Spaces:
Sleeping
Sleeping
File size: 8,526 Bytes
1fcccb4 2f22a68 1fcccb4 2f22a68 a575d82 69458a9 7da6689 1fcccb4 7da6689 2f22a68 69458a9 1fcccb4 2f22a68 a575d82 4a902da 2f22a68 69458a9 1fcccb4 69458a9 2f22a68 a575d82 1fcccb4 239dc60 1fcccb4 239dc60 1fcccb4 a575d82 1fcccb4 7da6689 1fcccb4 a575d82 1fcccb4 a575d82 1fcccb4 2f22a68 62a24fb 08fbc70 1fcccb4 08fbc70 0589fd4 08fbc70 1fcccb4 08fbc70 7a1fd8b 08fbc70 1fcccb4 08fbc70 1fcccb4 08fbc70 1fcccb4 08fbc70 2f22a68 0589fd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import torch
import gradio as gr
from main import setup, execute_task
from arguments import parse_args
import os
import shutil
import glob
import time
import threading
import argparse
def list_iter_images(save_dir):
# Specify the image extensions you want to search for
image_extensions = ['jpg', 'jpeg', 'png', 'gif', 'bmp'] # Add more if needed
# Create a list to store the image file paths
image_paths = []
# Iterate through the specified image extensions and get the file paths
for ext in image_extensions:
# Use glob to find all image files with the given extension
image_paths.extend(glob.glob(os.path.join(save_dir, f'*.{ext}')))
# Now image_paths contains the list of all image file paths
print(image_paths)
return image_paths
def clean_dir(save_dir):
# Check if the directory exists
if os.path.exists(save_dir):
# Check if the directory contains any files
if len(os.listdir(save_dir)) > 0:
# If it contains files, delete all files in the directory
for filename in os.listdir(save_dir):
file_path = os.path.join(save_dir, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path) # Remove file or symbolic link
elif os.path.isdir(file_path):
shutil.rmtree(file_path) # Remove directory and its contents
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
print(f"All files in {save_dir} have been deleted.")
else:
print(f"{save_dir} exists but is empty.")
else:
print(f"{save_dir} does not exist.")
def start_over(gallery_state):
if gallery_state is not None:
gallery_state = None
return gallery_state, None, None, gr.update(visible=False)
def setup_model(prompt, model, num_iterations, learning_rate, progress=gr.Progress(track_tqdm=True)):
"""Clear CUDA memory before starting the training."""
torch.cuda.empty_cache() # Free up cached memory
# Set up arguments
args = parse_args()
args.task = "single"
args.prompt = prompt
args.model = model
args.n_iters = num_iterations
args.lr = learning_rate
args.cache_dir = "./HF_model_cache"
args.save_dir = "./outputs"
args.save_all_images = True
args, trainer, device, dtype, shape, enable_grad, settings = setup(args)
loaded_setup = [args, trainer, device, dtype, shape, enable_grad, settings]
return None, loaded_setup
def generate_image(setup_args, num_iterations):
args = setup_args[0]
trainer = setup_args[1]
device = setup_args[2]
dtype = setup_args[3]
shape = setup_args[4]
enable_grad = setup_args[5]
settings = setup_args[6]
save_dir = f"{args.save_dir}/{args.task}/{settings}/{args.prompt}"
clean_dir(save_dir)
try:
steps_completed = []
result_container = {"best_image": None, "total_init_rewards": None, "total_best_rewards": None}
# Define progress_callback that updates steps_completed
def progress_callback(step):
steps_completed.append(step)
# Function to run main in a separate thread
def run_main():
result_container["best_image"], result_container["total_init_rewards"], result_container["total_best_rewards"] = execute_task(args, trainer, device, dtype, shape, enable_grad, settings, progress_callback)
# Start main in a separate thread
main_thread = threading.Thread(target=run_main)
main_thread.start()
last_step_yielded = 0
while main_thread.is_alive() or last_step_yielded < num_iterations:
# Check if new steps have been completed
if steps_completed and steps_completed[-1] > last_step_yielded:
last_step_yielded = steps_completed[-1]
png_number = last_step_yielded - 1
# Get the image for this step
image_path = os.path.join(save_dir, f"{png_number}.png")
if os.path.exists(image_path):
yield (image_path, f"Iteration {last_step_yielded}/{num_iterations} - Image saved", None)
else:
yield (None, f"Iteration {last_step_yielded}/{num_iterations} - Image not found", None)
else:
# Small sleep to prevent busy waiting
time.sleep(0.1)
main_thread.join()
# After main is complete, yield the final image
final_image_path = os.path.join(save_dir, "best_image.png")
if os.path.exists(final_image_path):
iter_images = list_iter_images(save_dir)
yield (final_image_path, f"Final image saved at {final_image_path}", iter_images)
else:
yield (None, "Image generation completed, but no final image was found.", None)
except Exception as e:
yield (None, f"An error occurred: {str(e)}", None)
def show_gallery_output(gallery_state):
if gallery_state is not None:
return gr.update(value=gallery_state, visible=True)
else:
return gr.update(value=None, visible=False)
# Create Gradio interface
title="# ReNO: Enhancing One-step Text-to-Image Models through Reward-based Noise Optimization"
description="Enter a prompt to generate an image using ReNO. Adjust the model and parameters as needed."
with gr.Blocks() as demo:
loaded_model_setup = gr.State()
gallery_state = gr.State()
with gr.Column():
gr.Markdown(title)
gr.Markdown(description)
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href='https://github.com/ExplainableML/ReNO'>
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href='https://arxiv.org/abs/2406.04312v1'>
<img src='https://img.shields.io/badge/Paper-Arxiv-red'>
</a>
</div>
""")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt")
with gr.Row():
chosen_model = gr.Dropdown(["sd-turbo", "sdxl-turbo", "pixart", "hyper-sd"], label="Model", value="sd-turbo")
model_status = gr.Textbox(label="model status", visible=False)
with gr.Row():
n_iter = gr.Slider(minimum=10, maximum=100, step=10, value=50, label="Number of Iterations")
learning_rate = gr.Slider(minimum=0.1, maximum=10.0, step=0.1, value=5.0, label="Learning Rate")
submit_btn = gr.Button("Submit")
gr.Examples(
examples = [
"A minimalist logo design of a reindeer, fully rendered. The reindeer features distinct, complete shapes using bold and flat colors. The design emphasizes simplicity and clarity, suitable for logo use with a sharp outline and white background.",
"A blue scooter is parked near a curb in front of a green vintage car",
"A impressionistic oil painting: a lone figure walking on a misty beach, a weathered lighthouse on a cliff, seagulls above crashing waves",
"A bird with 8 legs",
"An orange chair to the right of a black airplane",
"A pink elephant and a grey cow",
],
inputs = [prompt]
)
with gr.Column():
output_image = gr.Image(type="filepath", label="Best Generated Image")
status = gr.Textbox(label="Status")
iter_gallery = gr.Gallery(label="Iterations", columns=4, visible=False)
submit_btn.click(
fn = start_over,
inputs =[gallery_state],
outputs = [gallery_state, output_image, status, iter_gallery]
).then(
fn = setup_model,
inputs = [prompt, chosen_model, n_iter, learning_rate],
outputs = [output_image, loaded_model_setup]
).then(
fn = generate_image,
inputs = [loaded_model_setup, n_iter],
outputs = [output_image, status, gallery_state]
).then(
fn = show_gallery_output,
inputs = [gallery_state],
outputs = iter_gallery
)
# Launch the app
demo.queue().launch(show_error=True, show_api=False) |