File size: 16,910 Bytes
3964763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
# Modified from transformers.models.t5.modeling_t5
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import logging
import math

import torch
import torch.nn as nn
import torch.nn.functional as F

from .tokenizers import HuggingfaceTokenizer

__all__ = [
    'T5Model',
    'T5Encoder',
    'T5Decoder',
    'T5EncoderModel',
]


def fp16_clamp(x):
    if x.dtype == torch.float16 and torch.isinf(x).any():
        clamp = torch.finfo(x.dtype).max - 1000
        x = torch.clamp(x, min=-clamp, max=clamp)
    return x


def init_weights(m):
    if isinstance(m, T5LayerNorm):
        nn.init.ones_(m.weight)
    elif isinstance(m, T5Model):
        nn.init.normal_(m.token_embedding.weight, std=1.0)
    elif isinstance(m, T5FeedForward):
        nn.init.normal_(m.gate[0].weight, std=m.dim**-0.5)
        nn.init.normal_(m.fc1.weight, std=m.dim**-0.5)
        nn.init.normal_(m.fc2.weight, std=m.dim_ffn**-0.5)
    elif isinstance(m, T5Attention):
        nn.init.normal_(m.q.weight, std=(m.dim * m.dim_attn)**-0.5)
        nn.init.normal_(m.k.weight, std=m.dim**-0.5)
        nn.init.normal_(m.v.weight, std=m.dim**-0.5)
        nn.init.normal_(m.o.weight, std=(m.num_heads * m.dim_attn)**-0.5)
    elif isinstance(m, T5RelativeEmbedding):
        nn.init.normal_(
            m.embedding.weight, std=(2 * m.num_buckets * m.num_heads)**-0.5)


class GELU(nn.Module):

    def forward(self, x):
        return 0.5 * x * (1.0 + torch.tanh(
            math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))


class T5LayerNorm(nn.Module):

    def __init__(self, dim, eps=1e-6):
        super(T5LayerNorm, self).__init__()
        self.dim = dim
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def forward(self, x):
        x = x * torch.rsqrt(x.float().pow(2).mean(dim=-1, keepdim=True) +
                            self.eps)
        if self.weight.dtype in [torch.float16, torch.bfloat16]:
            x = x.type_as(self.weight)
        return self.weight * x


class T5Attention(nn.Module):

    def __init__(self, dim, dim_attn, num_heads, dropout=0.1):
        assert dim_attn % num_heads == 0
        super(T5Attention, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.num_heads = num_heads
        self.head_dim = dim_attn // num_heads

        # layers
        self.q = nn.Linear(dim, dim_attn, bias=False)
        self.k = nn.Linear(dim, dim_attn, bias=False)
        self.v = nn.Linear(dim, dim_attn, bias=False)
        self.o = nn.Linear(dim_attn, dim, bias=False)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, context=None, mask=None, pos_bias=None):
        """
        x:          [B, L1, C].
        context:    [B, L2, C] or None.
        mask:       [B, L2] or [B, L1, L2] or None.
        """
        # check inputs
        context = x if context is None else context
        b, n, c = x.size(0), self.num_heads, self.head_dim

        # compute query, key, value
        q = self.q(x).view(b, -1, n, c)
        k = self.k(context).view(b, -1, n, c)
        v = self.v(context).view(b, -1, n, c)

        # attention bias
        attn_bias = x.new_zeros(b, n, q.size(1), k.size(1))
        if pos_bias is not None:
            attn_bias += pos_bias
        if mask is not None:
            assert mask.ndim in [2, 3]
            mask = mask.view(b, 1, 1,
                             -1) if mask.ndim == 2 else mask.unsqueeze(1)
            attn_bias.masked_fill_(mask == 0, torch.finfo(x.dtype).min)

        # compute attention (T5 does not use scaling)
        attn = torch.einsum('binc,bjnc->bnij', q, k) + attn_bias
        attn = F.softmax(attn.float(), dim=-1).type_as(attn)
        x = torch.einsum('bnij,bjnc->binc', attn, v)

        # output
        x = x.reshape(b, -1, n * c)
        x = self.o(x)
        x = self.dropout(x)
        return x


class T5FeedForward(nn.Module):

    def __init__(self, dim, dim_ffn, dropout=0.1):
        super(T5FeedForward, self).__init__()
        self.dim = dim
        self.dim_ffn = dim_ffn

        # layers
        self.gate = nn.Sequential(nn.Linear(dim, dim_ffn, bias=False), GELU())
        self.fc1 = nn.Linear(dim, dim_ffn, bias=False)
        self.fc2 = nn.Linear(dim_ffn, dim, bias=False)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        x = self.fc1(x) * self.gate(x)
        x = self.dropout(x)
        x = self.fc2(x)
        x = self.dropout(x)
        return x


class T5SelfAttention(nn.Module):

    def __init__(self,
                 dim,
                 dim_attn,
                 dim_ffn,
                 num_heads,
                 num_buckets,
                 shared_pos=True,
                 dropout=0.1):
        super(T5SelfAttention, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos

        # layers
        self.norm1 = T5LayerNorm(dim)
        self.attn = T5Attention(dim, dim_attn, num_heads, dropout)
        self.norm2 = T5LayerNorm(dim)
        self.ffn = T5FeedForward(dim, dim_ffn, dropout)
        self.pos_embedding = None if shared_pos else T5RelativeEmbedding(
            num_buckets, num_heads, bidirectional=True)

    def forward(self, x, mask=None, pos_bias=None):
        e = pos_bias if self.shared_pos else self.pos_embedding(
            x.size(1), x.size(1))
        x = fp16_clamp(x + self.attn(self.norm1(x), mask=mask, pos_bias=e))
        x = fp16_clamp(x + self.ffn(self.norm2(x)))
        return x


class T5CrossAttention(nn.Module):

    def __init__(self,
                 dim,
                 dim_attn,
                 dim_ffn,
                 num_heads,
                 num_buckets,
                 shared_pos=True,
                 dropout=0.1):
        super(T5CrossAttention, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos

        # layers
        self.norm1 = T5LayerNorm(dim)
        self.self_attn = T5Attention(dim, dim_attn, num_heads, dropout)
        self.norm2 = T5LayerNorm(dim)
        self.cross_attn = T5Attention(dim, dim_attn, num_heads, dropout)
        self.norm3 = T5LayerNorm(dim)
        self.ffn = T5FeedForward(dim, dim_ffn, dropout)
        self.pos_embedding = None if shared_pos else T5RelativeEmbedding(
            num_buckets, num_heads, bidirectional=False)

    def forward(self,
                x,
                mask=None,
                encoder_states=None,
                encoder_mask=None,
                pos_bias=None):
        e = pos_bias if self.shared_pos else self.pos_embedding(
            x.size(1), x.size(1))
        x = fp16_clamp(x + self.self_attn(self.norm1(x), mask=mask, pos_bias=e))
        x = fp16_clamp(x + self.cross_attn(
            self.norm2(x), context=encoder_states, mask=encoder_mask))
        x = fp16_clamp(x + self.ffn(self.norm3(x)))
        return x


class T5RelativeEmbedding(nn.Module):

    def __init__(self, num_buckets, num_heads, bidirectional, max_dist=128):
        super(T5RelativeEmbedding, self).__init__()
        self.num_buckets = num_buckets
        self.num_heads = num_heads
        self.bidirectional = bidirectional
        self.max_dist = max_dist

        # layers
        self.embedding = nn.Embedding(num_buckets, num_heads)

    def forward(self, lq, lk):
        device = self.embedding.weight.device
        # rel_pos = torch.arange(lk).unsqueeze(0).to(device) - \
        #     torch.arange(lq).unsqueeze(1).to(device)
        rel_pos = torch.arange(lk, device=device).unsqueeze(0) - \
            torch.arange(lq, device=device).unsqueeze(1)
        rel_pos = self._relative_position_bucket(rel_pos)
        rel_pos_embeds = self.embedding(rel_pos)
        rel_pos_embeds = rel_pos_embeds.permute(2, 0, 1).unsqueeze(
            0)  # [1, N, Lq, Lk]
        return rel_pos_embeds.contiguous()

    def _relative_position_bucket(self, rel_pos):
        # preprocess
        if self.bidirectional:
            num_buckets = self.num_buckets // 2
            rel_buckets = (rel_pos > 0).long() * num_buckets
            rel_pos = torch.abs(rel_pos)
        else:
            num_buckets = self.num_buckets
            rel_buckets = 0
            rel_pos = -torch.min(rel_pos, torch.zeros_like(rel_pos))

        # embeddings for small and large positions
        max_exact = num_buckets // 2
        rel_pos_large = max_exact + (torch.log(rel_pos.float() / max_exact) /
                                     math.log(self.max_dist / max_exact) *
                                     (num_buckets - max_exact)).long()
        rel_pos_large = torch.min(
            rel_pos_large, torch.full_like(rel_pos_large, num_buckets - 1))
        rel_buckets += torch.where(rel_pos < max_exact, rel_pos, rel_pos_large)
        return rel_buckets


class T5Encoder(nn.Module):

    def __init__(self,
                 vocab,
                 dim,
                 dim_attn,
                 dim_ffn,
                 num_heads,
                 num_layers,
                 num_buckets,
                 shared_pos=True,
                 dropout=0.1):
        super(T5Encoder, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos

        # layers
        self.token_embedding = vocab if isinstance(vocab, nn.Embedding) \
            else nn.Embedding(vocab, dim)
        self.pos_embedding = T5RelativeEmbedding(
            num_buckets, num_heads, bidirectional=True) if shared_pos else None
        self.dropout = nn.Dropout(dropout)
        self.blocks = nn.ModuleList([
            T5SelfAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets,
                            shared_pos, dropout) for _ in range(num_layers)
        ])
        self.norm = T5LayerNorm(dim)

        # initialize weights
        self.apply(init_weights)

    def forward(self, ids, mask=None):
        x = self.token_embedding(ids)
        x = self.dropout(x)
        e = self.pos_embedding(x.size(1),
                               x.size(1)) if self.shared_pos else None
        for block in self.blocks:
            x = block(x, mask, pos_bias=e)
        x = self.norm(x)
        x = self.dropout(x)
        return x


class T5Decoder(nn.Module):

    def __init__(self,
                 vocab,
                 dim,
                 dim_attn,
                 dim_ffn,
                 num_heads,
                 num_layers,
                 num_buckets,
                 shared_pos=True,
                 dropout=0.1):
        super(T5Decoder, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos

        # layers
        self.token_embedding = vocab if isinstance(vocab, nn.Embedding) \
            else nn.Embedding(vocab, dim)
        self.pos_embedding = T5RelativeEmbedding(
            num_buckets, num_heads, bidirectional=False) if shared_pos else None
        self.dropout = nn.Dropout(dropout)
        self.blocks = nn.ModuleList([
            T5CrossAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets,
                             shared_pos, dropout) for _ in range(num_layers)
        ])
        self.norm = T5LayerNorm(dim)

        # initialize weights
        self.apply(init_weights)

    def forward(self, ids, mask=None, encoder_states=None, encoder_mask=None):
        b, s = ids.size()

        # causal mask
        if mask is None:
            mask = torch.tril(torch.ones(1, s, s).to(ids.device))
        elif mask.ndim == 2:
            mask = torch.tril(mask.unsqueeze(1).expand(-1, s, -1))

        # layers
        x = self.token_embedding(ids)
        x = self.dropout(x)
        e = self.pos_embedding(x.size(1),
                               x.size(1)) if self.shared_pos else None
        for block in self.blocks:
            x = block(x, mask, encoder_states, encoder_mask, pos_bias=e)
        x = self.norm(x)
        x = self.dropout(x)
        return x


class T5Model(nn.Module):

    def __init__(self,
                 vocab_size,
                 dim,
                 dim_attn,
                 dim_ffn,
                 num_heads,
                 encoder_layers,
                 decoder_layers,
                 num_buckets,
                 shared_pos=True,
                 dropout=0.1):
        super(T5Model, self).__init__()
        self.vocab_size = vocab_size
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.encoder_layers = encoder_layers
        self.decoder_layers = decoder_layers
        self.num_buckets = num_buckets

        # layers
        self.token_embedding = nn.Embedding(vocab_size, dim)
        self.encoder = T5Encoder(self.token_embedding, dim, dim_attn, dim_ffn,
                                 num_heads, encoder_layers, num_buckets,
                                 shared_pos, dropout)
        self.decoder = T5Decoder(self.token_embedding, dim, dim_attn, dim_ffn,
                                 num_heads, decoder_layers, num_buckets,
                                 shared_pos, dropout)
        self.head = nn.Linear(dim, vocab_size, bias=False)

        # initialize weights
        self.apply(init_weights)

    def forward(self, encoder_ids, encoder_mask, decoder_ids, decoder_mask):
        x = self.encoder(encoder_ids, encoder_mask)
        x = self.decoder(decoder_ids, decoder_mask, x, encoder_mask)
        x = self.head(x)
        return x


def _t5(name,
        encoder_only=False,
        decoder_only=False,
        return_tokenizer=False,
        tokenizer_kwargs={},
        dtype=torch.float32,
        device='cpu',
        **kwargs):
    # sanity check
    assert not (encoder_only and decoder_only)

    # params
    if encoder_only:
        model_cls = T5Encoder
        kwargs['vocab'] = kwargs.pop('vocab_size')
        kwargs['num_layers'] = kwargs.pop('encoder_layers')
        _ = kwargs.pop('decoder_layers')
    elif decoder_only:
        model_cls = T5Decoder
        kwargs['vocab'] = kwargs.pop('vocab_size')
        kwargs['num_layers'] = kwargs.pop('decoder_layers')
        _ = kwargs.pop('encoder_layers')
    else:
        model_cls = T5Model

    # init model
    with torch.device(device):
        model = model_cls(**kwargs)

    # set device
    model = model.to(dtype=dtype, device=device)

    # init tokenizer
    if return_tokenizer:
        from .tokenizers import HuggingfaceTokenizer
        tokenizer = HuggingfaceTokenizer(f'google/{name}', **tokenizer_kwargs)
        return model, tokenizer
    else:
        return model


def umt5_xxl(**kwargs):
    cfg = dict(
        vocab_size=256384,
        dim=4096,
        dim_attn=4096,
        dim_ffn=10240,
        num_heads=64,
        encoder_layers=24,
        decoder_layers=24,
        num_buckets=32,
        shared_pos=False,
        dropout=0.1)
    cfg.update(**kwargs)
    return _t5('umt5-xxl', **cfg)


class T5EncoderModel:

    def __init__(
        self,
        text_len,
        dtype=torch.bfloat16,
        device=torch.cuda.current_device(),
        checkpoint_path=None,
        tokenizer_path=None,
        shard_fn=None,
    ):
        self.text_len = text_len
        self.dtype = dtype
        self.device = device
        self.checkpoint_path = checkpoint_path
        self.tokenizer_path = tokenizer_path

        # init model
        model = umt5_xxl(
            encoder_only=True,
            return_tokenizer=False,
            dtype=dtype,
            device=device).eval().requires_grad_(False)
        logging.info(f'loading {checkpoint_path}')
        model.load_state_dict(torch.load(checkpoint_path, map_location='cpu'))
        self.model = model
        if shard_fn is not None:
            self.model = shard_fn(self.model, sync_module_states=False)
        else:
            self.model.to(self.device)
        # init tokenizer
        self.tokenizer = HuggingfaceTokenizer(
            name=tokenizer_path, seq_len=text_len, clean='whitespace')

    def __call__(self, texts, device):
        ids, mask = self.tokenizer(
            texts, return_mask=True, add_special_tokens=True)
        ids = ids.to(device)
        mask = mask.to(device)
        seq_lens = mask.gt(0).sum(dim=1).long()
        context = self.model(ids, mask)
        return [u[:v] for u, v in zip(context, seq_lens)]