File size: 5,396 Bytes
2f22a68
 
 
a575d82
7da6689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f22a68
239dc60
2f22a68
 
 
 
a575d82
 
 
4a902da
2f22a68
 
 
a575d82
239dc60
 
 
 
 
18905b7
a575d82
 
 
 
 
 
 
 
 
 
 
18905b7
a575d82
 
 
 
 
 
7da6689
 
a575d82
7da6689
2f22a68
a575d82
7da6689
2f22a68
 
62a24fb
08fbc70
 
 
 
 
 
0589fd4
 
 
 
 
 
 
 
 
 
08fbc70
 
 
 
239dc60
08fbc70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7da6689
08fbc70
 
 
 
7da6689
08fbc70
2f22a68
 
0589fd4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import gradio as gr
from main import main
from arguments import parse_args
import os
import glob

def list_iter_images(save_dir):
    # Specify the image extensions you want to search for
    image_extensions = ['jpg', 'jpeg', 'png', 'gif', 'bmp']  # Add more if needed

    # Create a list to store the image file paths
    image_paths = []

    # Iterate through the specified image extensions and get the file paths
    for ext in image_extensions:
        # Use glob to find all image files with the given extension
        image_paths.extend(glob.glob(os.path.join(save_dir, f'*.{ext}')))

    # Now image_paths contains the list of all image file paths
    print(image_paths)

    return image_paths

def generate_image(prompt, model, num_iterations, learning_rate, progress=gr.Progress(track_tqdm=True)):
    # Set up arguments
    args = parse_args()
    args.task = "single"
    args.prompt = prompt
    args.model = model
    args.n_iters = num_iterations
    args.lr = learning_rate
    args.cache_dir = "./HF_model_cache"
    args.save_dir = "./outputs"
    args.save_all_images = True
    
    try:
        # Run the main function with progress tracking
        def progress_callback(step):
            progress(step / num_iterations, f"Iteration {step}/{num_iterations}")

        best_image, total_init_rewards, total_best_rewards = main(args, progress_callback)

        settings = (
            f"{args.model}{'_' + args.prompt if args.task == 't2i-compbench' else ''}"
            f"{'_no-optim' if args.no_optim else ''}_{args.seed if args.task != 'geneval' else ''}"
            f"_lr{args.lr}_gc{args.grad_clip}_iter{args.n_iters}"
            f"_reg{args.reg_weight if args.enable_reg else '0'}"
            f"{'_pickscore' + str(args.pickscore_weighting) if args.enable_pickscore else ''}"
            f"{'_clip' + str(args.clip_weighting) if args.enable_clip else ''}"
            f"{'_hps' + str(args.hps_weighting) if args.enable_hps else ''}"
            f"{'_imagereward' + str(args.imagereward_weighting) if args.enable_imagereward else ''}"
            f"{'_aesthetic' + str(args.aesthetic_weighting) if args.enable_aesthetic else ''}"
        )

        save_dir = f"{args.save_dir}/{args.task}/{settings}/{args.prompt}"
        
        # Return the path to the generated image
        image_path = f"{save_dir}/best_image.png"
        
        if os.path.exists(image_path):
            iter_images = list_iter_images(save_dir)
            return image_path, f"Image generated successfully and saved at {image_path}", iter_images
        else:
            return None, "Image generation completed, but the file was not found.", None
    
    except Exception as e:
        return None, f"An error occurred: {str(e)}", None

# Create Gradio interface
title="# ReNO: Enhancing One-step Text-to-Image Models through Reward-based Noise Optimization"
description="Enter a prompt to generate an image using ReNO. Adjust the model and parameters as needed."

with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown(title)
        gr.Markdown(description)
        gr.HTML("""
        <div style="display:flex;column-gap:4px;">
            <a href='https://github.com/ExplainableML/ReNO'>
                <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
            </a> 
            <a href='https://arxiv.org/abs/2406.04312v1'>
                <img src='https://img.shields.io/badge/Paper-Arxiv-red'>
            </a>
        </div>
        """)

        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(label="Prompt")
                chosen_model = gr.Dropdown(["sd-turbo", "sdxl-turbo", "pixart", "hyper-sd"], label="Model", value="sd-turbo")
                
                with gr.Row():
                    n_iter = gr.Slider(minimum=10, maximum=100, step=10, value=50, label="Number of Iterations")
                    learning_rate = gr.Slider(minimum=0.1, maximum=10.0, step=0.1, value=5.0, label="Learning Rate")

                submit_btn = gr.Button("Submit")

                gr.Examples(
                    examples = [
                        "A minimalist logo design of a reindeer, fully rendered. The reindeer features distinct, complete shapes using bold and flat colors. The design emphasizes simplicity and clarity, suitable for logo use with a sharp outline and white background.",
                        "A blue scooter is parked near a curb in front of a green vintage car",
                        "A impressionistic oil painting: a lone figure walking on a misty beach, a weathered lighthouse on a cliff, seagulls above crashing waves",
                        "A bird with 8 legs",
                        "An orange chair to the right of a black airplane",
                        "A pink elephant and a grey cow",
                    ],
                    inputs = [prompt]     
                )
            
            with gr.Column():
                output_image = gr.Image(type="filepath", label="Generated Image")
                status = gr.Textbox(label="Status")
                iter_gallery = gr.Gallery(label="Iterations")

    submit_btn.click(
        fn = generate_image,
        inputs = [prompt, chosen_model, n_iter, learning_rate],
        outputs = [output_image, status, iter_gallery]
    )

# Launch the app
demo.queue().launch(show_error=True, show_api=False)