Spaces:
Paused
Paused
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
import torch | |
try: | |
import flash_attn_interface | |
FLASH_ATTN_3_AVAILABLE = True | |
except ModuleNotFoundError: | |
FLASH_ATTN_3_AVAILABLE = False | |
try: | |
import flash_attn | |
FLASH_ATTN_2_AVAILABLE = True | |
except ModuleNotFoundError: | |
FLASH_ATTN_2_AVAILABLE = False | |
import warnings | |
__all__ = [ | |
'flash_attention', | |
'attention', | |
] | |
def flash_attention( | |
q, | |
k, | |
v, | |
q_lens=None, | |
k_lens=None, | |
dropout_p=0., | |
softmax_scale=None, | |
q_scale=None, | |
causal=False, | |
window_size=(-1, -1), | |
deterministic=False, | |
dtype=torch.bfloat16, | |
version=None, | |
): | |
""" | |
q: [B, Lq, Nq, C1]. | |
k: [B, Lk, Nk, C1]. | |
v: [B, Lk, Nk, C2]. Nq must be divisible by Nk. | |
q_lens: [B]. | |
k_lens: [B]. | |
dropout_p: float. Dropout probability. | |
softmax_scale: float. The scaling of QK^T before applying softmax. | |
causal: bool. Whether to apply causal attention mask. | |
window_size: (left right). If not (-1, -1), apply sliding window local attention. | |
deterministic: bool. If True, slightly slower and uses more memory. | |
dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16. | |
""" | |
half_dtypes = (torch.float16, torch.bfloat16) | |
assert dtype in half_dtypes | |
assert q.device.type == 'cuda' and q.size(-1) <= 256 | |
# params | |
b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype | |
def half(x): | |
return x if x.dtype in half_dtypes else x.to(dtype) | |
# preprocess query | |
if q_lens is None: | |
q = half(q.flatten(0, 1)) | |
q_lens = torch.tensor( | |
[lq] * b, dtype=torch.int32).to( | |
device=q.device, non_blocking=True) | |
else: | |
q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)])) | |
# preprocess key, value | |
if k_lens is None: | |
k = half(k.flatten(0, 1)) | |
v = half(v.flatten(0, 1)) | |
k_lens = torch.tensor( | |
[lk] * b, dtype=torch.int32).to( | |
device=k.device, non_blocking=True) | |
else: | |
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)])) | |
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)])) | |
q = q.to(v.dtype) | |
k = k.to(v.dtype) | |
if q_scale is not None: | |
q = q * q_scale | |
if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE: | |
warnings.warn( | |
'Flash attention 3 is not available, use flash attention 2 instead.' | |
) | |
# apply attention | |
if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE: | |
# Note: dropout_p, window_size are not supported in FA3 now. | |
x = flash_attn_interface.flash_attn_varlen_func( | |
q=q, | |
k=k, | |
v=v, | |
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum( | |
0, dtype=torch.int32).to(q.device, non_blocking=True), | |
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum( | |
0, dtype=torch.int32).to(q.device, non_blocking=True), | |
seqused_q=None, | |
seqused_k=None, | |
max_seqlen_q=lq, | |
max_seqlen_k=lk, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
deterministic=deterministic)[0].unflatten(0, (b, lq)) | |
else: | |
assert FLASH_ATTN_2_AVAILABLE | |
x = flash_attn.flash_attn_varlen_func( | |
q=q, | |
k=k, | |
v=v, | |
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum( | |
0, dtype=torch.int32).to(q.device, non_blocking=True), | |
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum( | |
0, dtype=torch.int32).to(q.device, non_blocking=True), | |
max_seqlen_q=lq, | |
max_seqlen_k=lk, | |
dropout_p=dropout_p, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
window_size=window_size, | |
deterministic=deterministic).unflatten(0, (b, lq)) | |
# output | |
return x.type(out_dtype) | |
def attention( | |
q, | |
k, | |
v, | |
q_lens=None, | |
k_lens=None, | |
dropout_p=0., | |
softmax_scale=None, | |
q_scale=None, | |
causal=False, | |
window_size=(-1, -1), | |
deterministic=False, | |
dtype=torch.bfloat16, | |
fa_version=None, | |
): | |
if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE: | |
return flash_attention( | |
q=q, | |
k=k, | |
v=v, | |
q_lens=q_lens, | |
k_lens=k_lens, | |
dropout_p=dropout_p, | |
softmax_scale=softmax_scale, | |
q_scale=q_scale, | |
causal=causal, | |
window_size=window_size, | |
deterministic=deterministic, | |
dtype=dtype, | |
version=fa_version, | |
) | |
else: | |
if q_lens is not None or k_lens is not None: | |
warnings.warn( | |
'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.' | |
) | |
attn_mask = None | |
q = q.transpose(1, 2).to(dtype) | |
k = k.transpose(1, 2).to(dtype) | |
v = v.transpose(1, 2).to(dtype) | |
out = torch.nn.functional.scaled_dot_product_attention( | |
q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p) | |
out = out.transpose(1, 2).contiguous() | |
return out | |