File size: 23,163 Bytes
3964763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import logging

import torch
import torch.cuda.amp as amp
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange

__all__ = [
    'WanVAE',
]

CACHE_T = 2


class CausalConv3d(nn.Conv3d):
    """
    Causal 3d convolusion.
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._padding = (self.padding[2], self.padding[2], self.padding[1],
                         self.padding[1], 2 * self.padding[0], 0)
        self.padding = (0, 0, 0)

    def forward(self, x, cache_x=None):
        padding = list(self._padding)
        if cache_x is not None and self._padding[4] > 0:
            cache_x = cache_x.to(x.device)
            x = torch.cat([cache_x, x], dim=2)
            padding[4] -= cache_x.shape[2]
        x = F.pad(x, padding)

        return super().forward(x)


class RMS_norm(nn.Module):

    def __init__(self, dim, channel_first=True, images=True, bias=False):
        super().__init__()
        broadcastable_dims = (1, 1, 1) if not images else (1, 1)
        shape = (dim, *broadcastable_dims) if channel_first else (dim,)

        self.channel_first = channel_first
        self.scale = dim**0.5
        self.gamma = nn.Parameter(torch.ones(shape))
        self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.

    def forward(self, x):
        return F.normalize(
            x, dim=(1 if self.channel_first else
                    -1)) * self.scale * self.gamma + self.bias


class Upsample(nn.Upsample):

    def forward(self, x):
        """
        Fix bfloat16 support for nearest neighbor interpolation.
        """
        return super().forward(x.float()).type_as(x)


class Resample(nn.Module):

    def __init__(self, dim, mode):
        assert mode in ('none', 'upsample2d', 'upsample3d', 'downsample2d',
                        'downsample3d')
        super().__init__()
        self.dim = dim
        self.mode = mode

        # layers
        if mode == 'upsample2d':
            self.resample = nn.Sequential(
                Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
                nn.Conv2d(dim, dim // 2, 3, padding=1))
        elif mode == 'upsample3d':
            self.resample = nn.Sequential(
                Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
                nn.Conv2d(dim, dim // 2, 3, padding=1))
            self.time_conv = CausalConv3d(
                dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))

        elif mode == 'downsample2d':
            self.resample = nn.Sequential(
                nn.ZeroPad2d((0, 1, 0, 1)),
                nn.Conv2d(dim, dim, 3, stride=(2, 2)))
        elif mode == 'downsample3d':
            self.resample = nn.Sequential(
                nn.ZeroPad2d((0, 1, 0, 1)),
                nn.Conv2d(dim, dim, 3, stride=(2, 2)))
            self.time_conv = CausalConv3d(
                dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))

        else:
            self.resample = nn.Identity()

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        b, c, t, h, w = x.size()
        if self.mode == 'upsample3d':
            if feat_cache is not None:
                idx = feat_idx[0]
                if feat_cache[idx] is None:
                    feat_cache[idx] = 'Rep'
                    feat_idx[0] += 1
                else:

                    cache_x = x[:, :, -CACHE_T:, :, :].clone()
                    if cache_x.shape[2] < 2 and feat_cache[
                            idx] is not None and feat_cache[idx] != 'Rep':
                        # cache last frame of last two chunk
                        cache_x = torch.cat([
                            feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
                                cache_x.device), cache_x
                        ],
                                            dim=2)
                    if cache_x.shape[2] < 2 and feat_cache[
                            idx] is not None and feat_cache[idx] == 'Rep':
                        cache_x = torch.cat([
                            torch.zeros_like(cache_x).to(cache_x.device),
                            cache_x
                        ],
                                            dim=2)
                    if feat_cache[idx] == 'Rep':
                        x = self.time_conv(x)
                    else:
                        x = self.time_conv(x, feat_cache[idx])
                    feat_cache[idx] = cache_x
                    feat_idx[0] += 1

                    x = x.reshape(b, 2, c, t, h, w)
                    x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]),
                                    3)
                    x = x.reshape(b, c, t * 2, h, w)
        t = x.shape[2]
        x = rearrange(x, 'b c t h w -> (b t) c h w')
        x = self.resample(x)
        x = rearrange(x, '(b t) c h w -> b c t h w', t=t)

        if self.mode == 'downsample3d':
            if feat_cache is not None:
                idx = feat_idx[0]
                if feat_cache[idx] is None:
                    feat_cache[idx] = x.clone()
                    feat_idx[0] += 1
                else:

                    cache_x = x[:, :, -1:, :, :].clone()
                    # if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx]!='Rep':
                    #     # cache last frame of last two chunk
                    #     cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)

                    x = self.time_conv(
                        torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
                    feat_cache[idx] = cache_x
                    feat_idx[0] += 1
        return x

    def init_weight(self, conv):
        conv_weight = conv.weight
        nn.init.zeros_(conv_weight)
        c1, c2, t, h, w = conv_weight.size()
        one_matrix = torch.eye(c1, c2)
        init_matrix = one_matrix
        nn.init.zeros_(conv_weight)
        #conv_weight.data[:,:,-1,1,1] = init_matrix * 0.5
        conv_weight.data[:, :, 1, 0, 0] = init_matrix  #* 0.5
        conv.weight.data.copy_(conv_weight)
        nn.init.zeros_(conv.bias.data)

    def init_weight2(self, conv):
        conv_weight = conv.weight.data
        nn.init.zeros_(conv_weight)
        c1, c2, t, h, w = conv_weight.size()
        init_matrix = torch.eye(c1 // 2, c2)
        #init_matrix = repeat(init_matrix, 'o ... -> (o 2) ...').permute(1,0,2).contiguous().reshape(c1,c2)
        conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix
        conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix
        conv.weight.data.copy_(conv_weight)
        nn.init.zeros_(conv.bias.data)


class ResidualBlock(nn.Module):

    def __init__(self, in_dim, out_dim, dropout=0.0):
        super().__init__()
        self.in_dim = in_dim
        self.out_dim = out_dim

        # layers
        self.residual = nn.Sequential(
            RMS_norm(in_dim, images=False), nn.SiLU(),
            CausalConv3d(in_dim, out_dim, 3, padding=1),
            RMS_norm(out_dim, images=False), nn.SiLU(), nn.Dropout(dropout),
            CausalConv3d(out_dim, out_dim, 3, padding=1))
        self.shortcut = CausalConv3d(in_dim, out_dim, 1) \
            if in_dim != out_dim else nn.Identity()

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        h = self.shortcut(x)
        for layer in self.residual:
            if isinstance(layer, CausalConv3d) and feat_cache is not None:
                idx = feat_idx[0]
                cache_x = x[:, :, -CACHE_T:, :, :].clone()
                if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                    # cache last frame of last two chunk
                    cache_x = torch.cat([
                        feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
                            cache_x.device), cache_x
                    ],
                                        dim=2)
                x = layer(x, feat_cache[idx])
                feat_cache[idx] = cache_x
                feat_idx[0] += 1
            else:
                x = layer(x)
        return x + h


class AttentionBlock(nn.Module):
    """
    Causal self-attention with a single head.
    """

    def __init__(self, dim):
        super().__init__()
        self.dim = dim

        # layers
        self.norm = RMS_norm(dim)
        self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
        self.proj = nn.Conv2d(dim, dim, 1)

        # zero out the last layer params
        nn.init.zeros_(self.proj.weight)

    def forward(self, x):
        identity = x
        b, c, t, h, w = x.size()
        x = rearrange(x, 'b c t h w -> (b t) c h w')
        x = self.norm(x)
        # compute query, key, value
        q, k, v = self.to_qkv(x).reshape(b * t, 1, c * 3,
                                         -1).permute(0, 1, 3,
                                                     2).contiguous().chunk(
                                                         3, dim=-1)

        # apply attention
        x = F.scaled_dot_product_attention(
            q,
            k,
            v,
        )
        x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w)

        # output
        x = self.proj(x)
        x = rearrange(x, '(b t) c h w-> b c t h w', t=t)
        return x + identity


class Encoder3d(nn.Module):

    def __init__(self,
                 dim=128,
                 z_dim=4,
                 dim_mult=[1, 2, 4, 4],
                 num_res_blocks=2,
                 attn_scales=[],
                 temperal_downsample=[True, True, False],
                 dropout=0.0):
        super().__init__()
        self.dim = dim
        self.z_dim = z_dim
        self.dim_mult = dim_mult
        self.num_res_blocks = num_res_blocks
        self.attn_scales = attn_scales
        self.temperal_downsample = temperal_downsample

        # dimensions
        dims = [dim * u for u in [1] + dim_mult]
        scale = 1.0

        # init block
        self.conv1 = CausalConv3d(3, dims[0], 3, padding=1)

        # downsample blocks
        downsamples = []
        for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
            # residual (+attention) blocks
            for _ in range(num_res_blocks):
                downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
                if scale in attn_scales:
                    downsamples.append(AttentionBlock(out_dim))
                in_dim = out_dim

            # downsample block
            if i != len(dim_mult) - 1:
                mode = 'downsample3d' if temperal_downsample[
                    i] else 'downsample2d'
                downsamples.append(Resample(out_dim, mode=mode))
                scale /= 2.0
        self.downsamples = nn.Sequential(*downsamples)

        # middle blocks
        self.middle = nn.Sequential(
            ResidualBlock(out_dim, out_dim, dropout), AttentionBlock(out_dim),
            ResidualBlock(out_dim, out_dim, dropout))

        # output blocks
        self.head = nn.Sequential(
            RMS_norm(out_dim, images=False), nn.SiLU(),
            CausalConv3d(out_dim, z_dim, 3, padding=1))

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        if feat_cache is not None:
            idx = feat_idx[0]
            cache_x = x[:, :, -CACHE_T:, :, :].clone()
            if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                # cache last frame of last two chunk
                cache_x = torch.cat([
                    feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
                        cache_x.device), cache_x
                ],
                                    dim=2)
            x = self.conv1(x, feat_cache[idx])
            feat_cache[idx] = cache_x
            feat_idx[0] += 1
        else:
            x = self.conv1(x)

        ## downsamples
        for layer in self.downsamples:
            if feat_cache is not None:
                x = layer(x, feat_cache, feat_idx)
            else:
                x = layer(x)

        ## middle
        for layer in self.middle:
            if isinstance(layer, ResidualBlock) and feat_cache is not None:
                x = layer(x, feat_cache, feat_idx)
            else:
                x = layer(x)

        ## head
        for layer in self.head:
            if isinstance(layer, CausalConv3d) and feat_cache is not None:
                idx = feat_idx[0]
                cache_x = x[:, :, -CACHE_T:, :, :].clone()
                if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                    # cache last frame of last two chunk
                    cache_x = torch.cat([
                        feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
                            cache_x.device), cache_x
                    ],
                                        dim=2)
                x = layer(x, feat_cache[idx])
                feat_cache[idx] = cache_x
                feat_idx[0] += 1
            else:
                x = layer(x)
        return x


class Decoder3d(nn.Module):

    def __init__(self,
                 dim=128,
                 z_dim=4,
                 dim_mult=[1, 2, 4, 4],
                 num_res_blocks=2,
                 attn_scales=[],
                 temperal_upsample=[False, True, True],
                 dropout=0.0):
        super().__init__()
        self.dim = dim
        self.z_dim = z_dim
        self.dim_mult = dim_mult
        self.num_res_blocks = num_res_blocks
        self.attn_scales = attn_scales
        self.temperal_upsample = temperal_upsample

        # dimensions
        dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
        scale = 1.0 / 2**(len(dim_mult) - 2)

        # init block
        self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)

        # middle blocks
        self.middle = nn.Sequential(
            ResidualBlock(dims[0], dims[0], dropout), AttentionBlock(dims[0]),
            ResidualBlock(dims[0], dims[0], dropout))

        # upsample blocks
        upsamples = []
        for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
            # residual (+attention) blocks
            if i == 1 or i == 2 or i == 3:
                in_dim = in_dim // 2
            for _ in range(num_res_blocks + 1):
                upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
                if scale in attn_scales:
                    upsamples.append(AttentionBlock(out_dim))
                in_dim = out_dim

            # upsample block
            if i != len(dim_mult) - 1:
                mode = 'upsample3d' if temperal_upsample[i] else 'upsample2d'
                upsamples.append(Resample(out_dim, mode=mode))
                scale *= 2.0
        self.upsamples = nn.Sequential(*upsamples)

        # output blocks
        self.head = nn.Sequential(
            RMS_norm(out_dim, images=False), nn.SiLU(),
            CausalConv3d(out_dim, 3, 3, padding=1))

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        ## conv1
        if feat_cache is not None:
            idx = feat_idx[0]
            cache_x = x[:, :, -CACHE_T:, :, :].clone()
            if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                # cache last frame of last two chunk
                cache_x = torch.cat([
                    feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
                        cache_x.device), cache_x
                ],
                                    dim=2)
            x = self.conv1(x, feat_cache[idx])
            feat_cache[idx] = cache_x
            feat_idx[0] += 1
        else:
            x = self.conv1(x)

        ## middle
        for layer in self.middle:
            if isinstance(layer, ResidualBlock) and feat_cache is not None:
                x = layer(x, feat_cache, feat_idx)
            else:
                x = layer(x)

        ## upsamples
        for layer in self.upsamples:
            if feat_cache is not None:
                x = layer(x, feat_cache, feat_idx)
            else:
                x = layer(x)

        ## head
        for layer in self.head:
            if isinstance(layer, CausalConv3d) and feat_cache is not None:
                idx = feat_idx[0]
                cache_x = x[:, :, -CACHE_T:, :, :].clone()
                if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                    # cache last frame of last two chunk
                    cache_x = torch.cat([
                        feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
                            cache_x.device), cache_x
                    ],
                                        dim=2)
                x = layer(x, feat_cache[idx])
                feat_cache[idx] = cache_x
                feat_idx[0] += 1
            else:
                x = layer(x)
        return x


def count_conv3d(model):
    count = 0
    for m in model.modules():
        if isinstance(m, CausalConv3d):
            count += 1
    return count


class WanVAE_(nn.Module):

    def __init__(self,
                 dim=128,
                 z_dim=4,
                 dim_mult=[1, 2, 4, 4],
                 num_res_blocks=2,
                 attn_scales=[],
                 temperal_downsample=[True, True, False],
                 dropout=0.0):
        super().__init__()
        self.dim = dim
        self.z_dim = z_dim
        self.dim_mult = dim_mult
        self.num_res_blocks = num_res_blocks
        self.attn_scales = attn_scales
        self.temperal_downsample = temperal_downsample
        self.temperal_upsample = temperal_downsample[::-1]

        # modules
        self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks,
                                 attn_scales, self.temperal_downsample, dropout)
        self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
        self.conv2 = CausalConv3d(z_dim, z_dim, 1)
        self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks,
                                 attn_scales, self.temperal_upsample, dropout)

    def forward(self, x):
        mu, log_var = self.encode(x)
        z = self.reparameterize(mu, log_var)
        x_recon = self.decode(z)
        return x_recon, mu, log_var

    def encode(self, x, scale):
        self.clear_cache()
        ## cache
        t = x.shape[2]
        iter_ = 1 + (t - 1) // 4
        ## 对encode输入的x,按时间拆分为1、4、4、4....
        for i in range(iter_):
            self._enc_conv_idx = [0]
            if i == 0:
                out = self.encoder(
                    x[:, :, :1, :, :],
                    feat_cache=self._enc_feat_map,
                    feat_idx=self._enc_conv_idx)
            else:
                out_ = self.encoder(
                    x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :],
                    feat_cache=self._enc_feat_map,
                    feat_idx=self._enc_conv_idx)
                out = torch.cat([out, out_], 2)
        mu, log_var = self.conv1(out).chunk(2, dim=1)
        if isinstance(scale[0], torch.Tensor):
            mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(
                1, self.z_dim, 1, 1, 1)
        else:
            mu = (mu - scale[0]) * scale[1]
        self.clear_cache()
        return mu

    def decode(self, z, scale):
        self.clear_cache()
        # z: [b,c,t,h,w]
        if isinstance(scale[0], torch.Tensor):
            z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(
                1, self.z_dim, 1, 1, 1)
        else:
            z = z / scale[1] + scale[0]
        iter_ = z.shape[2]
        x = self.conv2(z)
        for i in range(iter_):
            self._conv_idx = [0]
            if i == 0:
                out = self.decoder(
                    x[:, :, i:i + 1, :, :],
                    feat_cache=self._feat_map,
                    feat_idx=self._conv_idx)
            else:
                out_ = self.decoder(
                    x[:, :, i:i + 1, :, :],
                    feat_cache=self._feat_map,
                    feat_idx=self._conv_idx)
                out = torch.cat([out, out_], 2)
        self.clear_cache()
        return out

    def reparameterize(self, mu, log_var):
        std = torch.exp(0.5 * log_var)
        eps = torch.randn_like(std)
        return eps * std + mu

    def sample(self, imgs, deterministic=False):
        mu, log_var = self.encode(imgs)
        if deterministic:
            return mu
        std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
        return mu + std * torch.randn_like(std)

    def clear_cache(self):
        self._conv_num = count_conv3d(self.decoder)
        self._conv_idx = [0]
        self._feat_map = [None] * self._conv_num
        #cache encode
        self._enc_conv_num = count_conv3d(self.encoder)
        self._enc_conv_idx = [0]
        self._enc_feat_map = [None] * self._enc_conv_num


def _video_vae(pretrained_path=None, z_dim=None, device='cpu', **kwargs):
    """
    Autoencoder3d adapted from Stable Diffusion 1.x, 2.x and XL.
    """
    # params
    cfg = dict(
        dim=96,
        z_dim=z_dim,
        dim_mult=[1, 2, 4, 4],
        num_res_blocks=2,
        attn_scales=[],
        temperal_downsample=[False, True, True],
        dropout=0.0)
    cfg.update(**kwargs)

    # init model
    with torch.device('meta'):
        model = WanVAE_(**cfg)

    # load checkpoint
    logging.info(f'loading {pretrained_path}')
    model.load_state_dict(
        torch.load(pretrained_path, map_location=device), assign=True)

    return model


class WanVAE:

    def __init__(self,
                 z_dim=16,
                 vae_pth='cache/vae_step_411000.pth',
                 dtype=torch.float,
                 device="cuda"):
        self.dtype = dtype
        self.device = device

        mean = [
            -0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508,
            0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921
        ]
        std = [
            2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743,
            3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160
        ]
        self.mean = torch.tensor(mean, dtype=dtype, device=device)
        self.std = torch.tensor(std, dtype=dtype, device=device)
        self.scale = [self.mean, 1.0 / self.std]

        # init model
        self.model = _video_vae(
            pretrained_path=vae_pth,
            z_dim=z_dim,
        ).eval().requires_grad_(False).to(device)

    def encode(self, videos):
        """
        videos: A list of videos each with shape [C, T, H, W].
        """
        with amp.autocast(dtype=self.dtype):
            return [
                self.model.encode(u.unsqueeze(0), self.scale).float().squeeze(0)
                for u in videos
            ]

    def decode(self, zs):
        with amp.autocast(dtype=self.dtype):
            return [
                self.model.decode(u.unsqueeze(0),
                                  self.scale).float().clamp_(-1, 1).squeeze(0)
                for u in zs
            ]