File size: 16,848 Bytes
3964763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
# Modified from ``https://github.com/openai/CLIP'' and ``https://github.com/mlfoundations/open_clip''
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import logging
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T

from .attention import flash_attention
from .tokenizers import HuggingfaceTokenizer
from .xlm_roberta import XLMRoberta

__all__ = [
    'XLMRobertaCLIP',
    'clip_xlm_roberta_vit_h_14',
    'CLIPModel',
]


def pos_interpolate(pos, seq_len):
    if pos.size(1) == seq_len:
        return pos
    else:
        src_grid = int(math.sqrt(pos.size(1)))
        tar_grid = int(math.sqrt(seq_len))
        n = pos.size(1) - src_grid * src_grid
        return torch.cat([
            pos[:, :n],
            F.interpolate(
                pos[:, n:].float().reshape(1, src_grid, src_grid, -1).permute(
                    0, 3, 1, 2),
                size=(tar_grid, tar_grid),
                mode='bicubic',
                align_corners=False).flatten(2).transpose(1, 2)
        ],
                         dim=1)


class QuickGELU(nn.Module):

    def forward(self, x):
        return x * torch.sigmoid(1.702 * x)


class LayerNorm(nn.LayerNorm):

    def forward(self, x):
        return super().forward(x.float()).type_as(x)


class SelfAttention(nn.Module):

    def __init__(self,
                 dim,
                 num_heads,
                 causal=False,
                 attn_dropout=0.0,
                 proj_dropout=0.0):
        assert dim % num_heads == 0
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.causal = causal
        self.attn_dropout = attn_dropout
        self.proj_dropout = proj_dropout

        # layers
        self.to_qkv = nn.Linear(dim, dim * 3)
        self.proj = nn.Linear(dim, dim)

    def forward(self, x):
        """
        x:   [B, L, C].
        """
        b, s, c, n, d = *x.size(), self.num_heads, self.head_dim

        # compute query, key, value
        q, k, v = self.to_qkv(x).view(b, s, 3, n, d).unbind(2)

        # compute attention
        p = self.attn_dropout if self.training else 0.0
        x = flash_attention(q, k, v, dropout_p=p, causal=self.causal, version=2)
        x = x.reshape(b, s, c)

        # output
        x = self.proj(x)
        x = F.dropout(x, self.proj_dropout, self.training)
        return x


class SwiGLU(nn.Module):

    def __init__(self, dim, mid_dim):
        super().__init__()
        self.dim = dim
        self.mid_dim = mid_dim

        # layers
        self.fc1 = nn.Linear(dim, mid_dim)
        self.fc2 = nn.Linear(dim, mid_dim)
        self.fc3 = nn.Linear(mid_dim, dim)

    def forward(self, x):
        x = F.silu(self.fc1(x)) * self.fc2(x)
        x = self.fc3(x)
        return x


class AttentionBlock(nn.Module):

    def __init__(self,
                 dim,
                 mlp_ratio,
                 num_heads,
                 post_norm=False,
                 causal=False,
                 activation='quick_gelu',
                 attn_dropout=0.0,
                 proj_dropout=0.0,
                 norm_eps=1e-5):
        assert activation in ['quick_gelu', 'gelu', 'swi_glu']
        super().__init__()
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.num_heads = num_heads
        self.post_norm = post_norm
        self.causal = causal
        self.norm_eps = norm_eps

        # layers
        self.norm1 = LayerNorm(dim, eps=norm_eps)
        self.attn = SelfAttention(dim, num_heads, causal, attn_dropout,
                                  proj_dropout)
        self.norm2 = LayerNorm(dim, eps=norm_eps)
        if activation == 'swi_glu':
            self.mlp = SwiGLU(dim, int(dim * mlp_ratio))
        else:
            self.mlp = nn.Sequential(
                nn.Linear(dim, int(dim * mlp_ratio)),
                QuickGELU() if activation == 'quick_gelu' else nn.GELU(),
                nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout))

    def forward(self, x):
        if self.post_norm:
            x = x + self.norm1(self.attn(x))
            x = x + self.norm2(self.mlp(x))
        else:
            x = x + self.attn(self.norm1(x))
            x = x + self.mlp(self.norm2(x))
        return x


class AttentionPool(nn.Module):

    def __init__(self,
                 dim,
                 mlp_ratio,
                 num_heads,
                 activation='gelu',
                 proj_dropout=0.0,
                 norm_eps=1e-5):
        assert dim % num_heads == 0
        super().__init__()
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.proj_dropout = proj_dropout
        self.norm_eps = norm_eps

        # layers
        gain = 1.0 / math.sqrt(dim)
        self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim))
        self.to_q = nn.Linear(dim, dim)
        self.to_kv = nn.Linear(dim, dim * 2)
        self.proj = nn.Linear(dim, dim)
        self.norm = LayerNorm(dim, eps=norm_eps)
        self.mlp = nn.Sequential(
            nn.Linear(dim, int(dim * mlp_ratio)),
            QuickGELU() if activation == 'quick_gelu' else nn.GELU(),
            nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout))

    def forward(self, x):
        """
        x:  [B, L, C].
        """
        b, s, c, n, d = *x.size(), self.num_heads, self.head_dim

        # compute query, key, value
        q = self.to_q(self.cls_embedding).view(1, 1, n, d).expand(b, -1, -1, -1)
        k, v = self.to_kv(x).view(b, s, 2, n, d).unbind(2)

        # compute attention
        x = flash_attention(q, k, v, version=2)
        x = x.reshape(b, 1, c)

        # output
        x = self.proj(x)
        x = F.dropout(x, self.proj_dropout, self.training)

        # mlp
        x = x + self.mlp(self.norm(x))
        return x[:, 0]


class VisionTransformer(nn.Module):

    def __init__(self,
                 image_size=224,
                 patch_size=16,
                 dim=768,
                 mlp_ratio=4,
                 out_dim=512,
                 num_heads=12,
                 num_layers=12,
                 pool_type='token',
                 pre_norm=True,
                 post_norm=False,
                 activation='quick_gelu',
                 attn_dropout=0.0,
                 proj_dropout=0.0,
                 embedding_dropout=0.0,
                 norm_eps=1e-5):
        if image_size % patch_size != 0:
            print(
                '[WARNING] image_size is not divisible by patch_size',
                flush=True)
        assert pool_type in ('token', 'token_fc', 'attn_pool')
        out_dim = out_dim or dim
        super().__init__()
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_patches = (image_size // patch_size)**2
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.out_dim = out_dim
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.pool_type = pool_type
        self.post_norm = post_norm
        self.norm_eps = norm_eps

        # embeddings
        gain = 1.0 / math.sqrt(dim)
        self.patch_embedding = nn.Conv2d(
            3,
            dim,
            kernel_size=patch_size,
            stride=patch_size,
            bias=not pre_norm)
        if pool_type in ('token', 'token_fc'):
            self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim))
        self.pos_embedding = nn.Parameter(gain * torch.randn(
            1, self.num_patches +
            (1 if pool_type in ('token', 'token_fc') else 0), dim))
        self.dropout = nn.Dropout(embedding_dropout)

        # transformer
        self.pre_norm = LayerNorm(dim, eps=norm_eps) if pre_norm else None
        self.transformer = nn.Sequential(*[
            AttentionBlock(dim, mlp_ratio, num_heads, post_norm, False,
                           activation, attn_dropout, proj_dropout, norm_eps)
            for _ in range(num_layers)
        ])
        self.post_norm = LayerNorm(dim, eps=norm_eps)

        # head
        if pool_type == 'token':
            self.head = nn.Parameter(gain * torch.randn(dim, out_dim))
        elif pool_type == 'token_fc':
            self.head = nn.Linear(dim, out_dim)
        elif pool_type == 'attn_pool':
            self.head = AttentionPool(dim, mlp_ratio, num_heads, activation,
                                      proj_dropout, norm_eps)

    def forward(self, x, interpolation=False, use_31_block=False):
        b = x.size(0)

        # embeddings
        x = self.patch_embedding(x).flatten(2).permute(0, 2, 1)
        if self.pool_type in ('token', 'token_fc'):
            x = torch.cat([self.cls_embedding.expand(b, -1, -1), x], dim=1)
        if interpolation:
            e = pos_interpolate(self.pos_embedding, x.size(1))
        else:
            e = self.pos_embedding
        x = self.dropout(x + e)
        if self.pre_norm is not None:
            x = self.pre_norm(x)

        # transformer
        if use_31_block:
            x = self.transformer[:-1](x)
            return x
        else:
            x = self.transformer(x)
            return x


class XLMRobertaWithHead(XLMRoberta):

    def __init__(self, **kwargs):
        self.out_dim = kwargs.pop('out_dim')
        super().__init__(**kwargs)

        # head
        mid_dim = (self.dim + self.out_dim) // 2
        self.head = nn.Sequential(
            nn.Linear(self.dim, mid_dim, bias=False), nn.GELU(),
            nn.Linear(mid_dim, self.out_dim, bias=False))

    def forward(self, ids):
        # xlm-roberta
        x = super().forward(ids)

        # average pooling
        mask = ids.ne(self.pad_id).unsqueeze(-1).to(x)
        x = (x * mask).sum(dim=1) / mask.sum(dim=1)

        # head
        x = self.head(x)
        return x


class XLMRobertaCLIP(nn.Module):

    def __init__(self,
                 embed_dim=1024,
                 image_size=224,
                 patch_size=14,
                 vision_dim=1280,
                 vision_mlp_ratio=4,
                 vision_heads=16,
                 vision_layers=32,
                 vision_pool='token',
                 vision_pre_norm=True,
                 vision_post_norm=False,
                 activation='gelu',
                 vocab_size=250002,
                 max_text_len=514,
                 type_size=1,
                 pad_id=1,
                 text_dim=1024,
                 text_heads=16,
                 text_layers=24,
                 text_post_norm=True,
                 text_dropout=0.1,
                 attn_dropout=0.0,
                 proj_dropout=0.0,
                 embedding_dropout=0.0,
                 norm_eps=1e-5):
        super().__init__()
        self.embed_dim = embed_dim
        self.image_size = image_size
        self.patch_size = patch_size
        self.vision_dim = vision_dim
        self.vision_mlp_ratio = vision_mlp_ratio
        self.vision_heads = vision_heads
        self.vision_layers = vision_layers
        self.vision_pre_norm = vision_pre_norm
        self.vision_post_norm = vision_post_norm
        self.activation = activation
        self.vocab_size = vocab_size
        self.max_text_len = max_text_len
        self.type_size = type_size
        self.pad_id = pad_id
        self.text_dim = text_dim
        self.text_heads = text_heads
        self.text_layers = text_layers
        self.text_post_norm = text_post_norm
        self.norm_eps = norm_eps

        # models
        self.visual = VisionTransformer(
            image_size=image_size,
            patch_size=patch_size,
            dim=vision_dim,
            mlp_ratio=vision_mlp_ratio,
            out_dim=embed_dim,
            num_heads=vision_heads,
            num_layers=vision_layers,
            pool_type=vision_pool,
            pre_norm=vision_pre_norm,
            post_norm=vision_post_norm,
            activation=activation,
            attn_dropout=attn_dropout,
            proj_dropout=proj_dropout,
            embedding_dropout=embedding_dropout,
            norm_eps=norm_eps)
        self.textual = XLMRobertaWithHead(
            vocab_size=vocab_size,
            max_seq_len=max_text_len,
            type_size=type_size,
            pad_id=pad_id,
            dim=text_dim,
            out_dim=embed_dim,
            num_heads=text_heads,
            num_layers=text_layers,
            post_norm=text_post_norm,
            dropout=text_dropout)
        self.log_scale = nn.Parameter(math.log(1 / 0.07) * torch.ones([]))

    def forward(self, imgs, txt_ids):
        """
        imgs:       [B, 3, H, W] of torch.float32.
        - mean:     [0.48145466, 0.4578275, 0.40821073]
        - std:      [0.26862954, 0.26130258, 0.27577711]
        txt_ids:    [B, L] of torch.long.
                    Encoded by data.CLIPTokenizer.
        """
        xi = self.visual(imgs)
        xt = self.textual(txt_ids)
        return xi, xt

    def param_groups(self):
        groups = [{
            'params': [
                p for n, p in self.named_parameters()
                if 'norm' in n or n.endswith('bias')
            ],
            'weight_decay': 0.0
        }, {
            'params': [
                p for n, p in self.named_parameters()
                if not ('norm' in n or n.endswith('bias'))
            ]
        }]
        return groups


def _clip(pretrained=False,
          pretrained_name=None,
          model_cls=XLMRobertaCLIP,
          return_transforms=False,
          return_tokenizer=False,
          tokenizer_padding='eos',
          dtype=torch.float32,
          device='cpu',
          **kwargs):
    # init a model on device
    with torch.device(device):
        model = model_cls(**kwargs)

    # set device
    model = model.to(dtype=dtype, device=device)
    output = (model,)

    # init transforms
    if return_transforms:
        # mean and std
        if 'siglip' in pretrained_name.lower():
            mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
        else:
            mean = [0.48145466, 0.4578275, 0.40821073]
            std = [0.26862954, 0.26130258, 0.27577711]

        # transforms
        transforms = T.Compose([
            T.Resize((model.image_size, model.image_size),
                     interpolation=T.InterpolationMode.BICUBIC),
            T.ToTensor(),
            T.Normalize(mean=mean, std=std)
        ])
        output += (transforms,)
    return output[0] if len(output) == 1 else output


def clip_xlm_roberta_vit_h_14(
        pretrained=False,
        pretrained_name='open-clip-xlm-roberta-large-vit-huge-14',
        **kwargs):
    cfg = dict(
        embed_dim=1024,
        image_size=224,
        patch_size=14,
        vision_dim=1280,
        vision_mlp_ratio=4,
        vision_heads=16,
        vision_layers=32,
        vision_pool='token',
        activation='gelu',
        vocab_size=250002,
        max_text_len=514,
        type_size=1,
        pad_id=1,
        text_dim=1024,
        text_heads=16,
        text_layers=24,
        text_post_norm=True,
        text_dropout=0.1,
        attn_dropout=0.0,
        proj_dropout=0.0,
        embedding_dropout=0.0)
    cfg.update(**kwargs)
    return _clip(pretrained, pretrained_name, XLMRobertaCLIP, **cfg)


class CLIPModel:

    def __init__(self, dtype, device, checkpoint_path, tokenizer_path):
        self.dtype = dtype
        self.device = device
        self.checkpoint_path = checkpoint_path
        self.tokenizer_path = tokenizer_path

        # init model
        self.model, self.transforms = clip_xlm_roberta_vit_h_14(
            pretrained=False,
            return_transforms=True,
            return_tokenizer=False,
            dtype=dtype,
            device=device)
        self.model = self.model.eval().requires_grad_(False)
        logging.info(f'loading {checkpoint_path}')
        self.model.load_state_dict(
            torch.load(checkpoint_path, map_location='cpu'))

        # init tokenizer
        self.tokenizer = HuggingfaceTokenizer(
            name=tokenizer_path,
            seq_len=self.model.max_text_len - 2,
            clean='whitespace')

    def visual(self, videos):
        # preprocess
        size = (self.model.image_size,) * 2
        videos = torch.cat([
            F.interpolate(
                u.transpose(0, 1),
                size=size,
                mode='bicubic',
                align_corners=False) for u in videos
        ])
        videos = self.transforms.transforms[-1](videos.mul_(0.5).add_(0.5))

        # forward
        with torch.cuda.amp.autocast(dtype=self.dtype):
            out = self.model.visual(videos, use_31_block=True)
            return out