self.original_elbo_weight * loss_vlb
+
+        loss_dict.update({f'{log_prefix}/loss': loss})
+
+        return loss, loss_dict
+
+    def forward(self, x, *args, **kwargs):
+        # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
+        # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
+        t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
+        return self.p_losses(x, t, *args, **kwargs)
+
+    def get_input(self, batch, k):
+        x = batch[k]
+        if len(x.shape) == 3:
+            x = x[..., None]
+        x = rearrange(x, 'b h w c -> b c h w')
+        x = x.to(memory_format=torch.contiguous_format).float()
+        return x
+
+    def shared_step(self, batch):
+        x = self.get_input(batch, self.first_stage_key)
+        loss, loss_dict = self(x)
+        return loss, loss_dict
+
+    def training_step(self, batch, batch_idx):
+        for k in self.ucg_training:
+            p = self.ucg_training[k]["p"]
+            val = self.ucg_training[k]["val"]
+            if val is None:
+                val = ""
+            for i in range(len(batch[k])):
+                if self.ucg_prng.choice(2, p=[1 - p, p]):
+                    batch[k][i] = val
+
+        loss, loss_dict = self.shared_step(batch)
+
+        self.log_dict(loss_dict, prog_bar=True,
+                      logger=True, on_step=True, on_epoch=True)
+
+        self.log("global_step", self.global_step,
+                 prog_bar=True, logger=True, on_step=True, on_epoch=False)
+
+        if self.use_scheduler:
+            lr = self.optimizers().param_groups[0]['lr']
+            self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
+
+        return loss
+
+    @torch.no_grad()
+    def validation_step(self, batch, batch_idx):
+        _, loss_dict_no_ema = self.shared_step(batch)
+        with self.ema_scope():
+            _, loss_dict_ema = self.shared_step(batch)
+            loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
+        self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
+        self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
+
+    def on_train_batch_end(self, *args, **kwargs):
+        if self.use_ema:
+            self.model_ema(self.model)
+
+    def _get_rows_from_list(self, samples):
+        n_imgs_per_row = len(samples)
+        denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
+        denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
+        denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
+        return denoise_grid
+
+    @torch.no_grad()
+    def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
+        log = dict()
+        x = self.get_input(batch, self.first_stage_key)
+        N = min(x.shape[0], N)
+        n_row = min(x.shape[0], n_row)
+        x = x.to(self.device)[:N]
+        log["inputs"] = x
+
+        # get diffusion row
+        diffusion_row = list()
+        x_start = x[:n_row]
+
+        for t in range(self.num_timesteps):
+            if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+                t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+                t = t.to(self.device).long()
+                noise = torch.randn_like(x_start)
+                x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+                diffusion_row.append(x_noisy)
+
+        log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
+
+        if sample:
+            # get denoise row
+            with self.ema_scope("Plotting"):
+                samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
+
+            log["samples"] = samples
+            log["denoise_row"] = self._get_rows_from_list(denoise_row)
+
+        if return_keys:
+            if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
+                return log
+            else:
+                return {key: log[key] for key in return_keys}
+        return log
+
+    def configure_optimizers(self):
+        lr = self.learning_rate
+        params = list(self.model.parameters())
+        if self.learn_logvar:
+            params = params + [self.logvar]
+        opt = torch.optim.AdamW(params, lr=lr)
+        return opt
+
+
+class LatentDiffusion(DDPM):
+    """main class"""
+
+    def __init__(self,
+                 first_stage_config,
+                 cond_stage_config,
+                 num_timesteps_cond=None,
+                 cond_stage_key="image",
+                 cond_stage_trainable=False,
+                 concat_mode=True,
+                 cond_stage_forward=None,
+                 conditioning_key=None,
+                 scale_factor=1.0,
+                 scale_by_std=False,
+                 force_null_conditioning=False,
+                 *args, **kwargs):
+        self.force_null_conditioning = force_null_conditioning
+        self.num_timesteps_cond = default(num_timesteps_cond, 1)
+        self.scale_by_std = scale_by_std
+        assert self.num_timesteps_cond <= kwargs['timesteps']
+        # for backwards compatibility after implementation of DiffusionWrapper
+        if conditioning_key is None:
+            conditioning_key = 'concat' if concat_mode else 'crossattn'
+        if cond_stage_config == '__is_unconditional__' and not self.force_null_conditioning:
+            conditioning_key = None
+        ckpt_path = kwargs.pop("ckpt_path", None)
+        reset_ema = kwargs.pop("reset_ema", False)
+        reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False)
+        ignore_keys = kwargs.pop("ignore_keys", [])
+        super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
+        self.concat_mode = concat_mode
+        self.cond_stage_trainable = cond_stage_trainable
+        self.cond_stage_key = cond_stage_key
+        try:
+            self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
+        except:
+            self.num_downs = 0
+        if not scale_by_std:
+            self.scale_factor = scale_factor
+        else:
+            self.register_buffer('scale_factor', torch.tensor(scale_factor))
+        self.instantiate_first_stage(first_stage_config)
+        self.instantiate_cond_stage(cond_stage_config)
+        self.cond_stage_forward = cond_stage_forward
+        self.clip_denoised = False
+        self.bbox_tokenizer = None
+
+        self.restarted_from_ckpt = False
+        if ckpt_path is not None:
+            self.init_from_ckpt(ckpt_path, ignore_keys)
+            self.restarted_from_ckpt = True
+            if reset_ema:
+                assert self.use_ema
+                print(
+                    f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
+                self.model_ema = LitEma(self.model)
+        if reset_num_ema_updates:
+            print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
+            assert self.use_ema
+            self.model_ema.reset_num_updates()
+
+    def make_cond_schedule(self, ):
+        self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
+        ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
+        self.cond_ids[:self.num_timesteps_cond] = ids
+
+    @rank_zero_only
+    @torch.no_grad()
+    def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
+        # only for very first batch
+        if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
+            assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
+            # set rescale weight to 1./std of encodings
+            print("### USING STD-RESCALING ###")
+            x = super().get_input(batch, self.first_stage_key)
+            x = x.to(self.device)
+            encoder_posterior = self.encode_first_stage(x)
+            z = self.get_first_stage_encoding(encoder_posterior).detach()
+            del self.scale_factor
+            self.register_buffer('scale_factor', 1. / z.flatten().std())
+            print(f"setting self.scale_factor to {self.scale_factor}")
+            print("### USING STD-RESCALING ###")
+
+    def register_schedule(self,
+                          given_betas=None, beta_schedule="linear", timesteps=1000,
+                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+        super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
+
+        self.shorten_cond_schedule = self.num_timesteps_cond > 1
+        if self.shorten_cond_schedule:
+            self.make_cond_schedule()
+
+    def instantiate_first_stage(self, config):
+        model = instantiate_from_config(config)
+        self.first_stage_model = model.eval()
+        self.first_stage_model.train = disabled_train
+        for param in self.first_stage_model.parameters():
+            param.requires_grad = False
+
+    def instantiate_cond_stage(self, config):
+        if not self.cond_stage_trainable:
+            if config == "__is_first_stage__":
+                print("Using first stage also as cond stage.")
+                self.cond_stage_model = self.first_stage_model
+            elif config == "__is_unconditional__":
+                print(f"Training {self.__class__.__name__} as an unconditional model.")
+                self.cond_stage_model = None
+                # self.be_unconditional = True
+            else:
+                model = instantiate_from_config(config)
+                self.cond_stage_model = model.eval()
+                self.cond_stage_model.train = disabled_train
+                for param in self.cond_stage_model.parameters():
+                    param.requires_grad = False
+        else:
+            assert config != '__is_first_stage__'
+            assert config != '__is_unconditional__'
+            model = instantiate_from_config(config)
+            self.cond_stage_model = model
+
+    def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
+        denoise_row = []
+        for zd in tqdm(samples, desc=desc):
+            denoise_row.append(self.decode_first_stage(zd.to(self.device),
+                                                       force_not_quantize=force_no_decoder_quantization))
+        n_imgs_per_row = len(denoise_row)
+        denoise_row = torch.stack(denoise_row)  # n_log_step, n_row, C, H, W
+        denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
+        denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
+        denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
+        return denoise_grid
+
+    def get_first_stage_encoding(self, encoder_posterior):
+        if isinstance(encoder_posterior, DiagonalGaussianDistribution):
+            z = encoder_posterior.sample()
+        elif isinstance(encoder_posterior, torch.Tensor):
+            z = encoder_posterior
+        else:
+            raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
+        return self.scale_factor * z
+
+    def get_learned_conditioning(self, c):
+        if self.cond_stage_forward is None:
+            if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
+                c = self.cond_stage_model.encode(c)
+                if isinstance(c, DiagonalGaussianDistribution):
+                    c = c.mode()
+            else:
+                c = self.cond_stage_model(c)
+        else:
+            assert hasattr(self.cond_stage_model, self.cond_stage_forward)
+            c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
+        return c
+
+    def meshgrid(self, h, w):
+        y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
+        x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
+
+        arr = torch.cat([y, x], dim=-1)
+        return arr
+
+    def delta_border(self, h, w):
+        """
+        :param h: height
+        :param w: width
+        :return: normalized distance to image border,
+         wtith min distance = 0 at border and max dist = 0.5 at image center
+        """
+        lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
+        arr = self.meshgrid(h, w) / lower_right_corner
+        dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
+        dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
+        edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
+        return edge_dist
+
+    def get_weighting(self, h, w, Ly, Lx, device):
+        weighting = self.delta_border(h, w)
+        weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
+                               self.split_input_params["clip_max_weight"], )
+        weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
+
+        if self.split_input_params["tie_braker"]:
+            L_weighting = self.delta_border(Ly, Lx)
+            L_weighting = torch.clip(L_weighting,
+                                     self.split_input_params["clip_min_tie_weight"],
+                                     self.split_input_params["clip_max_tie_weight"])
+
+            L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
+            weighting = weighting * L_weighting
+        return weighting
+
+    def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1):  # todo load once not every time, shorten code
+        """
+        :param x: img of size (bs, c, h, w)
+        :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
+        """
+        bs, nc, h, w = x.shape
+
+        # number of crops in image
+        Ly = (h - kernel_size[0]) // stride[0] + 1
+        Lx = (w - kernel_size[1]) // stride[1] + 1
+
+        if uf == 1 and df == 1:
+            fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+            unfold = torch.nn.Unfold(**fold_params)
+
+            fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
+
+            weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
+            normalization = fold(weighting).view(1, 1, h, w)  # normalizes the overlap
+            weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
+
+        elif uf > 1 and df == 1:
+            fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+            unfold = torch.nn.Unfold(**fold_params)
+
+            fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
+                                dilation=1, padding=0,
+                                stride=(stride[0] * uf, stride[1] * uf))
+            fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
+
+            weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
+            normalization = fold(weighting).view(1, 1, h * uf, w * uf)  # normalizes the overlap
+            weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
+
+        elif df > 1 and uf == 1:
+            fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+            unfold = torch.nn.Unfold(**fold_params)
+
+            fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
+                                dilation=1, padding=0,
+                                stride=(stride[0] // df, stride[1] // df))
+            fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
+
+            weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
+            normalization = fold(weighting).view(1, 1, h // df, w // df)  # normalizes the overlap
+            weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
+
+        else:
+            raise NotImplementedError
+
+        return fold, unfold, normalization, weighting
+
+    @torch.no_grad()
+    def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
+                  cond_key=None, return_original_cond=False, bs=None, return_x=False):
+        x = super().get_input(batch, k)
+        if bs is not None:
+            x = x[:bs]
+        x = x.to(self.device)
+        encoder_posterior = self.encode_first_stage(x)
+        z = self.get_first_stage_encoding(encoder_posterior).detach()
+
+        if self.model.conditioning_key is not None and not self.force_null_conditioning:
+            if cond_key is None:
+                cond_key = self.cond_stage_key
+            if cond_key != self.first_stage_key:
+                if cond_key in ['caption', 'coordinates_bbox', "txt"]:
+                    xc = batch[cond_key]
+                elif cond_key in ['class_label', 'cls']:
+                    xc = batch
+                else:
+                    xc = super().get_input(batch, cond_key).to(self.device)
+            else:
+                xc = x
+            if not self.cond_stage_trainable or force_c_encode:
+                if isinstance(xc, dict) or isinstance(xc, list):
+                    c = self.get_learned_conditioning(xc)
+                else:
+                    c = self.get_learned_conditioning(xc.to(self.device))
+            else:
+                c = xc
+            if bs is not None:
+                c = c[:bs]
+
+            if self.use_positional_encodings:
+                pos_x, pos_y = self.compute_latent_shifts(batch)
+                ckey = __conditioning_keys__[self.model.conditioning_key]
+                c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
+
+        else:
+            c = None
+            xc = None
+            if self.use_positional_encodings:
+                pos_x, pos_y = self.compute_latent_shifts(batch)
+                c = {'pos_x': pos_x, 'pos_y': pos_y}
+        out = [z, c]
+        if return_first_stage_outputs:
+            xrec = self.decode_first_stage(z)
+            out.extend([x, xrec])
+        if return_x:
+            out.extend([x])
+        if return_original_cond:
+            out.append(xc)
+        return out
+
+    @torch.no_grad()
+    def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
+        if predict_cids:
+            if z.dim() == 4:
+                z = torch.argmax(z.exp(), dim=1).long()
+            z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
+            z = rearrange(z, 'b h w c -> b c h w').contiguous()
+
+        z = 1. / self.scale_factor * z
+        return self.first_stage_model.decode(z)
+
+    @torch.no_grad()
+    def encode_first_stage(self, x):
+        return self.first_stage_model.encode(x)
+
+    def shared_step(self, batch, **kwargs):
+        x, c = self.get_input(batch, self.first_stage_key)
+        loss = self(x, c)
+        return loss
+
+    def forward(self, x, c, *args, **kwargs):
+        t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
+        if self.model.conditioning_key is not None:
+            assert c is not None
+            if self.cond_stage_trainable:
+                c = self.get_learned_conditioning(c)
+            if self.shorten_cond_schedule:  # TODO: drop this option
+                tc = self.cond_ids[t].to(self.device)
+                c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
+        return self.p_losses(x, c, t, *args, **kwargs)
+
+    def apply_model(self, x_noisy, t, cond, return_ids=False):
+        if isinstance(cond, dict):
+            # hybrid case, cond is expected to be a dict
+            pass
+        else:
+            if not isinstance(cond, list):
+                cond = [cond]
+            key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
+            cond = {key: cond}
+
+        x_recon = self.model(x_noisy, t, **cond)
+
+        if isinstance(x_recon, tuple) and not return_ids:
+            return x_recon[0]
+        else:
+            return x_recon
+
+    def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
+        return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
+               extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
+
+    def _prior_bpd(self, x_start):
+        """
+        Get the prior KL term for the variational lower-bound, measured in
+        bits-per-dim.
+        This term can't be optimized, as it only depends on the encoder.
+        :param x_start: the [N x C x ...] tensor of inputs.
+        :return: a batch of [N] KL values (in bits), one per batch element.
+        """
+        batch_size = x_start.shape[0]
+        t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
+        qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
+        kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
+        return mean_flat(kl_prior) / np.log(2.0)
+
+    def p_losses(self, x_start, cond, t, noise=None):
+        noise = default(noise, lambda: torch.randn_like(x_start))
+        x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+        model_output = self.apply_model(x_noisy, t, cond)
+
+        loss_dict = {}
+        prefix = 'train' if self.training else 'val'
+
+        if self.parameterization == "x0":
+            target = x_start
+        elif self.parameterization == "eps":
+            target = noise
+        elif self.parameterization == "v":
+            target = self.get_v(x_start, noise, t)
+        else:
+            raise NotImplementedError()
+
+        loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
+        loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
+
+        logvar_t = self.logvar[t].to(self.device)
+        loss = loss_simple / torch.exp(logvar_t) + logvar_t
+        # loss = loss_simple / torch.exp(self.logvar) + self.logvar
+        if self.learn_logvar:
+            loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
+            loss_dict.update({'logvar': self.logvar.data.mean()})
+
+        loss = self.l_simple_weight * loss.mean()
+
+        loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
+        loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
+        loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
+        loss += (self.original_elbo_weight * loss_vlb)
+        loss_dict.update({f'{prefix}/loss': loss})
+
+        return loss, loss_dict
+
+    def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
+                        return_x0=False, score_corrector=None, corrector_kwargs=None):
+        t_in = t
+        model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
+
+        if score_corrector is not None:
+            assert self.parameterization == "eps"
+            model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
+
+        if return_codebook_ids:
+            model_out, logits = model_out
+
+        if self.parameterization == "eps":
+            x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
+        elif self.parameterization == "x0":
+            x_recon = model_out
+        else:
+            raise NotImplementedError()
+
+        if clip_denoised:
+            x_recon.clamp_(-1., 1.)
+        if quantize_denoised:
+            x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
+        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
+        if return_codebook_ids:
+            return model_mean, posterior_variance, posterior_log_variance, logits
+        elif return_x0:
+            return model_mean, posterior_variance, posterior_log_variance, x_recon
+        else:
+            return model_mean, posterior_variance, posterior_log_variance
+
+    @torch.no_grad()
+    def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
+                 return_codebook_ids=False, quantize_denoised=False, return_x0=False,
+                 temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
+        b, *_, device = *x.shape, x.device
+        outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
+                                       return_codebook_ids=return_codebook_ids,
+                                       quantize_denoised=quantize_denoised,
+                                       return_x0=return_x0,
+                                       score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
+        if return_codebook_ids:
+            raise DeprecationWarning("Support dropped.")
+            model_mean, _, model_log_variance, logits = outputs
+        elif return_x0:
+            model_mean, _, model_log_variance, x0 = outputs
+        else:
+            model_mean, _, model_log_variance = outputs
+
+        noise = noise_like(x.shape, device, repeat_noise) * temperature
+        if noise_dropout > 0.:
+            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+        # no noise when t == 0
+        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+
+        if return_codebook_ids:
+            return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
+        if return_x0:
+            return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
+        else:
+            return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+    @torch.no_grad()
+    def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
+                              img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
+                              score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
+                              log_every_t=None):
+        if not log_every_t:
+            log_every_t = self.log_every_t
+        timesteps = self.num_timesteps
+        if batch_size is not None:
+            b = batch_size if batch_size is not None else shape[0]
+            shape = [batch_size] + list(shape)
+        else:
+            b = batch_size = shape[0]
+        if x_T is None:
+            img = torch.randn(shape, device=self.device)
+        else:
+            img = x_T
+        intermediates = []
+        if cond is not None:
+            if isinstance(cond, dict):
+                cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
+                list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
+            else:
+                cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
+
+        if start_T is not None:
+            timesteps = min(timesteps, start_T)
+        iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
+                        total=timesteps) if verbose else reversed(
+            range(0, timesteps))
+        if type(temperature) == float:
+            temperature = [temperature] * timesteps
+
+        for i in iterator:
+            ts = torch.full((b,), i, device=self.device, dtype=torch.long)
+            if self.shorten_cond_schedule:
+                assert self.model.conditioning_key != 'hybrid'
+                tc = self.cond_ids[ts].to(cond.device)
+                cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
+
+            img, x0_partial = self.p_sample(img, cond, ts,
+                                            clip_denoised=self.clip_denoised,
+                                            quantize_denoised=quantize_denoised, return_x0=True,
+                                            temperature=temperature[i], noise_dropout=noise_dropout,
+                                            score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
+            if mask is not None:
+                assert x0 is not None
+                img_orig = self.q_sample(x0, ts)
+                img = img_orig * mask + (1. - mask) * img
+
+            if i % log_every_t == 0 or i == timesteps - 1:
+                intermediates.append(x0_partial)
+            if callback: callback(i)
+            if img_callback: img_callback(img, i)
+        return img, intermediates
+
+    @torch.no_grad()
+    def p_sample_loop(self, cond, shape, return_intermediates=False,
+                      x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
+                      mask=None, x0=None, img_callback=None, start_T=None,
+                      log_every_t=None):
+
+        if not log_every_t:
+            log_every_t = self.log_every_t
+        device = self.betas.device
+        b = shape[0]
+        if x_T is None:
+            img = torch.randn(shape, device=device)
+        else:
+            img = x_T
+
+        intermediates = [img]
+        if timesteps is None:
+            timesteps = self.num_timesteps
+
+        if start_T is not None:
+            timesteps = min(timesteps, start_T)
+        iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
+            range(0, timesteps))
+
+        if mask is not None:
+            assert x0 is not None
+            assert x0.shape[2:3] == mask.shape[2:3]  # spatial size has to match
+
+        for i in iterator:
+            ts = torch.full((b,), i, device=device, dtype=torch.long)
+            if self.shorten_cond_schedule:
+                assert self.model.conditioning_key != 'hybrid'
+                tc = self.cond_ids[ts].to(cond.device)
+                cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
+
+            img = self.p_sample(img, cond, ts,
+                                clip_denoised=self.clip_denoised,
+                                quantize_denoised=quantize_denoised)
+            if mask is not None:
+                img_orig = self.q_sample(x0, ts)
+                img = img_orig * mask + (1. - mask) * img
+
+            if i % log_every_t == 0 or i == timesteps - 1:
+                intermediates.append(img)
+            if callback: callback(i)
+            if img_callback: img_callback(img, i)
+
+        if return_intermediates:
+            return img, intermediates
+        return img
+
+    @torch.no_grad()
+    def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
+               verbose=True, timesteps=None, quantize_denoised=False,
+               mask=None, x0=None, shape=None, **kwargs):
+        if shape is None:
+            shape = (batch_size, self.channels, self.image_size, self.image_size)
+        if cond is not None:
+            if isinstance(cond, dict):
+                cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
+                list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
+            else:
+                cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
+        return self.p_sample_loop(cond,
+                                  shape,
+                                  return_intermediates=return_intermediates, x_T=x_T,
+                                  verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
+                                  mask=mask, x0=x0)
+
+    @torch.no_grad()
+    def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
+        if ddim:
+            ddim_sampler = DDIMSampler(self)
+            shape = (self.channels, self.image_size, self.image_size)
+            
+            samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
+                                                         shape, cond, verbose=False, **kwargs)
+
+        else:
+            samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
+                                                 return_intermediates=True, **kwargs)
+
+        return samples, intermediates
+
+    @torch.no_grad()
+    def get_unconditional_conditioning(self, batch_size, null_label=None):
+        if null_label is not None:
+            xc = null_label
+            if isinstance(xc, ListConfig):
+                xc = list(xc)
+            if isinstance(xc, dict) or isinstance(xc, list):
+                c = self.get_learned_conditioning(xc)
+            else:
+                if hasattr(xc, "to"):
+                    xc = xc.to(self.device)
+                c = self.get_learned_conditioning(xc)
+        else:
+            if self.cond_stage_key in ["class_label", "cls"]:
+                xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device)
+                return self.get_learned_conditioning(xc)
+            else:
+                raise NotImplementedError("todo")
+        if isinstance(c, list):  # in case the encoder gives us a list
+            for i in range(len(c)):
+                c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device)
+        else:
+            c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
+        return c
+
+    @torch.no_grad()
+    def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=50, ddim_eta=0., return_keys=None,
+                   quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
+                   plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
+                   use_ema_scope=True,
+                   **kwargs):
+        ema_scope = self.ema_scope if use_ema_scope else nullcontext
+        use_ddim = ddim_steps is not None
+
+        log = dict()
+        z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
+                                           return_first_stage_outputs=True,
+                                           force_c_encode=True,
+                                           return_original_cond=True,
+                                           bs=N)
+        N = min(x.shape[0], N)
+        n_row = min(x.shape[0], n_row)
+        log["inputs"] = x
+        log["reconstruction"] = xrec
+        if self.model.conditioning_key is not None:
+            if hasattr(self.cond_stage_model, "decode"):
+                xc = self.cond_stage_model.decode(c)
+                log["conditioning"] = xc
+            elif self.cond_stage_key in ["caption", "txt"]:
+                xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
+                log["conditioning"] = xc
+            elif self.cond_stage_key in ['class_label', "cls"]:
+                try:
+                    xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
+                    log['conditioning'] = xc
+                except KeyError:
+                    # probably no "human_label" in batch
+                    pass
+            elif isimage(xc):
+                log["conditioning"] = xc
+            if ismap(xc):
+                log["original_conditioning"] = self.to_rgb(xc)
+
+        if plot_diffusion_rows:
+            # get diffusion row
+            diffusion_row = list()
+            z_start = z[:n_row]
+            for t in range(self.num_timesteps):
+                if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+                    t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+                    t = t.to(self.device).long()
+                    noise = torch.randn_like(z_start)
+                    z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
+                    diffusion_row.append(self.decode_first_stage(z_noisy))
+
+            diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
+            diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
+            diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
+            diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
+            log["diffusion_row"] = diffusion_grid
+
+        if sample:
+            # get denoise row
+            with ema_scope("Sampling"):
+                samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
+                                                         ddim_steps=ddim_steps, eta=ddim_eta)
+                # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
+            x_samples = self.decode_first_stage(samples)
+            log["samples"] = x_samples
+            if plot_denoise_rows:
+                denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
+                log["denoise_row"] = denoise_grid
+
+            if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
+                    self.first_stage_model, IdentityFirstStage):
+                # also display when quantizing x0 while sampling
+                with ema_scope("Plotting Quantized Denoised"):
+                    samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
+                                                             ddim_steps=ddim_steps, eta=ddim_eta,
+                                                             quantize_denoised=True)
+                    # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
+                    #                                      quantize_denoised=True)
+                x_samples = self.decode_first_stage(samples.to(self.device))
+                log["samples_x0_quantized"] = x_samples
+
+        if unconditional_guidance_scale > 1.0:
+            uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
+            if self.model.conditioning_key == "crossattn-adm":
+                uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
+            with ema_scope("Sampling with classifier-free guidance"):
+                samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
+                                                 ddim_steps=ddim_steps, eta=ddim_eta,
+                                                 unconditional_guidance_scale=unconditional_guidance_scale,
+                                                 unconditional_conditioning=uc,
+                                                 )
+                x_samples_cfg = self.decode_first_stage(samples_cfg)
+                log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
+
+        if inpaint:
+            # make a simple center square
+            b, h, w = z.shape[0], z.shape[2], z.shape[3]
+            mask = torch.ones(N, h, w).to(self.device)
+            # zeros will be filled in
+            mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
+            mask = mask[:, None, ...]
+            with ema_scope("Plotting Inpaint"):
+                samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
+                                             ddim_steps=ddim_steps, x0=z[:N], mask=mask)
+            x_samples = self.decode_first_stage(samples.to(self.device))
+            log["samples_inpainting"] = x_samples
+            log["mask"] = mask
+
+            # outpaint
+            mask = 1. - mask
+            with ema_scope("Plotting Outpaint"):
+                samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
+                                             ddim_steps=ddim_steps, x0=z[:N], mask=mask)
+            x_samples = self.decode_first_stage(samples.to(self.device))
+            log["samples_outpainting"] = x_samples
+
+        if plot_progressive_rows:
+            with ema_scope("Plotting Progressives"):
+                img, progressives = self.progressive_denoising(c,
+                                                               shape=(self.channels, self.image_size, self.image_size),
+                                                               batch_size=N)
+            prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
+            log["progressive_row"] = prog_row
+
+        if return_keys:
+            if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
+                return log
+            else:
+                return {key: log[key] for key in return_keys}
+        return log
+
+    def configure_optimizers(self):
+        lr = self.learning_rate
+        params = list(self.model.parameters())
+        if self.cond_stage_trainable:
+            print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
+            params = params + list(self.cond_stage_model.parameters())
+        if self.learn_logvar:
+            print('Diffusion model optimizing logvar')
+            params.append(self.logvar)
+        opt = torch.optim.AdamW(params, lr=lr)
+        if self.use_scheduler:
+            assert 'target' in self.scheduler_config
+            scheduler = instantiate_from_config(self.scheduler_config)
+
+            print("Setting up LambdaLR scheduler...")
+            scheduler = [
+                {
+                    'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
+                    'interval': 'step',
+                    'frequency': 1
+                }]
+            return [opt], scheduler
+        return opt
+
+    @torch.no_grad()
+    def to_rgb(self, x):
+        x = x.float()
+        if not hasattr(self, "colorize"):
+            self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
+        x = nn.functional.conv2d(x, weight=self.colorize)
+        x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
+        return x
+
+
+class DiffusionWrapper(pl.LightningModule):
+    def __init__(self, diff_model_config, conditioning_key):
+        super().__init__()
+        self.sequential_cross_attn = diff_model_config.pop("sequential_crossattn", False)
+        self.diffusion_model = instantiate_from_config(diff_model_config)
+        self.conditioning_key = conditioning_key
+        assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm', 'crossattn-adm']
+
+    def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None):
+        if self.conditioning_key is None:
+            out = self.diffusion_model(x, t)
+        elif self.conditioning_key == 'concat':
+            xc = torch.cat([x] + c_concat, dim=1)
+            out = self.diffusion_model(xc, t)
+        elif self.conditioning_key == 'crossattn':
+            if not self.sequential_cross_attn:
+                cc = torch.cat(c_crossattn, 1)
+            else:
+                cc = c_crossattn
+            out = self.diffusion_model(x, t, context=cc)
+        elif self.conditioning_key == 'hybrid':
+            xc = torch.cat([x] + c_concat, dim=1)
+            cc = torch.cat(c_crossattn, 1)
+            out = self.diffusion_model(xc, t, context=cc)
+        elif self.conditioning_key == 'hybrid-adm':
+            assert c_adm is not None
+            xc = torch.cat([x] + c_concat, dim=1)
+            cc = torch.cat(c_crossattn, 1)
+            out = self.diffusion_model(xc, t, context=cc, y=c_adm)
+        elif self.conditioning_key == 'crossattn-adm':
+            assert c_adm is not None
+            cc = torch.cat(c_crossattn, 1)
+            out = self.diffusion_model(x, t, context=cc, y=c_adm)
+        elif self.conditioning_key == 'adm':
+            cc = c_crossattn[0]
+            out = self.diffusion_model(x, t, y=cc)
+        else:
+            raise NotImplementedError()
+
+        return out
+
+
+class LatentUpscaleDiffusion(LatentDiffusion):
+    def __init__(self, *args, low_scale_config, low_scale_key="LR", noise_level_key=None, **kwargs):
+        super().__init__(*args, **kwargs)
+        # assumes that neither the cond_stage nor the low_scale_model contain trainable params
+        assert not self.cond_stage_trainable
+        self.instantiate_low_stage(low_scale_config)
+        self.low_scale_key = low_scale_key
+        self.noise_level_key = noise_level_key
+
+    def instantiate_low_stage(self, config):
+        model = instantiate_from_config(config)
+        self.low_scale_model = model.eval()
+        self.low_scale_model.train = disabled_train
+        for param in self.low_scale_model.parameters():
+            param.requires_grad = False
+
+    @torch.no_grad()
+    def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
+        if not log_mode:
+            z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
+        else:
+            z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
+                                                  force_c_encode=True, return_original_cond=True, bs=bs)
+        x_low = batch[self.low_scale_key][:bs]
+        x_low = rearrange(x_low, 'b h w c -> b c h w')
+        x_low = x_low.to(memory_format=torch.contiguous_format).float()
+        zx, noise_level = self.low_scale_model(x_low)
+        if self.noise_level_key is not None:
+            # get noise level from batch instead, e.g. when extracting a custom noise level for bsr
+            raise NotImplementedError('TODO')
+
+        all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
+        if log_mode:
+            # TODO: maybe disable if too expensive
+            x_low_rec = self.low_scale_model.decode(zx)
+            return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
+        return z, all_conds
+
+    @torch.no_grad()
+    def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
+                   plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
+                   unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
+                   **kwargs):
+        ema_scope = self.ema_scope if use_ema_scope else nullcontext
+        use_ddim = ddim_steps is not None
+
+        log = dict()
+        z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
+                                                                          log_mode=True)
+        N = min(x.shape[0], N)
+        n_row = min(x.shape[0], n_row)
+        log["inputs"] = x
+        log["reconstruction"] = xrec
+        log["x_lr"] = x_low
+        log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
+        if self.model.conditioning_key is not None:
+            if hasattr(self.cond_stage_model, "decode"):
+                xc = self.cond_stage_model.decode(c)
+                log["conditioning"] = xc
+            elif self.cond_stage_key in ["caption", "txt"]:
+                xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
+                log["conditioning"] = xc
+            elif self.cond_stage_key in ['class_label', 'cls']:
+                xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
+                log['conditioning'] = xc
+            elif isimage(xc):
+                log["conditioning"] = xc
+            if ismap(xc):
+                log["original_conditioning"] = self.to_rgb(xc)
+
+        if plot_diffusion_rows:
+            # get diffusion row
+            diffusion_row = list()
+            z_start = z[:n_row]
+            for t in range(self.num_timesteps):
+                if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+                    t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+                    t = t.to(self.device).long()
+                    noise = torch.randn_like(z_start)
+                    z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
+                    diffusion_row.append(self.decode_first_stage(z_noisy))
+
+            diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
+            diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
+            diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
+            diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
+            log["diffusion_row"] = diffusion_grid
+
+        if sample:
+            # get denoise row
+            with ema_scope("Sampling"):
+                samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
+                                                         ddim_steps=ddim_steps, eta=ddim_eta)
+                # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
+            x_samples = self.decode_first_stage(samples)
+            log["samples"] = x_samples
+            if plot_denoise_rows:
+                denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
+                log["denoise_row"] = denoise_grid
+
+        if unconditional_guidance_scale > 1.0:
+            uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
+            # TODO explore better "unconditional" choices for the other keys
+            # maybe guide away from empty text label and highest noise level and maximally degraded zx?
+            uc = dict()
+            for k in c:
+                if k == "c_crossattn":
+                    assert isinstance(c[k], list) and len(c[k]) == 1
+                    uc[k] = [uc_tmp]
+                elif k == "c_adm":  # todo: only run with text-based guidance?
+                    assert isinstance(c[k], torch.Tensor)
+                    #uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
+                    uc[k] = c[k]
+                elif isinstance(c[k], list):
+                    uc[k] = [c[k][i] for i in range(len(c[k]))]
+                else:
+                    uc[k] = c[k]
+
+            with ema_scope("Sampling with classifier-free guidance"):
+                samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
+                                                 ddim_steps=ddim_steps, eta=ddim_eta,
+                                                 unconditional_guidance_scale=unconditional_guidance_scale,
+                                                 unconditional_conditioning=uc,
+                                                 )
+                x_samples_cfg = self.decode_first_stage(samples_cfg)
+                log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
+
+        if plot_progressive_rows:
+            with ema_scope("Plotting Progressives"):
+                img, progressives = self.progressive_denoising(c,
+                                                               shape=(self.channels, self.image_size, self.image_size),
+                                                               batch_size=N)
+            prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
+            log["progressive_row"] = prog_row
+
+        return log
+
+
+class LatentFinetuneDiffusion(LatentDiffusion):
+    """
+         Basis for different finetunas, such as inpainting or depth2image
+         To disable finetuning mode, set finetune_keys to None
+    """
+
+    def __init__(self,
+                 concat_keys: tuple,
+                 finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
+                                "model_ema.diffusion_modelinput_blocks00weight"
+                                ),
+                 keep_finetune_dims=4,
+                 # if model was trained without concat mode before and we would like to keep these channels
+                 c_concat_log_start=None,  # to log reconstruction of c_concat codes
+                 c_concat_log_end=None,
+                 *args, **kwargs
+                 ):
+        ckpt_path = kwargs.pop("ckpt_path", None)
+        ignore_keys = kwargs.pop("ignore_keys", list())
+        super().__init__(*args, **kwargs)
+        self.finetune_keys = finetune_keys
+        self.concat_keys = concat_keys
+        self.keep_dims = keep_finetune_dims
+        self.c_concat_log_start = c_concat_log_start
+        self.c_concat_log_end = c_concat_log_end
+        if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
+        if exists(ckpt_path):
+            self.init_from_ckpt(ckpt_path, ignore_keys)
+
+    def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
+        sd = torch.load(path, map_location="cpu")
+        if "state_dict" in list(sd.keys()):
+            sd = sd["state_dict"]
+        keys = list(sd.keys())
+        for k in keys:
+            for ik in ignore_keys:
+                if k.startswith(ik):
+                    print("Deleting key {} from state_dict.".format(k))
+                    del sd[k]
+
+            # make it explicit, finetune by including extra input channels
+            if exists(self.finetune_keys) and k in self.finetune_keys:
+                new_entry = None
+                for name, param in self.named_parameters():
+                    if name in self.finetune_keys:
+                        print(
+                            f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
+                        new_entry = torch.zeros_like(param)  # zero init
+                assert exists(new_entry), 'did not find matching parameter to modify'
+                new_entry[:, :self.keep_dims, ...] = sd[k]
+                sd[k] = new_entry
+
+        missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
+            sd, strict=False)
+        print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
+        if len(missing) > 0:
+            print(f"Missing Keys: {missing}")
+        if len(unexpected) > 0:
+            print(f"Unexpected Keys: {unexpected}")
+
+    @torch.no_grad()
+    def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
+                   quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
+                   plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
+                   use_ema_scope=True,
+                   **kwargs):
+        ema_scope = self.ema_scope if use_ema_scope else nullcontext
+        use_ddim = ddim_steps is not None
+
+        log = dict()
+        z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
+        c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
+        N = min(x.shape[0], N)
+        n_row = min(x.shape[0], n_row)
+        log["inputs"] = x
+        log["reconstruction"] = xrec
+        if self.model.conditioning_key is not None:
+            if hasattr(self.cond_stage_model, "decode"):
+                xc = self.cond_stage_model.decode(c)
+                log["conditioning"] = xc
+            elif self.cond_stage_key in ["caption", "txt"]:
+                xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
+                log["conditioning"] = xc
+            elif self.cond_stage_key in ['class_label', 'cls']:
+                xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
+                log['conditioning'] = xc
+            elif isimage(xc):
+                log["conditioning"] = xc
+            if ismap(xc):
+                log["original_conditioning"] = self.to_rgb(xc)
+
+        if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
+            log["c_concat_decoded"] = self.decode_first_stage(c_cat[:, self.c_concat_log_start:self.c_concat_log_end])
+
+        if plot_diffusion_rows:
+            # get diffusion row
+            diffusion_row = list()
+            z_start = z[:n_row]
+            for t in range(self.num_timesteps):
+                if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+                    t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+                    t = t.to(self.device).long()
+                    noise = torch.randn_like(z_start)
+                    z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
+                    diffusion_row.append(self.decode_first_stage(z_noisy))
+
+            diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
+            diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
+            diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
+            diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
+            log["diffusion_row"] = diffusion_grid
+
+        if sample:
+            # get denoise row
+            with ema_scope("Sampling"):
+                samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
+                                                         batch_size=N, ddim=use_ddim,
+                                                         ddim_steps=ddim_steps, eta=ddim_eta)
+                # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
+            x_samples = self.decode_first_stage(samples)
+            log["samples"] = x_samples
+            if plot_denoise_rows:
+                denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
+                log["denoise_row"] = denoise_grid
+
+        if unconditional_guidance_scale > 1.0:
+            uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
+            uc_cat = c_cat
+            uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
+            with ema_scope("Sampling with classifier-free guidance"):
+                samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
+                                                 batch_size=N, ddim=use_ddim,
+                                                 ddim_steps=ddim_steps, eta=ddim_eta,
+                                                 unconditional_guidance_scale=unconditional_guidance_scale,
+                                                 unconditional_conditioning=uc_full,
+                                                 )
+                x_samples_cfg = self.decode_first_stage(samples_cfg)
+                log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
+
+        return log
+
+
+class LatentInpaintDiffusion(LatentFinetuneDiffusion):
+    """
+    can either run as pure inpainting model (only concat mode) or with mixed conditionings,
+    e.g. mask as concat and text via cross-attn.
+    To disable finetuning mode, set finetune_keys to None
+     """
+
+    def __init__(self,
+                 concat_keys=("mask", "masked_image"),
+                 masked_image_key="masked_image",
+                 *args, **kwargs
+                 ):
+        super().__init__(concat_keys, *args, **kwargs)
+        self.masked_image_key = masked_image_key
+        assert self.masked_image_key in concat_keys
+
+    @torch.no_grad()
+    def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
+        # note: restricted to non-trainable encoders currently
+        assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
+        z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
+                                              force_c_encode=True, return_original_cond=True, bs=bs)
+
+        assert exists(self.concat_keys)
+        c_cat = list()
+        for ck in self.concat_keys:
+            cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
+            if bs is not None:
+                cc = cc[:bs]
+                cc = cc.to(self.device)
+            bchw = z.shape
+            if ck != self.masked_image_key:
+                cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
+            else:
+                cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
+            c_cat.append(cc)
+        c_cat = torch.cat(c_cat, dim=1)
+        all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
+        if return_first_stage_outputs:
+            return z, all_conds, x, xrec, xc
+        return z, all_conds
+
+    @torch.no_grad()
+    def log_images(self, *args, **kwargs):
+        log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs)
+        log["masked_image"] = rearrange(args[0]["masked_image"],
+                                        'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
+        return log
+
+
+class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion):
+    """
+    condition on monocular depth estimation
+    """
+
+    def __init__(self, depth_stage_config, concat_keys=("midas_in",), *args, **kwargs):
+        super().__init__(concat_keys=concat_keys, *args, **kwargs)
+        self.depth_model = instantiate_from_config(depth_stage_config)
+        self.depth_stage_key = concat_keys[0]
+
+    @torch.no_grad()
+    def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
+        # note: restricted to non-trainable encoders currently
+        assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for depth2img'
+        z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
+                                              force_c_encode=True, return_original_cond=True, bs=bs)
+
+        assert exists(self.concat_keys)
+        assert len(self.concat_keys) == 1
+        c_cat = list()
+        for ck in self.concat_keys:
+            cc = batch[ck]
+            if bs is not None:
+                cc = cc[:bs]
+                cc = cc.to(self.device)
+            cc = self.depth_model(cc)
+            cc = torch.nn.functional.interpolate(
+                cc,
+                size=z.shape[2:],
+                mode="bicubic",
+                align_corners=False,
+            )
+
+            depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
+                                                                                           keepdim=True)
+            cc = 2. * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1.
+            c_cat.append(cc)
+        c_cat = torch.cat(c_cat, dim=1)
+        all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
+        if return_first_stage_outputs:
+            return z, all_conds, x, xrec, xc
+        return z, all_conds
+
+    @torch.no_grad()
+    def log_images(self, *args, **kwargs):
+        log = super().log_images(*args, **kwargs)
+        depth = self.depth_model(args[0][self.depth_stage_key])
+        depth_min, depth_max = torch.amin(depth, dim=[1, 2, 3], keepdim=True), \
+                               torch.amax(depth, dim=[1, 2, 3], keepdim=True)
+        log["depth"] = 2. * (depth - depth_min) / (depth_max - depth_min) - 1.
+        return log
+
+
+class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion):
+    """
+        condition on low-res image (and optionally on some spatial noise augmentation)
+    """
+    def __init__(self, concat_keys=("lr",), reshuffle_patch_size=None,
+                 low_scale_config=None, low_scale_key=None, *args, **kwargs):
+        super().__init__(concat_keys=concat_keys, *args, **kwargs)
+        self.reshuffle_patch_size = reshuffle_patch_size
+        self.low_scale_model = None
+        if low_scale_config is not None:
+            print("Initializing a low-scale model")
+            assert exists(low_scale_key)
+            self.instantiate_low_stage(low_scale_config)
+            self.low_scale_key = low_scale_key
+
+    def instantiate_low_stage(self, config):
+        model = instantiate_from_config(config)
+        self.low_scale_model = model.eval()
+        self.low_scale_model.train = disabled_train
+        for param in self.low_scale_model.parameters():
+            param.requires_grad = False
+
+    @torch.no_grad()
+    def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
+        # note: restricted to non-trainable encoders currently
+        assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for upscaling-ft'
+        z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
+                                              force_c_encode=True, return_original_cond=True, bs=bs)
+
+        assert exists(self.concat_keys)
+        assert len(self.concat_keys) == 1
+        # optionally make spatial noise_level here
+        c_cat = list()
+        noise_level = None
+        for ck in self.concat_keys:
+            cc = batch[ck]
+            cc = rearrange(cc, 'b h w c -> b c h w')
+            if exists(self.reshuffle_patch_size):
+                assert isinstance(self.reshuffle_patch_size, int)
+                cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
+                               p1=self.reshuffle_patch_size, p2=self.reshuffle_patch_size)
+            if bs is not None:
+                cc = cc[:bs]
+                cc = cc.to(self.device)
+            if exists(self.low_scale_model) and ck == self.low_scale_key:
+                cc, noise_level = self.low_scale_model(cc)
+            c_cat.append(cc)
+        c_cat = torch.cat(c_cat, dim=1)
+        if exists(noise_level):
+            all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level}
+        else:
+            all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
+        if return_first_stage_outputs:
+            return z, all_conds, x, xrec, xc
+        return z, all_conds
+
+    @torch.no_grad()
+    def log_images(self, *args, **kwargs):
+        log = super().log_images(*args, **kwargs)
+        log["lr"] = rearrange(args[0]["lr"], 'b h w c -> b c h w')
+        return log
+
+
+
+
+class LatentDiffusionReferenceOnly(DDPM):
+    """main class"""
+
+    def __init__(self,
+                 first_stage_config,
+                 cond_stage_config=None,
+                 num_timesteps_cond=None,
+                 cond_stage_key="image",
+                 cond_stage_trainable=False,
+                 concat_mode=True,
+                 cond_stage_forward=None,
+                 conditioning_key=None,
+                 scale_factor=1.0,
+                 scale_by_std=False,
+                 force_null_conditioning=False,
+                 *args, **kwargs):
+        self.force_null_conditioning = force_null_conditioning
+        self.num_timesteps_cond = default(num_timesteps_cond, 1)
+        self.scale_by_std = scale_by_std
+        assert self.num_timesteps_cond <= kwargs['timesteps']
+        # for backwards compatibility after implementation of DiffusionWrapper
+        if conditioning_key is None:
+            conditioning_key = 'concat' if concat_mode else 'crossattn'
+        if cond_stage_config == '__is_unconditional__' and not self.force_null_conditioning:
+            conditioning_key = None
+        ckpt_path = kwargs.pop("ckpt_path", None)
+        reset_ema = kwargs.pop("reset_ema", False)
+        reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False)
+        ignore_keys = kwargs.pop("ignore_keys", [])
+        super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
+        self.concat_mode = concat_mode
+        self.cond_stage_trainable = cond_stage_trainable
+        self.cond_stage_key = cond_stage_key
+        try:
+            self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
+        except:
+            self.num_downs = 0
+        if not scale_by_std:
+            self.scale_factor = scale_factor
+        else:
+            self.register_buffer('scale_factor', torch.tensor(scale_factor))
+        self.instantiate_first_stage(first_stage_config)
+        if cond_stage_config is not None:
+            self.instantiate_cond_stage(cond_stage_config)
+        self.cond_stage_forward = cond_stage_forward
+        self.clip_denoised = False
+        self.bbox_tokenizer = None
+
+        self.restarted_from_ckpt = False
+        if ckpt_path is not None:
+            self.init_from_ckpt(ckpt_path, ignore_keys)
+            self.restarted_from_ckpt = True
+            if reset_ema:
+                assert self.use_ema
+                print(
+                    f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
+                self.model_ema = LitEma(self.model)
+        if reset_num_ema_updates:
+            print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
+            assert self.use_ema
+            self.model_ema.reset_num_updates()
+
+    def make_cond_schedule(self, ):
+        self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
+        ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
+        self.cond_ids[:self.num_timesteps_cond] = ids
+
+    @rank_zero_only
+    @torch.no_grad()
+    def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
+        # only for very first batch
+        if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
+            assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
+            # set rescale weight to 1./std of encodings
+            print("### USING STD-RESCALING ###")
+            x = super().get_input(batch, self.first_stage_key)
+            x = x.to(self.device)
+            encoder_posterior = self.encode_first_stage(x)
+            z = self.get_first_stage_encoding(encoder_posterior).detach()
+            del self.scale_factor
+            self.register_buffer('scale_factor', 1. / z.flatten().std())
+            print(f"setting self.scale_factor to {self.scale_factor}")
+            print("### USING STD-RESCALING ###")
+
+    def register_schedule(self,
+                          given_betas=None, beta_schedule="linear", timesteps=1000,
+                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+        super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
+
+        self.shorten_cond_schedule = self.num_timesteps_cond > 1
+        if self.shorten_cond_schedule:
+            self.make_cond_schedule()
+
+    def instantiate_first_stage(self, config):
+        model = instantiate_from_config(config)
+        self.first_stage_model = model.eval()
+        self.first_stage_model.train = disabled_train
+        for param in self.first_stage_model.parameters():
+            param.requires_grad = False
+
+    def instantiate_cond_stage(self, config):
+        if not self.cond_stage_trainable:
+            if config == "__is_first_stage__":
+                print("Using first stage also as cond stage.")
+                self.cond_stage_model = self.first_stage_model
+            elif config == "__is_unconditional__":
+                print(f"Training {self.__class__.__name__} as an unconditional model.")
+                self.cond_stage_model = None
+                # self.be_unconditional = True
+            else:
+                model = instantiate_from_config(config)
+                self.cond_stage_model = model.eval()
+                self.cond_stage_model.train = disabled_train
+                for param in self.cond_stage_model.parameters():
+                    param.requires_grad = False
+        else:
+            assert config != '__is_first_stage__'
+            assert config != '__is_unconditional__'
+            model = instantiate_from_config(config)
+            self.cond_stage_model = model
+
+    def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
+        denoise_row = []
+        for zd in tqdm(samples, desc=desc):
+            denoise_row.append(self.decode_first_stage(zd.to(self.device),
+                                                       force_not_quantize=force_no_decoder_quantization))
+        n_imgs_per_row = len(denoise_row)
+        denoise_row = torch.stack(denoise_row)  # n_log_step, n_row, C, H, W
+        denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
+        denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
+        denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
+        return denoise_grid
+
+    def get_first_stage_encoding(self, encoder_posterior):
+        if isinstance(encoder_posterior, DiagonalGaussianDistribution):
+            z = encoder_posterior.sample()
+        elif isinstance(encoder_posterior, torch.Tensor):
+            z = encoder_posterior
+        else:
+            raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
+        return self.scale_factor * z
+
+    def get_learned_conditioning(self, c):
+        if self.cond_stage_forward is None:
+            if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
+                c = self.cond_stage_model.encode(c)
+                if isinstance(c, DiagonalGaussianDistribution):
+                    c = c.mode()
+            else:
+                c = self.cond_stage_model(c)
+        else:
+            assert hasattr(self.cond_stage_model, self.cond_stage_forward)
+            c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
+        return c
+
+    def meshgrid(self, h, w):
+        y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
+        x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
+
+        arr = torch.cat([y, x], dim=-1)
+        return arr
+
+    def delta_border(self, h, w):
+        """
+        :param h: height
+        :param w: width
+        :return: normalized distance to image border,
+         wtith min distance = 0 at border and max dist = 0.5 at image center
+        """
+        lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
+        arr = self.meshgrid(h, w) / lower_right_corner
+        dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
+        dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
+        edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
+        return edge_dist
+
+    def get_weighting(self, h, w, Ly, Lx, device):
+        weighting = self.delta_border(h, w)
+        weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
+                               self.split_input_params["clip_max_weight"], )
+        weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
+
+        if self.split_input_params["tie_braker"]:
+            L_weighting = self.delta_border(Ly, Lx)
+            L_weighting = torch.clip(L_weighting,
+                                     self.split_input_params["clip_min_tie_weight"],
+                                     self.split_input_params["clip_max_tie_weight"])
+
+            L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
+            weighting = weighting * L_weighting
+        return weighting
+
+    def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1):  # todo load once not every time, shorten code
+        """
+        :param x: img of size (bs, c, h, w)
+        :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
+        """
+        bs, nc, h, w = x.shape
+
+        # number of crops in image
+        Ly = (h - kernel_size[0]) // stride[0] + 1
+        Lx = (w - kernel_size[1]) // stride[1] + 1
+
+        if uf == 1 and df == 1:
+            fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+            unfold = torch.nn.Unfold(**fold_params)
+
+            fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
+
+            weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
+            normalization = fold(weighting).view(1, 1, h, w)  # normalizes the overlap
+            weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
+
+        elif uf > 1 and df == 1:
+            fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+            unfold = torch.nn.Unfold(**fold_params)
+
+            fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
+                                dilation=1, padding=0,
+                                stride=(stride[0] * uf, stride[1] * uf))
+            fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
+
+            weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
+            normalization = fold(weighting).view(1, 1, h * uf, w * uf)  # normalizes the overlap
+            weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
+
+        elif df > 1 and uf == 1:
+            fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+            unfold = torch.nn.Unfold(**fold_params)
+
+            fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
+                                dilation=1, padding=0,
+                                stride=(stride[0] // df, stride[1] // df))
+            fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
+
+            weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
+            normalization = fold(weighting).view(1, 1, h // df, w // df)  # normalizes the overlap
+            weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
+
+        else:
+            raise NotImplementedError
+
+        return fold, unfold, normalization, weighting
+
+    @torch.no_grad()
+    def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
+                  cond_key=None, return_original_cond=False, bs=None, return_x=False):
+        x = super().get_input(batch, k)
+        if bs is not None:
+            x = x[:bs]
+        x = x.to(self.device)
+        encoder_posterior = self.encode_first_stage(x)
+        z = self.get_first_stage_encoding(encoder_posterior).detach()
+
+        if self.model.conditioning_key is not None and not self.force_null_conditioning:
+            if cond_key is None:
+                cond_key = self.cond_stage_key
+            if cond_key != self.first_stage_key:
+                if cond_key in ['caption', 'coordinates_bbox', "txt"]:
+                    xc = batch[cond_key]
+                elif cond_key in ['class_label', 'cls']:
+                    xc = batch
+                else:
+                    xc = super().get_input(batch, cond_key).to(self.device)
+            else:
+                xc = x
+            if not self.cond_stage_trainable or force_c_encode:
+                if isinstance(xc, dict) or isinstance(xc, list):
+                    c = self.get_learned_conditioning(xc)
+                else:
+                    c = self.get_learned_conditioning(xc.to(self.device))
+            else:
+                c = xc
+            if bs is not None:
+                c = c[:bs]
+
+            if self.use_positional_encodings:
+                pos_x, pos_y = self.compute_latent_shifts(batch)
+                ckey = __conditioning_keys__[self.model.conditioning_key]
+                c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
+
+        else:
+            c = None
+            xc = None
+            if self.use_positional_encodings:
+                pos_x, pos_y = self.compute_latent_shifts(batch)
+                c = {'pos_x': pos_x, 'pos_y': pos_y}
+        out = [z, c]
+        if return_first_stage_outputs:
+            xrec = self.decode_first_stage(z)
+            out.extend([x, xrec])
+        if return_x:
+            out.extend([x])
+        if return_original_cond:
+            out.append(xc)
+        return out
+
+    @torch.no_grad()
+    def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
+        if predict_cids:
+            if z.dim() == 4:
+                z = torch.argmax(z.exp(), dim=1).long()
+            z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
+            z = rearrange(z, 'b h w c -> b c h w').contiguous()
+
+        z = 1. / self.scale_factor * z
+        return self.first_stage_model.decode(z)
+
+    @torch.no_grad()
+    def encode_first_stage(self, x):
+        return self.first_stage_model.encode(x)
+
+    def shared_step(self, batch, **kwargs):
+        x, c = self.get_input(batch, self.first_stage_key)
+        loss = self(x, c)
+        return loss
+
+    def forward(self, x, c, *args, **kwargs):
+        t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
+        if self.model.conditioning_key is not None:
+            assert c is not None
+            if self.cond_stage_trainable:
+                c = self.get_learned_conditioning(c)
+            if self.shorten_cond_schedule:  # TODO: drop this option
+                tc = self.cond_ids[t].to(self.device)
+                c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
+        return self.p_losses(x, c, t, *args, **kwargs)
+
+    def apply_model(self, x_noisy, t, cond, reference_image_noisy=None ,return_ids=False):
+        if isinstance(cond, dict):
+            # hybrid case, cond is expected to be a dict
+            pass
+        else:
+            if not isinstance(cond, list):
+                cond = [cond]
+            key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
+            cond = {key: cond}
+
+        x_recon = self.model(x_noisy, t, **cond)
+
+        if isinstance(x_recon, tuple) and not return_ids:
+            return x_recon[0]
+        else:
+            return x_recon
+
+    def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
+        return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
+               extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
+
+    def _prior_bpd(self, x_start):
+        """
+        Get the prior KL term for the variational lower-bound, measured in
+        bits-per-dim.
+        This term can't be optimized, as it only depends on the encoder.
+        :param x_start: the [N x C x ...] tensor of inputs.
+        :return: a batch of [N] KL values (in bits), one per batch element.
+        """
+        batch_size = x_start.shape[0]
+        t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
+        qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
+        kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
+        return mean_flat(kl_prior) / np.log(2.0)
+
+    def p_losses(self, x_start, cond, t, noise=None):
+        noise = default(noise, lambda: torch.randn_like(x_start))
+        # pdb.set_trace()
+        if 'image_control' in cond and cond['image_control'] is not None:
+            cond_image_start = torch.cat(cond['image_control'], 1)
+        # pdb.set_trace()
+            
+            # pdb.set_trace()
+            if cond['wonoise']:
+                reference_image_noisy = cond_image_start
+            else:
+                reference_image_noisy = self.q_sample(x_start=cond_image_start, t=t, noise=noise)
+            # pdb.set_trace()
+            x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+            model_output = self.apply_model(x_noisy, t, cond, reference_image_noisy)
+        else:
+            model_output = self.apply_model(x_noisy, t, cond, None)
+        loss_dict = {}
+        prefix = 'train' if self.training else 'val'
+
+        if self.parameterization == "x0":
+            target = x_start
+        elif self.parameterization == "eps":
+            target = noise
+        elif self.parameterization == "v":
+            target = self.get_v(x_start, noise, t)
+        else:
+            raise NotImplementedError()
+
+        loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
+        loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
+
+        logvar_t = self.logvar[t].to(self.device)
+        loss = loss_simple / torch.exp(logvar_t) + logvar_t
+        # loss = loss_simple / torch.exp(self.logvar) + self.logvar
+        if self.learn_logvar:
+            loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
+            loss_dict.update({'logvar': self.logvar.data.mean()})
+
+        loss = self.l_simple_weight * loss.mean()
+
+        loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
+        loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
+        loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
+        loss += (self.original_elbo_weight * loss_vlb)
+        loss_dict.update({f'{prefix}/loss': loss})
+
+        return loss, loss_dict
+
+    def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
+                        return_x0=False, score_corrector=None, corrector_kwargs=None):
+        t_in = t
+        model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
+
+        if score_corrector is not None:
+            assert self.parameterization == "eps"
+            model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
+
+        if return_codebook_ids:
+            model_out, logits = model_out
+
+        if self.parameterization == "eps":
+            x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
+        elif self.parameterization == "x0":
+            x_recon = model_out
+        else:
+            raise NotImplementedError()
+
+        if clip_denoised:
+            x_recon.clamp_(-1., 1.)
+        if quantize_denoised:
+            x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
+        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
+        if return_codebook_ids:
+            return model_mean, posterior_variance, posterior_log_variance, logits
+        elif return_x0:
+            return model_mean, posterior_variance, posterior_log_variance, x_recon
+        else:
+            return model_mean, posterior_variance, posterior_log_variance
+
+    @torch.no_grad()
+    def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
+                 return_codebook_ids=False, quantize_denoised=False, return_x0=False,
+                 temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
+        b, *_, device = *x.shape, x.device
+        outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
+                                       return_codebook_ids=return_codebook_ids,
+                                       quantize_denoised=quantize_denoised,
+                                       return_x0=return_x0,
+                                       score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
+        if return_codebook_ids:
+            raise DeprecationWarning("Support dropped.")
+            model_mean, _, model_log_variance, logits = outputs
+        elif return_x0:
+            model_mean, _, model_log_variance, x0 = outputs
+        else:
+            model_mean, _, model_log_variance = outputs
+
+        noise = noise_like(x.shape, device, repeat_noise) * temperature
+        if noise_dropout > 0.:
+            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+        # no noise when t == 0
+        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+
+        if return_codebook_ids:
+            return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
+        if return_x0:
+            return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
+        else:
+            return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+    @torch.no_grad()
+    def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
+                              img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
+                              score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
+                              log_every_t=None):
+        if not log_every_t:
+            log_every_t = self.log_every_t
+        timesteps = self.num_timesteps
+        if batch_size is not None:
+            b = batch_size if batch_size is not None else shape[0]
+            shape = [batch_size] + list(shape)
+        else:
+            b = batch_size = shape[0]
+        if x_T is None:
+            img = torch.randn(shape, device=self.device)
+        else:
+            img = x_T
+        intermediates = []
+        if cond is not None:
+            if isinstance(cond, dict):
+                cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
+                list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
+            else:
+                cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
+
+        if start_T is not None:
+            timesteps = min(timesteps, start_T)
+        iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
+                        total=timesteps) if verbose else reversed(
+            range(0, timesteps))
+        if type(temperature) == float:
+            temperature = [temperature] * timesteps
+
+        for i in iterator:
+            ts = torch.full((b,), i, device=self.device, dtype=torch.long)
+            if self.shorten_cond_schedule:
+                assert self.model.conditioning_key != 'hybrid'
+                tc = self.cond_ids[ts].to(cond.device)
+                cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
+
+            img, x0_partial = self.p_sample(img, cond, ts,
+                                            clip_denoised=self.clip_denoised,
+                                            quantize_denoised=quantize_denoised, return_x0=True,
+                                            temperature=temperature[i], noise_dropout=noise_dropout,
+                                            score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
+            if mask is not None:
+                assert x0 is not None
+                img_orig = self.q_sample(x0, ts)
+                img = img_orig * mask + (1. - mask) * img
+
+            if i % log_every_t == 0 or i == timesteps - 1:
+                intermediates.append(x0_partial)
+            if callback: callback(i)
+            if img_callback: img_callback(img, i)
+        return img, intermediates
+
+    @torch.no_grad()
+    def p_sample_loop(self, cond, shape, return_intermediates=False,
+                      x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
+                      mask=None, x0=None, img_callback=None, start_T=None,
+                      log_every_t=None):
+
+        if not log_every_t:
+            log_every_t = self.log_every_t
+        device = self.betas.device
+        b = shape[0]
+        if x_T is None:
+            img = torch.randn(shape, device=device)
+        else:
+            img = x_T
+
+        intermediates = [img]
+        if timesteps is None:
+            timesteps = self.num_timesteps
+
+        if start_T is not None:
+            timesteps = min(timesteps, start_T)
+        iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
+            range(0, timesteps))
+
+        if mask is not None:
+            assert x0 is not None
+            assert x0.shape[2:3] == mask.shape[2:3]  # spatial size has to match
+
+        for i in iterator:
+            ts = torch.full((b,), i, device=device, dtype=torch.long)
+            if self.shorten_cond_schedule:
+                assert self.model.conditioning_key != 'hybrid'
+                tc = self.cond_ids[ts].to(cond.device)
+                cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
+
+            img = self.p_sample(img, cond, ts,
+                                clip_denoised=self.clip_denoised,
+                                quantize_denoised=quantize_denoised)
+            if mask is not None:
+                img_orig = self.q_sample(x0, ts)
+                img = img_orig * mask + (1. - mask) * img
+
+            if i % log_every_t == 0 or i == timesteps - 1:
+                intermediates.append(img)
+            if callback: callback(i)
+            if img_callback: img_callback(img, i)
+
+        if return_intermediates:
+            return img, intermediates
+        return img
+
+    @torch.no_grad()
+    def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
+               verbose=True, timesteps=None, quantize_denoised=False,
+               mask=None, x0=None, shape=None, **kwargs):
+        if shape is None:
+            shape = (batch_size, self.channels, self.image_size, self.image_size)
+        if cond is not None:
+            if isinstance(cond, dict):
+                cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
+                list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
+            else:
+                cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
+        return self.p_sample_loop(cond,
+                                  shape,
+                                  return_intermediates=return_intermediates, x_T=x_T,
+                                  verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
+                                  mask=mask, x0=x0)
+
+    @torch.no_grad()
+    def sample_log(self, cond, batch_size, ddim, ddim_steps, num_overlap=0, lcm=False, **kwargs):
+        if ddim:
+            ddim_sampler = DDIMSampler_ReferenceOnly(self)
+            shape = (self.channels, self.image_size, self.image_size)
+            samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
+                                                         shape, cond, verbose=False, num_overlap=num_overlap, **kwargs)
+
+        else:
+            samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
+                                                 return_intermediates=True, **kwargs)
+
+        return samples, intermediates
+
+    @torch.no_grad()
+    def get_unconditional_conditioning(self, batch_size, null_label=None):
+        if null_label is not None:
+            xc = null_label
+            if isinstance(xc, ListConfig):
+                xc = list(xc)
+            if isinstance(xc, dict) or isinstance(xc, list):
+                c = self.get_learned_conditioning(xc)
+            else:
+                if hasattr(xc, "to"):
+                    xc = xc.to(self.device)
+                c = self.get_learned_conditioning(xc)
+        else:
+            if self.cond_stage_key in ["class_label", "cls"]:
+                xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device)
+                return self.get_learned_conditioning(xc)
+            else:
+                raise NotImplementedError("todo")
+        if isinstance(c, list):  # in case the encoder gives us a list
+            for i in range(len(c)):
+                c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device)
+        else:
+            c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
+        return c
+
+    @torch.no_grad()
+    def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=50, ddim_eta=0., return_keys=None,
+                   quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
+                   plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
+                   use_ema_scope=True,
+                   **kwargs):
+        ema_scope = self.ema_scope if use_ema_scope else nullcontext
+        use_ddim = ddim_steps is not None
+
+        log = dict()
+        z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
+                                           return_first_stage_outputs=True,
+                                           force_c_encode=True,
+                                           return_original_cond=True,
+                                           bs=N)
+        N = min(x.shape[0], N)
+        n_row = min(x.shape[0], n_row)
+        log["inputs"] = x
+        log["reconstruction"] = xrec
+        if self.model.conditioning_key is not None:
+            if hasattr(self.cond_stage_model, "decode"):
+                xc = self.cond_stage_model.decode(c)
+                log["conditioning"] = xc
+            elif self.cond_stage_key in ["caption", "txt"]:
+                xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
+                log["conditioning"] = xc
+            elif self.cond_stage_key in ['class_label', "cls"]:
+                try:
+                    xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
+                    log['conditioning'] = xc
+                except KeyError:
+                    # probably no "human_label" in batch
+                    pass
+            elif isimage(xc):
+                log["conditioning"] = xc
+            if ismap(xc):
+                log["original_conditioning"] = self.to_rgb(xc)
+
+        if plot_diffusion_rows:
+            # get diffusion row
+            diffusion_row = list()
+            z_start = z[:n_row]
+            for t in range(self.num_timesteps):
+                if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+                    t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+                    t = t.to(self.device).long()
+                    noise = torch.randn_like(z_start)
+                    z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
+                    diffusion_row.append(self.decode_first_stage(z_noisy))
+
+            diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
+            diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
+            diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
+            diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
+            log["diffusion_row"] = diffusion_grid
+
+        if sample:
+            # get denoise row
+            with ema_scope("Sampling"):
+                samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
+                                                         ddim_steps=ddim_steps, eta=ddim_eta)
+                # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
+            x_samples = self.decode_first_stage(samples)
+            log["samples"] = x_samples
+            if plot_denoise_rows:
+                denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
+                log["denoise_row"] = denoise_grid
+
+            if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
+                    self.first_stage_model, IdentityFirstStage):
+                # also display when quantizing x0 while sampling
+                with ema_scope("Plotting Quantized Denoised"):
+                    samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
+                                                             ddim_steps=ddim_steps, eta=ddim_eta,
+                                                             quantize_denoised=True)
+                    # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
+                    #                                      quantize_denoised=True)
+                x_samples = self.decode_first_stage(samples.to(self.device))
+                log["samples_x0_quantized"] = x_samples
+
+        if unconditional_guidance_scale > 1.0:
+            uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
+            if self.model.conditioning_key == "crossattn-adm":
+                uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
+            with ema_scope("Sampling with classifier-free guidance"):
+                samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
+                                                 ddim_steps=ddim_steps, eta=ddim_eta,
+                                                 unconditional_guidance_scale=unconditional_guidance_scale,
+                                                 unconditional_conditioning=uc,
+                                                 )
+                x_samples_cfg = self.decode_first_stage(samples_cfg)
+                log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
+
+        if inpaint:
+            # make a simple center square
+            b, h, w = z.shape[0], z.shape[2], z.shape[3]
+            mask = torch.ones(N, h, w).to(self.device)
+            # zeros will be filled in
+            mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
+            mask = mask[:, None, ...]
+            with ema_scope("Plotting Inpaint"):
+                samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
+                                             ddim_steps=ddim_steps, x0=z[:N], mask=mask)
+            x_samples = self.decode_first_stage(samples.to(self.device))
+            log["samples_inpainting"] = x_samples
+            log["mask"] = mask
+
+            # outpaint
+            mask = 1. - mask
+            with ema_scope("Plotting Outpaint"):
+                samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
+                                             ddim_steps=ddim_steps, x0=z[:N], mask=mask)
+            x_samples = self.decode_first_stage(samples.to(self.device))
+            log["samples_outpainting"] = x_samples
+
+        if plot_progressive_rows:
+            with ema_scope("Plotting Progressives"):
+                img, progressives = self.progressive_denoising(c,
+                                                               shape=(self.channels, self.image_size, self.image_size),
+                                                               batch_size=N)
+            prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
+            log["progressive_row"] = prog_row
+
+        if return_keys:
+            if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
+                return log
+            else:
+                return {key: log[key] for key in return_keys}
+        return log
+
+    def configure_optimizers(self):
+        lr = self.learning_rate
+        params = list(self.model.parameters())
+        if self.cond_stage_trainable:
+            print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
+            params = params + list(self.cond_stage_model.parameters())
+        if self.learn_logvar:
+            print('Diffusion model optimizing logvar')
+            params.append(self.logvar)
+        opt = torch.optim.AdamW(params, lr=lr)
+        if self.use_scheduler:
+            assert 'target' in self.scheduler_config
+            scheduler = instantiate_from_config(self.scheduler_config)
+
+            print("Setting up LambdaLR scheduler...")
+            scheduler = [
+                {
+                    'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
+                    'interval': 'step',
+                    'frequency': 1
+                }]
+            return [opt], scheduler
+        return opt
+
+    @torch.no_grad()
+    def to_rgb(self, x):
+        x = x.float()
+        if not hasattr(self, "colorize"):
+            self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
+        x = nn.functional.conv2d(x, weight=self.colorize)
+        x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
+        return x