Spaces:
Running
on
Zero
Running
on
Zero
| import torch.nn as nn | |
| from .net_utils import PosEnSine, softmax_attention, dotproduct_attention, long_range_attention, \ | |
| short_range_attention, patch_attention | |
| class OurMultiheadAttention(nn.Module): | |
| def __init__(self, q_feat_dim, k_feat_dim, out_feat_dim, n_head, d_k=None, d_v=None): | |
| super(OurMultiheadAttention, self).__init__() | |
| if d_k is None: | |
| d_k = out_feat_dim // n_head | |
| if d_v is None: | |
| d_v = out_feat_dim // n_head | |
| self.n_head = n_head | |
| self.d_k = d_k | |
| self.d_v = d_v | |
| # pre-attention projection | |
| self.w_qs = nn.Conv2d(q_feat_dim, n_head * d_k, 1, bias=False) | |
| self.w_ks = nn.Conv2d(k_feat_dim, n_head * d_k, 1, bias=False) | |
| self.w_vs = nn.Conv2d(out_feat_dim, n_head * d_v, 1, bias=False) | |
| # after-attention combine heads | |
| self.fc = nn.Conv2d(n_head * d_v, out_feat_dim, 1, bias=False) | |
| def forward(self, q, k, v, attn_type='softmax', **kwargs): | |
| # input: b x d x h x w | |
| d_k, d_v, n_head = self.d_k, self.d_v, self.n_head | |
| # Pass through the pre-attention projection: b x (nhead*dk) x h x w | |
| # Separate different heads: b x nhead x dk x h x w | |
| q = self.w_qs(q).view(q.shape[0], n_head, d_k, q.shape[2], q.shape[3]) | |
| k = self.w_ks(k).view(k.shape[0], n_head, d_k, k.shape[2], k.shape[3]) | |
| v = self.w_vs(v).view(v.shape[0], n_head, d_v, v.shape[2], v.shape[3]) | |
| # -------------- Attention ----------------- | |
| if attn_type == 'softmax': | |
| q, attn = softmax_attention(q, k, v) # b x n x dk x h x w --> b x n x dv x h x w | |
| elif attn_type == 'dotproduct': | |
| q, attn = dotproduct_attention(q, k, v) | |
| elif attn_type == 'patch': | |
| q, attn = patch_attention(q, k, v, P=kwargs['P']) | |
| elif attn_type == 'sparse_long': | |
| q, attn = long_range_attention(q, k, v, P_h=kwargs['ah'], P_w=kwargs['aw']) | |
| elif attn_type == 'sparse_short': | |
| q, attn = short_range_attention(q, k, v, Q_h=kwargs['ah'], Q_w=kwargs['aw']) | |
| else: | |
| raise NotImplementedError(f'Unknown attention type {attn_type}') | |
| # ------------ end Attention --------------- | |
| # Concatenate all the heads together: b x (n*dv) x h x w | |
| q = q.reshape(q.shape[0], -1, q.shape[3], q.shape[4]) | |
| q = self.fc(q) # b x d x h x w | |
| return q, attn | |
| class TransformerEncoderUnit(nn.Module): | |
| def __init__(self, feat_dim, n_head=8, pos_en_flag=True, attn_type='softmax', P=None): | |
| super(TransformerEncoderUnit, self).__init__() | |
| self.feat_dim = feat_dim | |
| self.attn_type = attn_type | |
| self.pos_en_flag = pos_en_flag | |
| self.P = P | |
| self.pos_en = PosEnSine(self.feat_dim // 2) | |
| self.attn = OurMultiheadAttention(feat_dim, n_head) | |
| self.linear1 = nn.Conv2d(self.feat_dim, self.feat_dim, 1) | |
| self.linear2 = nn.Conv2d(self.feat_dim, self.feat_dim, 1) | |
| self.activation = nn.ReLU(inplace=True) | |
| self.norm1 = nn.BatchNorm2d(self.feat_dim) | |
| self.norm2 = nn.BatchNorm2d(self.feat_dim) | |
| def forward(self, src): | |
| if self.pos_en_flag: | |
| pos_embed = self.pos_en(src) | |
| else: | |
| pos_embed = 0 | |
| # multi-head attention | |
| src2 = self.attn( | |
| q=src + pos_embed, k=src + pos_embed, v=src, attn_type=self.attn_type, P=self.P | |
| )[0] | |
| src = src + src2 | |
| src = self.norm1(src) | |
| # feed forward | |
| src2 = self.linear2(self.activation(self.linear1(src))) | |
| src = src + src2 | |
| src = self.norm2(src) | |
| return src | |
| class TransformerEncoderUnitSparse(nn.Module): | |
| def __init__(self, feat_dim, n_head=8, pos_en_flag=True, ahw=None): | |
| super(TransformerEncoderUnitSparse, self).__init__() | |
| self.feat_dim = feat_dim | |
| self.pos_en_flag = pos_en_flag | |
| self.ahw = ahw # [Ph, Pw, Qh, Qw] | |
| self.pos_en = PosEnSine(self.feat_dim // 2) | |
| self.attn1 = OurMultiheadAttention(feat_dim, n_head) # long range | |
| self.attn2 = OurMultiheadAttention(feat_dim, n_head) # short range | |
| self.linear1 = nn.Conv2d(self.feat_dim, self.feat_dim, 1) | |
| self.linear2 = nn.Conv2d(self.feat_dim, self.feat_dim, 1) | |
| self.activation = nn.ReLU(inplace=True) | |
| self.norm1 = nn.BatchNorm2d(self.feat_dim) | |
| self.norm2 = nn.BatchNorm2d(self.feat_dim) | |
| def forward(self, src): | |
| if self.pos_en_flag: | |
| pos_embed = self.pos_en(src) | |
| else: | |
| pos_embed = 0 | |
| # multi-head long-range attention | |
| src2 = self.attn1( | |
| q=src + pos_embed, | |
| k=src + pos_embed, | |
| v=src, | |
| attn_type='sparse_long', | |
| ah=self.ahw[0], | |
| aw=self.ahw[1] | |
| )[0] | |
| src = src + src2 # ? this might be ok to remove | |
| # multi-head short-range attention | |
| src2 = self.attn2( | |
| q=src + pos_embed, | |
| k=src + pos_embed, | |
| v=src, | |
| attn_type='sparse_short', | |
| ah=self.ahw[2], | |
| aw=self.ahw[3] | |
| )[0] | |
| src = src + src2 | |
| src = self.norm1(src) | |
| # feed forward | |
| src2 = self.linear2(self.activation(self.linear1(src))) | |
| src = src + src2 | |
| src = self.norm2(src) | |
| return src | |
| class TransformerDecoderUnit(nn.Module): | |
| def __init__(self, feat_dim, n_head=8, pos_en_flag=True, attn_type='softmax', P=None): | |
| super(TransformerDecoderUnit, self).__init__() | |
| self.feat_dim = feat_dim | |
| self.attn_type = attn_type | |
| self.pos_en_flag = pos_en_flag | |
| self.P = P | |
| self.pos_en = PosEnSine(self.feat_dim // 2) | |
| self.attn1 = OurMultiheadAttention(feat_dim, n_head) # self-attention | |
| self.attn2 = OurMultiheadAttention(feat_dim, n_head) # cross-attention | |
| self.linear1 = nn.Conv2d(self.feat_dim, self.feat_dim, 1) | |
| self.linear2 = nn.Conv2d(self.feat_dim, self.feat_dim, 1) | |
| self.activation = nn.ReLU(inplace=True) | |
| self.norm1 = nn.BatchNorm2d(self.feat_dim) | |
| self.norm2 = nn.BatchNorm2d(self.feat_dim) | |
| self.norm3 = nn.BatchNorm2d(self.feat_dim) | |
| def forward(self, tgt, src): | |
| if self.pos_en_flag: | |
| src_pos_embed = self.pos_en(src) | |
| tgt_pos_embed = self.pos_en(tgt) | |
| else: | |
| src_pos_embed = 0 | |
| tgt_pos_embed = 0 | |
| # self-multi-head attention | |
| tgt2 = self.attn1( | |
| q=tgt + tgt_pos_embed, k=tgt + tgt_pos_embed, v=tgt, attn_type=self.attn_type, P=self.P | |
| )[0] | |
| tgt = tgt + tgt2 | |
| tgt = self.norm1(tgt) | |
| # cross-multi-head attention | |
| tgt2 = self.attn2( | |
| q=tgt + tgt_pos_embed, k=src + src_pos_embed, v=src, attn_type=self.attn_type, P=self.P | |
| )[0] | |
| tgt = tgt + tgt2 | |
| tgt = self.norm2(tgt) | |
| # feed forward | |
| tgt2 = self.linear2(self.activation(self.linear1(tgt))) | |
| tgt = tgt + tgt2 | |
| tgt = self.norm3(tgt) | |
| return tgt | |
| class TransformerDecoderUnitSparse(nn.Module): | |
| def __init__(self, feat_dim, n_head=8, pos_en_flag=True, ahw=None): | |
| super(TransformerDecoderUnitSparse, self).__init__() | |
| self.feat_dim = feat_dim | |
| self.ahw = ahw # [Ph_tgt, Pw_tgt, Qh_tgt, Qw_tgt, Ph_src, Pw_src, Qh_tgt, Qw_tgt] | |
| self.pos_en_flag = pos_en_flag | |
| self.pos_en = PosEnSine(self.feat_dim // 2) | |
| self.attn1_1 = OurMultiheadAttention(feat_dim, n_head) # self-attention: long | |
| self.attn1_2 = OurMultiheadAttention(feat_dim, n_head) # self-attention: short | |
| self.attn2_1 = OurMultiheadAttention( | |
| feat_dim, n_head | |
| ) # cross-attention: self-attention-long + cross-attention-short | |
| self.attn2_2 = OurMultiheadAttention(feat_dim, n_head) | |
| self.linear1 = nn.Conv2d(self.feat_dim, self.feat_dim, 1) | |
| self.linear2 = nn.Conv2d(self.feat_dim, self.feat_dim, 1) | |
| self.activation = nn.ReLU(inplace=True) | |
| self.norm1 = nn.BatchNorm2d(self.feat_dim) | |
| self.norm2 = nn.BatchNorm2d(self.feat_dim) | |
| self.norm3 = nn.BatchNorm2d(self.feat_dim) | |
| def forward(self, tgt, src): | |
| if self.pos_en_flag: | |
| src_pos_embed = self.pos_en(src) | |
| tgt_pos_embed = self.pos_en(tgt) | |
| else: | |
| src_pos_embed = 0 | |
| tgt_pos_embed = 0 | |
| # self-multi-head attention: sparse long | |
| tgt2 = self.attn1_1( | |
| q=tgt + tgt_pos_embed, | |
| k=tgt + tgt_pos_embed, | |
| v=tgt, | |
| attn_type='sparse_long', | |
| ah=self.ahw[0], | |
| aw=self.ahw[1] | |
| )[0] | |
| tgt = tgt + tgt2 | |
| # self-multi-head attention: sparse short | |
| tgt2 = self.attn1_2( | |
| q=tgt + tgt_pos_embed, | |
| k=tgt + tgt_pos_embed, | |
| v=tgt, | |
| attn_type='sparse_short', | |
| ah=self.ahw[2], | |
| aw=self.ahw[3] | |
| )[0] | |
| tgt = tgt + tgt2 | |
| tgt = self.norm1(tgt) | |
| # self-multi-head attention: sparse long | |
| src2 = self.attn2_1( | |
| q=src + src_pos_embed, | |
| k=src + src_pos_embed, | |
| v=src, | |
| attn_type='sparse_long', | |
| ah=self.ahw[4], | |
| aw=self.ahw[5] | |
| )[0] | |
| src = src + src2 | |
| # cross-multi-head attention: sparse short | |
| tgt2 = self.attn2_2( | |
| q=tgt + tgt_pos_embed, | |
| k=src + src_pos_embed, | |
| v=src, | |
| attn_type='sparse_short', | |
| ah=self.ahw[6], | |
| aw=self.ahw[7] | |
| )[0] | |
| tgt = tgt + tgt2 | |
| tgt = self.norm2(tgt) | |
| # feed forward | |
| tgt2 = self.linear2(self.activation(self.linear1(tgt))) | |
| tgt = tgt + tgt2 | |
| tgt = self.norm3(tgt) | |
| return tgt | |