File size: 10,920 Bytes
1fcccb4
2f22a68
1fcccb4
2f22a68
a575d82
69458a9
7da6689
1fcccb4
 
 
 
 
7da6689
 
 
 
 
 
 
 
 
 
 
 
 
 
0fae3db
7da6689
 
2f22a68
69458a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fcccb4
0fae3db
1fcccb4
 
 
 
0fae3db
1fcccb4
 
 
 
2f22a68
 
 
 
a575d82
 
 
4a902da
2f22a68
 
69458a9
0fae3db
 
 
 
 
1fcccb4
 
 
 
 
 
f65cdf1
 
1fcccb4
 
 
 
 
 
 
 
0fae3db
69458a9
 
 
2f22a68
a575d82
67611b7
1fcccb4
 
 
 
239dc60
1fcccb4
239dc60
1fcccb4
 
3d05192
 
 
 
 
 
3bec464
3d05192
 
3bec464
3d05192
 
a575d82
1fcccb4
 
 
 
 
3bec464
1fcccb4
 
 
 
 
 
 
 
 
 
 
 
 
 
3d05192
3bec464
67611b7
3d05192
a575d82
3d05192
 
 
 
 
 
 
 
 
 
 
1fcccb4
67611b7
3d05192
 
 
 
 
 
 
 
 
 
 
1fcccb4
 
 
 
 
 
2f22a68
 
62a24fb
08fbc70
 
 
1fcccb4
 
08fbc70
 
 
0589fd4
 
 
 
 
 
 
 
 
 
08fbc70
 
 
 
1fcccb4
 
 
08fbc70
 
 
 
 
0fae3db
 
 
 
 
 
 
08fbc70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a1fd8b
08fbc70
1fcccb4
08fbc70
 
1fcccb4
 
 
 
 
0fae3db
1fcccb4
 
 
 
 
 
 
 
 
08fbc70
2f22a68
 
0589fd4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import torch
import gradio as gr
from main import setup, execute_task
from arguments import parse_args
import os
import shutil
import glob
import time
import threading
import argparse



def list_iter_images(save_dir):
    # Specify the image extensions you want to search for
    image_extensions = ['jpg', 'jpeg', 'png', 'gif', 'bmp']  # Add more if needed

    # Create a list to store the image file paths
    image_paths = []

    # Iterate through the specified image extensions and get the file paths
    for ext in image_extensions:
        # Use glob to find all image files with the given extension
        image_paths.extend(glob.glob(os.path.join(save_dir, f'*.{ext}')))

    # Now image_paths contains the list of all image file paths
    #print(image_paths)

    return image_paths

def clean_dir(save_dir):
    # Check if the directory exists
    if os.path.exists(save_dir):
        # Check if the directory contains any files
        if len(os.listdir(save_dir)) > 0:
            # If it contains files, delete all files in the directory
            for filename in os.listdir(save_dir):
                file_path = os.path.join(save_dir, filename)
                try:
                    if os.path.isfile(file_path) or os.path.islink(file_path):
                        os.unlink(file_path)  # Remove file or symbolic link
                    elif os.path.isdir(file_path):
                        shutil.rmtree(file_path)  # Remove directory and its contents
                except Exception as e:
                    print(f"Failed to delete {file_path}. Reason: {e}")
            print(f"All files in {save_dir} have been deleted.")
        else:
            print(f"{save_dir} exists but is empty.")
    else:
        print(f"{save_dir} does not exist.")

def start_over(gallery_state):
    torch.cuda.empty_cache()  # Free up cached memory
    if gallery_state is not None:
        gallery_state = None
    return gallery_state, None, None, gr.update(visible=False)

def setup_model(prompt, model, num_iterations, learning_rate, hps_w, imgrw_w, pcks_w, clip_w, progress=gr.Progress(track_tqdm=True)):

    """Clear CUDA memory before starting the training."""
    torch.cuda.empty_cache()  # Free up cached memory
    
    # Set up arguments
    args = parse_args()
    args.task = "single"
    args.prompt = prompt
    args.model = model
    args.n_iters = num_iterations
    args.lr = learning_rate
    args.cache_dir = "./HF_model_cache"
    args.save_dir = "./outputs"
    args.save_all_images = True

    args.hps_weighting = hps_w
    args.imagereward_weighting = imgrw_w
    args.pickscore_weighting = pcks_w
    args.clip_weighting = clip_w

    args, trainer, device, dtype, shape, enable_grad, settings = setup(args)
    loaded_setup = [args, trainer, device, dtype, shape, enable_grad, settings]

    return None, loaded_setup

def generate_image(setup_args, num_iterations):
    torch.cuda.empty_cache()  # Free up cached memory

    args = setup_args[0]
    trainer = setup_args[1]
    device = setup_args[2]
    dtype = setup_args[3]
    shape = setup_args[4]
    enable_grad = setup_args[5]

    settings = setup_args[6]
    print(f"SETTINGS: {settings}")

    save_dir = f"{args.save_dir}/{args.task}/{settings}/{args.prompt}"
    clean_dir(save_dir)
    
    try:
        torch.cuda.empty_cache()  # Free up cached memory
        steps_completed = []
        result_container = {"best_image": None, "total_init_rewards": None, "total_best_rewards": None}

        # Define progress_callback that updates steps_completed
        def progress_callback(step):
            steps_completed.append(step)

        # Function to run main in a separate thread
        def run_main():
            try:
                # Call main and handle any potential OOM errors
                result_container["best_image"], result_container["total_init_rewards"], result_container["total_best_rewards"] = execute_task(args, trainer, device, dtype, shape, enable_grad, settings, progress_callback)
            except torch.cuda.OutOfMemoryError as e:
                # Handle CUDA OOM error
                print("CUDA Out of Memory Error: ", e)
                error_status["error_occurred"] = True  # Update status on error
            except RuntimeError as e:
                if 'out of memory' in str(e):
                    error_status["error_occurred"] = True  # Update status on error
                else:
                    raise  # Reraise if it's not a CUDA OOM error
        
        # Start main in a separate thread
        main_thread = threading.Thread(target=run_main)
        main_thread.start()

        last_step_yielded = 0
        while main_thread.is_alive() and not error_status["error_occurred"]:
            # Check if new steps have been completed
            if steps_completed and steps_completed[-1] > last_step_yielded:
                last_step_yielded = steps_completed[-1]
                png_number = last_step_yielded - 1
                # Get the image for this step
                image_path = os.path.join(save_dir, f"{png_number}.png")
                if os.path.exists(image_path):
                    yield (image_path, f"Iteration {last_step_yielded}/{num_iterations} - Image saved", None)
                else:
                    yield (None, f"Iteration {last_step_yielded}/{num_iterations} - Image not found", None)
            else:
                # Small sleep to prevent busy waiting
                time.sleep(0.1)

        # If an error occurred, clean up resources and stop
        if error_status["error_occurred"]:
            torch.cuda.empty_cache()  # Free up cached memory
            yield (None, "CUDA out of memory. Please reduce your batch size or image resolution.", None)
        else:
            main_thread.join()

            # After main is complete, yield the final image
            final_image_path = os.path.join(save_dir, "best_image.png")
            if os.path.exists(final_image_path):
                iter_images = list_iter_images(save_dir)
                torch.cuda.empty_cache()  # Free up cached memory
                yield (final_image_path, f"Final image saved at {final_image_path}", iter_images)
            else:
                torch.cuda.empty_cache()  # Free up cached memory
                yield (None, "Image generation completed, but no final image was found.", None)

        torch.cuda.empty_cache()  # Free up cached memory

    except torch.cuda.OutOfMemoryError as e:
        # Handle CUDA OOM error globally
        yield (None, "CUDA out of memory.", None)
    except RuntimeError as e:
        if 'out of memory' in str(e):
            yield (None, "CUDA out of memory.", None)
        else:
            yield (None, f"An error occurred: {str(e)}", None)
    except Exception as e:
        yield (None, f"An unexpected error occurred: {str(e)}", None)

def show_gallery_output(gallery_state):
    if gallery_state is not None:
        return gr.update(value=gallery_state, visible=True)
    else:
        return gr.update(value=None, visible=False)

# Create Gradio interface
title="# ReNO: Enhancing One-step Text-to-Image Models through Reward-based Noise Optimization"
description="Enter a prompt to generate an image using ReNO. Adjust the model and parameters as needed."

with gr.Blocks() as demo:
    loaded_model_setup = gr.State()
    gallery_state = gr.State()
    with gr.Column():
        gr.Markdown(title)
        gr.Markdown(description)
        gr.HTML("""
        <div style="display:flex;column-gap:4px;">
            <a href='https://github.com/ExplainableML/ReNO'>
                <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
            </a> 
            <a href='https://arxiv.org/abs/2406.04312v1'>
                <img src='https://img.shields.io/badge/Paper-Arxiv-red'>
            </a>
        </div>
        """)

        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(label="Prompt")
                with gr.Row():
                    chosen_model = gr.Dropdown(["sd-turbo", "sdxl-turbo", "pixart", "hyper-sd"], label="Model", value="sd-turbo")
                    model_status = gr.Textbox(label="model status", visible=False)
                
                with gr.Row():
                    n_iter = gr.Slider(minimum=10, maximum=100, step=10, value=50, label="Number of Iterations")
                    learning_rate = gr.Slider(minimum=0.1, maximum=10.0, step=0.1, value=5.0, label="Learning Rate")

                with gr.Accordion("Advanced Settings", open=False):
                    with gr.Column():
                        hps_w = gr.Slider(label="HPS weight", step=0.1, minimum=0.0, maximum=10.0, value=5.0)
                        imgrw_w = gr.Slider(label="ImageReward weight", step=0.1, minimum=0, maximum=5.0, value=1.0)
                        pcks_w = gr.Slider(label="PickScore weight", step=0.01, minimum=0, maximum=5.0, value=0.05)
                        clip_w = gr.Slider(label="CLIP weight", step=0.01, minimum=0, maximum=0.1, value=0.01)

                submit_btn = gr.Button("Submit")

                gr.Examples(
                    examples = [
                        "A minimalist logo design of a reindeer, fully rendered. The reindeer features distinct, complete shapes using bold and flat colors. The design emphasizes simplicity and clarity, suitable for logo use with a sharp outline and white background.",
                        "A blue scooter is parked near a curb in front of a green vintage car",
                        "A impressionistic oil painting: a lone figure walking on a misty beach, a weathered lighthouse on a cliff, seagulls above crashing waves",
                        "A bird with 8 legs",
                        "An orange chair to the right of a black airplane",
                        "A pink elephant and a grey cow",
                    ],
                    inputs = [prompt]     
                )
            
            with gr.Column():
                output_image = gr.Image(type="filepath", label="Best Generated Image")
                status = gr.Textbox(label="Status")
                iter_gallery = gr.Gallery(label="Iterations", columns=4, visible=False)

    submit_btn.click(
        fn = start_over,
        inputs =[gallery_state],
        outputs = [gallery_state, output_image, status, iter_gallery]
    ).then(
        fn = setup_model,
        inputs = [prompt, chosen_model, n_iter, hps_w, imgrw_w, pcks_w, clip_w, learning_rate],
        outputs =  [output_image, loaded_model_setup]
    ).then(
        fn = generate_image,
        inputs = [loaded_model_setup, n_iter],
        outputs = [output_image, status, gallery_state]
    ).then(
        fn = show_gallery_output,
        inputs = [gallery_state],
        outputs = iter_gallery
    )

# Launch the app
demo.queue().launch(show_error=True, show_api=False)