File size: 3,598 Bytes
4e424ea
ca753f0
4e424ea
7bedcdd
4e424ea
 
 
 
 
 
 
 
ca753f0
73566e5
 
2562fab
73566e5
935512c
417bb8d
b6ab24c
935512c
 
417bb8d
935512c
 
 
4e424ea
f0f4c78
4e424ea
 
 
 
 
f0f4c78
4e424ea
 
 
f0f4c78
 
 
 
 
 
 
 
4e424ea
ca753f0
6c641ac
 
 
935512c
417bb8d
935512c
 
 
 
f20624c
935512c
f20624c
 
1cfe5df
935512c
417bb8d
0561c55
a0044b5
 
765b867
935512c
 
 
 
3217fc0
765b867
 
73566e5
ca753f0
417bb8d
 
935512c
f0f4c78
2562fab
f20624c
935512c
2562fab
f0f4c78
4e424ea
d701afa
4e424ea
 
f0f4c78
4e424ea
 
 
 
c81f025
4e424ea
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import gradio as gr
import re 
import subprocess
from tqdm import tqdm
from huggingface_hub import snapshot_download

#Download model
snapshot_download(
    repo_id = "Wan-AI/Wan2.1-T2V-1.3B",
    local_dir = "./Wan2.1-T2V-1.3B"
)

def infer(prompt, progress=gr.Progress(track_tqdm=True)):
    
    total_process_steps = 11
    irrelevant_steps = 4
    relevant_steps = total_process_steps - irrelevant_steps  # 7 steps

    # Create the overall progress bar for the process steps.
    overall_bar = tqdm(total=relevant_steps, desc="Overall Process", position=1, ncols=120, dynamic_ncols=False, leave=True)
    processed_steps = 0

    # Regex for detecting video generation progress lines (e.g., "10%|...| 5/50")
    progress_pattern = re.compile(r"(\d+)%\|.*\| (\d+)/(\d+)")
    gen_progress_bar = None

    command = [
        "python", "-u", "-m", "generate",  # using -u for unbuffered output and omitting .py extension
        "--task", "t2v-1.3B",
        "--size", "832*480",
        "--ckpt_dir", "./Wan2.1-T2V-1.3B",
        "--sample_shift", "8",
        "--sample_guide_scale", "6",
        "--prompt", prompt,
        "--save_file", "generated_video.mp4"
    ]

    # Start the process with unbuffered output and combine stdout and stderr.
    process = subprocess.Popen(
        command,
        stdout=subprocess.PIPE,
        stderr=subprocess.STDOUT,
        text=True,
        bufsize=1  # line-buffered
    )

    for line in iter(process.stdout.readline, ''):
        stripped_line = line.strip()
        if not stripped_line:
            continue

        # Check if this is a video generation progress line.
        progress_match = progress_pattern.search(stripped_line)
        if progress_match:
            current = int(progress_match.group(2))
            total = int(progress_match.group(3))
            if gen_progress_bar is None:
                gen_progress_bar = tqdm(total=total, desc="Video Generation", position=0, dynamic_ncols=True, leave=True)
            gen_progress_bar.update(current - gen_progress_bar.n)
            gen_progress_bar.refresh()
            continue

        # Check for INFO lines.
        if "INFO:" in stripped_line:
            parts = stripped_line.split("INFO:", 1)
            msg = parts[1].strip() if len(parts) > 1 else ""
            tqdm.write(stripped_line)  # Use tqdm.write() instead of print()
            if processed_steps < irrelevant_steps:
                processed_steps += 1
            else:
                overall_bar.update(1)
                percentage = (overall_bar.n / overall_bar.total) * 100
                # Combine percentage and INFO message into one description.
                overall_bar.set_description(f"Overall Process - {percentage:.1f}% | {msg}")
                overall_bar.refresh()
        else:
            # Print any other lines.
            print(stripped_line)

    process.wait()
    if gen_progress_bar:
        gen_progress_bar.close()
    overall_bar.close()
    
    if process.returncode == 0:
        print("Command executed successfully.")
        return "generated_video.mp4"
    else:
        print("Error executing command.")
        raise Exception("Error executing command")

with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("# Wan 2.1")
        prompt = gr.Textbox(label="Prompt")
        submit_btn = gr.Button("Submit")
        video_res = gr.Video(label="Generated Video")

    submit_btn.click(
        fn = infer,
        inputs = [prompt],
        outputs = [video_res]
    )

demo.queue().launch(show_error=True, show_api=False, ssr_mode=False)