Spaces:
Paused
Paused
File size: 3,736 Bytes
4e424ea ca753f0 4e424ea 7bedcdd 4e424ea ca753f0 f0f4c78 935512c 4e424ea f0f4c78 4e424ea f0f4c78 4e424ea f0f4c78 4e424ea ca753f0 6c641ac 935512c f20624c 935512c f20624c 935512c ca753f0 935512c f20624c 935512c f0f4c78 935512c f20624c 935512c 4f2bf09 f0f4c78 4e424ea d701afa 4e424ea f0f4c78 4e424ea c81f025 4e424ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import gradio as gr
import re
import subprocess
from tqdm import tqdm
from huggingface_hub import snapshot_download
#Download model
snapshot_download(
repo_id = "Wan-AI/Wan2.1-T2V-1.3B",
local_dir = "./Wan2.1-T2V-1.3B"
)
def infer(prompt, progress=gr.Progress(track_tqdm=True)):
# Total process steps is 12; the first three are irrelevant so we count 9 relevant steps.
total_process_steps = 12
irrelevant_steps = 3
relevant_steps = total_process_steps - irrelevant_steps # 9 steps
# This bar will track the overall process (steps 4 to 12)
overall_bar = tqdm(total=relevant_steps, desc="Overall Process", position=1, dynamic_ncols=True, leave=True)
processed_steps = 0
# Regex to extract the INFO message (everything after "INFO:")
info_pattern = re.compile(r"\[.*?\]\s+INFO:\s+(.*)")
# Regex to capture progress lines for video generation (e.g., " 10%|...| 5/50")
progress_pattern = re.compile(r"(\d+)%\|.*\| (\d+)/(\d+)")
gen_progress_bar = None
command = [
"python", "-u", "-m", "generate", # using -u for unbuffered output and omitting .py extension
"--task", "t2v-1.3B",
"--size", "832*480",
"--ckpt_dir", "./Wan2.1-T2V-1.3B",
"--sample_shift", "8",
"--sample_guide_scale", "6",
"--prompt", prompt,
"--save_file", "generated_video.mp4"
]
# Start the process with unbuffered output and combine stdout and stderr.
process = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1 # line-buffered
)
for line in iter(process.stdout.readline, ''):
stripped_line = line.strip()
if not stripped_line:
continue
# Check for a progress line from the video generation process.
progress_match = progress_pattern.search(stripped_line)
if progress_match:
current = int(progress_match.group(2))
total = int(progress_match.group(3))
if gen_progress_bar is None:
gen_progress_bar = tqdm(total=total, desc="Video Generation", position=0, dynamic_ncols=True, leave=True)
# Update the generation progress bar by the difference.
gen_progress_bar.update(current - gen_progress_bar.n)
gen_progress_bar.refresh()
continue # Skip further processing of this line.
# Check for an INFO log line.
info_match = info_pattern.search(stripped_line)
if info_match:
msg = info_match.group(1)
# Skip the first three INFO messages.
if processed_steps < irrelevant_steps:
processed_steps += 1
else:
overall_bar.update(1)
overall_bar.set_description(f"Overall: {msg}")
# Print the log message.
tqdm.write(stripped_line)
else:
# Print any other lines.
tqdm.write(stripped_line)
process.wait()
if gen_progress_bar:
gen_progress_bar.close()
overall_bar.close()
if process.returncode == 0:
print("Command executed successfully.")
return "generated_video.mp4"
else:
print("Error executing command.")
raise Exception("Error executing command")
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# Wan 2.1")
prompt = gr.Textbox(label="Prompt")
submit_btn = gr.Button("Submit")
video_res = gr.Video(label="Generated Video")
submit_btn.click(
fn = infer,
inputs = [prompt],
outputs = [video_res]
)
demo.queue().launch(show_error=True, show_api=False, ssr_mode=False) |