fffiloni commited on
Commit
b6488dd
·
1 Parent(s): 04c1381

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -5
app.py CHANGED
@@ -28,6 +28,7 @@ from torchvision.io import read_video
28
  from torchvision.models.optical_flow import Raft_Large_Weights
29
  from torchvision.models.optical_flow import raft_large
30
  from torchvision.io import write_jpeg
 
31
 
32
  import tempfile
33
  from pathlib import Path
@@ -193,11 +194,21 @@ def infer():
193
  # output_folder = "/tmp/" # Update this to the folder of your choice
194
  write_jpeg(flow_img, f"predicted_flow.jpg")
195
  flo_file = write_flo(predicted_flow, "flofile.flo")
196
- write_jpeg(frames[100], f"input_image.jpg")
197
  #res = warp_image(img1_batch, predicted_flow)
198
- res = get_warp_res("input_image.jpg", "flofile.flo", fname_output='warped.png')
199
- print(res)
200
- return "done", "predicted_flow.jpg", ["flofile.flo"]
 
 
 
 
 
 
 
 
 
 
201
  ####################################
202
  # Bonus: Creating GIFs of predicted flows
203
  # ---------------------------------------
@@ -226,4 +237,4 @@ def infer():
226
  # ffmpeg -f image2 -framerate 30 -i predicted_flow_%d.jpg -loop -1 flow.gif
227
 
228
 
229
- gr.Interface(fn=infer, inputs=[], outputs=[gr.Textbox(), gr.Image(), gr.Files()]).launch()
 
28
  from torchvision.models.optical_flow import Raft_Large_Weights
29
  from torchvision.models.optical_flow import raft_large
30
  from torchvision.io import write_jpeg
31
+ import torchvision.transforms as T
32
 
33
  import tempfile
34
  from pathlib import Path
 
194
  # output_folder = "/tmp/" # Update this to the folder of your choice
195
  write_jpeg(flow_img, f"predicted_flow.jpg")
196
  flo_file = write_flo(predicted_flow, "flofile.flo")
197
+ #write_jpeg(frames[100], f"input_image.jpg")
198
  #res = warp_image(img1_batch, predicted_flow)
199
+
200
+ # define a transform to convert a tensor to PIL image
201
+ transform = T.ToPILImage()
202
+
203
+ # convert the tensor to PIL image using above transform
204
+ img = transform(frames[100])
205
+
206
+ # display the PIL image
207
+ #img.show()
208
+ img.save('frame_input.jpg')
209
+ #res = get_warp_res("input_image.jpg", "flofile.flo", fname_output='warped.png')
210
+ #print(res)
211
+ return "done", "predicted_flow.jpg", ["flofile.flo"], 'frame_input.jpg'
212
  ####################################
213
  # Bonus: Creating GIFs of predicted flows
214
  # ---------------------------------------
 
237
  # ffmpeg -f image2 -framerate 30 -i predicted_flow_%d.jpg -loop -1 flow.gif
238
 
239
 
240
+ gr.Interface(fn=infer, inputs=[], outputs=[gr.Textbox(), gr.Image(), gr.Files(), gr.Image()]).launch()