Spaces:
Paused
Paused
File size: 3,804 Bytes
4e424ea ca753f0 4e424ea 7bedcdd 4e424ea ca753f0 73566e5 2562fab 73566e5 935512c 73566e5 935512c 73566e5 935512c 73566e5 935512c 4e424ea f0f4c78 4e424ea f0f4c78 4e424ea f0f4c78 4e424ea ca753f0 6c641ac 935512c 73566e5 935512c f20624c 935512c f20624c 73566e5 935512c 73566e5 935512c 73566e5 935512c 3217fc0 73566e5 f9810fb 73566e5 ca753f0 f20624c 935512c f0f4c78 2562fab f20624c 935512c 2562fab f0f4c78 4e424ea d701afa 4e424ea f0f4c78 4e424ea c81f025 4e424ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import gradio as gr
import re
import subprocess
from tqdm import tqdm
from huggingface_hub import snapshot_download
#Download model
snapshot_download(
repo_id = "Wan-AI/Wan2.1-T2V-1.3B",
local_dir = "./Wan2.1-T2V-1.3B"
)
def infer(prompt, progress=gr.Progress(track_tqdm=True)):
total_process_steps = 11
irrelevant_steps = 4
relevant_steps = total_process_steps - irrelevant_steps # 7 steps
# Overall progress bar for relevant steps (position=1 so it appears below the generation bar)
overall_bar = tqdm(total=relevant_steps, desc="Overall Process", position=1, dynamic_ncols=True, leave=True)
processed_steps = 0
# Regex to extract the INFO message
info_pattern = re.compile(r"INFO:\s*(.*)")
# Regex to capture video generation progress lines (like "10%|...| 5/50")
progress_pattern = re.compile(r"(\d+)%\|.*\| (\d+)/(\d+)")
gen_progress_bar = None
command = [
"python", "-u", "-m", "generate", # using -u for unbuffered output and omitting .py extension
"--task", "t2v-1.3B",
"--size", "832*480",
"--ckpt_dir", "./Wan2.1-T2V-1.3B",
"--sample_shift", "8",
"--sample_guide_scale", "6",
"--prompt", prompt,
"--save_file", "generated_video.mp4"
]
# Start the process with unbuffered output and combine stdout and stderr.
process = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1 # line-buffered
)
for line in iter(process.stdout.readline, ''):
stripped_line = line.strip()
if not stripped_line:
continue
# Check for video generation progress lines
progress_match = progress_pattern.search(stripped_line)
if progress_match:
current = int(progress_match.group(2))
total = int(progress_match.group(3))
if gen_progress_bar is None:
gen_progress_bar = tqdm(total=total, desc="Video Generation", position=0, dynamic_ncols=True, leave=True)
gen_progress_bar.update(current - gen_progress_bar.n)
gen_progress_bar.refresh()
continue
# Check for an INFO log line
info_match = info_pattern.search(stripped_line)
if info_match:
msg = info_match.group(1)
# Skip the first three INFO messages
if processed_steps < irrelevant_steps:
processed_steps += 1
else:
overall_bar.update(1)
percentage = (overall_bar.n / overall_bar.total) * 100
# Set the overall bar description with both percentage and INFO message
overall_bar.set_description(f"Overall Process - {percentage:.1f}% | {msg}")
overall_bar.refresh()
# (Optional) If you don't want duplicate printing, omit printing the INFO line
# Otherwise, you could also print it separately with tqdm.write(stripped_line)
else:
tqdm.write(stripped_line)
process.wait()
if gen_progress_bar:
gen_progress_bar.close()
overall_bar.close()
if process.returncode == 0:
print("Command executed successfully.")
return "generated_video.mp4"
else:
print("Error executing command.")
raise Exception("Error executing command")
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# Wan 2.1")
prompt = gr.Textbox(label="Prompt")
submit_btn = gr.Button("Submit")
video_res = gr.Video(label="Generated Video")
submit_btn.click(
fn = infer,
inputs = [prompt],
outputs = [video_res]
)
demo.queue().launch(show_error=True, show_api=False, ssr_mode=False) |