# Copied from https://github.com/kq-chen/qwen-vl-utils # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. from __future__ import annotations import base64 import logging import math import os import sys import time import warnings from functools import lru_cache from io import BytesIO import requests import torch import torchvision from packaging import version from PIL import Image from torchvision import io, transforms from torchvision.transforms import InterpolationMode logger = logging.getLogger(__name__) IMAGE_FACTOR = 28 MIN_PIXELS = 4 * 28 * 28 MAX_PIXELS = 16384 * 28 * 28 MAX_RATIO = 200 VIDEO_MIN_PIXELS = 128 * 28 * 28 VIDEO_MAX_PIXELS = 768 * 28 * 28 VIDEO_TOTAL_PIXELS = 24576 * 28 * 28 FRAME_FACTOR = 2 FPS = 2.0 FPS_MIN_FRAMES = 4 FPS_MAX_FRAMES = 768 def round_by_factor(number: int, factor: int) -> int: """Returns the closest integer to 'number' that is divisible by 'factor'.""" return round(number / factor) * factor def ceil_by_factor(number: int, factor: int) -> int: """Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'.""" return math.ceil(number / factor) * factor def floor_by_factor(number: int, factor: int) -> int: """Returns the largest integer less than or equal to 'number' that is divisible by 'factor'.""" return math.floor(number / factor) * factor def smart_resize(height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS) -> tuple[int, int]: """ Rescales the image so that the following conditions are met: 1. Both dimensions (height and width) are divisible by 'factor'. 2. The total number of pixels is within the range ['min_pixels', 'max_pixels']. 3. The aspect ratio of the image is maintained as closely as possible. """ if max(height, width) / min(height, width) > MAX_RATIO: raise ValueError( f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}" ) h_bar = max(factor, round_by_factor(height, factor)) w_bar = max(factor, round_by_factor(width, factor)) if h_bar * w_bar > max_pixels: beta = math.sqrt((height * width) / max_pixels) h_bar = floor_by_factor(height / beta, factor) w_bar = floor_by_factor(width / beta, factor) elif h_bar * w_bar < min_pixels: beta = math.sqrt(min_pixels / (height * width)) h_bar = ceil_by_factor(height * beta, factor) w_bar = ceil_by_factor(width * beta, factor) return h_bar, w_bar def fetch_image(ele: dict[str, str | Image.Image], size_factor: int = IMAGE_FACTOR) -> Image.Image: if "image" in ele: image = ele["image"] else: image = ele["image_url"] image_obj = None if isinstance(image, Image.Image): image_obj = image elif image.startswith("http://") or image.startswith("https://"): image_obj = Image.open(requests.get(image, stream=True).raw) elif image.startswith("file://"): image_obj = Image.open(image[7:]) elif image.startswith("data:image"): if "base64," in image: _, base64_data = image.split("base64,", 1) data = base64.b64decode(base64_data) image_obj = Image.open(BytesIO(data)) else: image_obj = Image.open(image) if image_obj is None: raise ValueError( f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}" ) image = image_obj.convert("RGB") ## resize if "resized_height" in ele and "resized_width" in ele: resized_height, resized_width = smart_resize( ele["resized_height"], ele["resized_width"], factor=size_factor, ) else: width, height = image.size min_pixels = ele.get("min_pixels", MIN_PIXELS) max_pixels = ele.get("max_pixels", MAX_PIXELS) resized_height, resized_width = smart_resize( height, width, factor=size_factor, min_pixels=min_pixels, max_pixels=max_pixels, ) image = image.resize((resized_width, resized_height)) return image def smart_nframes( ele: dict, total_frames: int, video_fps: int | float, ) -> int: """calculate the number of frames for video used for model inputs. Args: ele (dict): a dict contains the configuration of video. support either `fps` or `nframes`: - nframes: the number of frames to extract for model inputs. - fps: the fps to extract frames for model inputs. - min_frames: the minimum number of frames of the video, only used when fps is provided. - max_frames: the maximum number of frames of the video, only used when fps is provided. total_frames (int): the original total number of frames of the video. video_fps (int | float): the original fps of the video. Raises: ValueError: nframes should in interval [FRAME_FACTOR, total_frames]. Returns: int: the number of frames for video used for model inputs. """ assert not ("fps" in ele and "nframes" in ele), "Only accept either `fps` or `nframes`" if "nframes" in ele: nframes = round_by_factor(ele["nframes"], FRAME_FACTOR) else: fps = ele.get("fps", FPS) min_frames = ceil_by_factor( ele.get("min_frames", FPS_MIN_FRAMES), FRAME_FACTOR) max_frames = floor_by_factor( ele.get("max_frames", min(FPS_MAX_FRAMES, total_frames)), FRAME_FACTOR) nframes = total_frames / video_fps * fps nframes = min(max(nframes, min_frames), max_frames) nframes = round_by_factor(nframes, FRAME_FACTOR) if not (FRAME_FACTOR <= nframes and nframes <= total_frames): raise ValueError( f"nframes should in interval [{FRAME_FACTOR}, {total_frames}], but got {nframes}." ) return nframes def _read_video_torchvision(ele: dict,) -> torch.Tensor: """read video using torchvision.io.read_video Args: ele (dict): a dict contains the configuration of video. support keys: - video: the path of video. support "file://", "http://", "https://" and local path. - video_start: the start time of video. - video_end: the end time of video. Returns: torch.Tensor: the video tensor with shape (T, C, H, W). """ video_path = ele["video"] if version.parse(torchvision.__version__) < version.parse("0.19.0"): if "http://" in video_path or "https://" in video_path: warnings.warn( "torchvision < 0.19.0 does not support http/https video path, please upgrade to 0.19.0." ) if "file://" in video_path: video_path = video_path[7:] st = time.time() video, audio, info = io.read_video( video_path, start_pts=ele.get("video_start", 0.0), end_pts=ele.get("video_end", None), pts_unit="sec", output_format="TCHW", ) total_frames, video_fps = video.size(0), info["video_fps"] logger.info( f"torchvision: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s" ) nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps) idx = torch.linspace(0, total_frames - 1, nframes).round().long() video = video[idx] return video def is_decord_available() -> bool: import importlib.util return importlib.util.find_spec("decord") is not None def _read_video_decord(ele: dict,) -> torch.Tensor: """read video using decord.VideoReader Args: ele (dict): a dict contains the configuration of video. support keys: - video: the path of video. support "file://", "http://", "https://" and local path. - video_start: the start time of video. - video_end: the end time of video. Returns: torch.Tensor: the video tensor with shape (T, C, H, W). """ import decord video_path = ele["video"] st = time.time() vr = decord.VideoReader(video_path) # TODO: support start_pts and end_pts if 'video_start' in ele or 'video_end' in ele: raise NotImplementedError( "not support start_pts and end_pts in decord for now.") total_frames, video_fps = len(vr), vr.get_avg_fps() logger.info( f"decord: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s" ) nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps) idx = torch.linspace(0, total_frames - 1, nframes).round().long().tolist() video = vr.get_batch(idx).asnumpy() video = torch.tensor(video).permute(0, 3, 1, 2) # Convert to TCHW format return video VIDEO_READER_BACKENDS = { "decord": _read_video_decord, "torchvision": _read_video_torchvision, } FORCE_QWENVL_VIDEO_READER = os.getenv("FORCE_QWENVL_VIDEO_READER", None) @lru_cache(maxsize=1) def get_video_reader_backend() -> str: if FORCE_QWENVL_VIDEO_READER is not None: video_reader_backend = FORCE_QWENVL_VIDEO_READER elif is_decord_available(): video_reader_backend = "decord" else: video_reader_backend = "torchvision" print( f"qwen-vl-utils using {video_reader_backend} to read video.", file=sys.stderr) return video_reader_backend def fetch_video( ele: dict, image_factor: int = IMAGE_FACTOR) -> torch.Tensor | list[Image.Image]: if isinstance(ele["video"], str): video_reader_backend = get_video_reader_backend() video = VIDEO_READER_BACKENDS[video_reader_backend](ele) nframes, _, height, width = video.shape min_pixels = ele.get("min_pixels", VIDEO_MIN_PIXELS) total_pixels = ele.get("total_pixels", VIDEO_TOTAL_PIXELS) max_pixels = max( min(VIDEO_MAX_PIXELS, total_pixels / nframes * FRAME_FACTOR), int(min_pixels * 1.05)) max_pixels = ele.get("max_pixels", max_pixels) if "resized_height" in ele and "resized_width" in ele: resized_height, resized_width = smart_resize( ele["resized_height"], ele["resized_width"], factor=image_factor, ) else: resized_height, resized_width = smart_resize( height, width, factor=image_factor, min_pixels=min_pixels, max_pixels=max_pixels, ) video = transforms.functional.resize( video, [resized_height, resized_width], interpolation=InterpolationMode.BICUBIC, antialias=True, ).float() return video else: assert isinstance(ele["video"], (list, tuple)) process_info = ele.copy() process_info.pop("type", None) process_info.pop("video", None) images = [ fetch_image({ "image": video_element, **process_info }, size_factor=image_factor) for video_element in ele["video"] ] nframes = ceil_by_factor(len(images), FRAME_FACTOR) if len(images) < nframes: images.extend([images[-1]] * (nframes - len(images))) return images def extract_vision_info( conversations: list[dict] | list[list[dict]]) -> list[dict]: vision_infos = [] if isinstance(conversations[0], dict): conversations = [conversations] for conversation in conversations: for message in conversation: if isinstance(message["content"], list): for ele in message["content"]: if ("image" in ele or "image_url" in ele or "video" in ele or ele["type"] in ("image", "image_url", "video")): vision_infos.append(ele) return vision_infos def process_vision_info( conversations: list[dict] | list[list[dict]], ) -> tuple[list[Image.Image] | None, list[torch.Tensor | list[Image.Image]] | None]: vision_infos = extract_vision_info(conversations) ## Read images or videos image_inputs = [] video_inputs = [] for vision_info in vision_infos: if "image" in vision_info or "image_url" in vision_info: image_inputs.append(fetch_image(vision_info)) elif "video" in vision_info: video_inputs.append(fetch_video(vision_info)) else: raise ValueError("image, image_url or video should in content.") if len(image_inputs) == 0: image_inputs = None if len(video_inputs) == 0: video_inputs = None return image_inputs, video_inputs