Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import numpy as np | |
| import cv2 | |
| import torch.nn.functional as F | |
| from PIL import Image | |
| def project(xyz, K, RT): | |
| """ | |
| xyz: [N, 3] | |
| K: [3, 3] | |
| RT: [3, 4] | |
| """ | |
| xyz = np.dot(RT[:, :3],xyz.T).T + RT[:, 3:].T | |
| xyz = np.dot(K,xyz.T).T | |
| xy = xyz[:, :2] + 256 | |
| return xy | |
| def get_rays(H, W, K, R, T): | |
| # w2c=np.concatenate([R,T],axis=1) | |
| # w2c=np.concatenate([w2c,[[0,0,0,1]]],axis=0) | |
| # c2w=np.linalg.inv(w2c) | |
| # i, j = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy') | |
| # dirs = np.stack([(i-256)/K[0][0], -(j-256)/K[1][1], -np.ones_like(i)], -1) | |
| # # Rotate ray directions from camera frame to the world frame | |
| # rays_d = np.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs] | |
| # # Translate camera frame's origin to the world frame. It is the origin of all rays. | |
| # rays_o = np.broadcast_to(c2w[:3,-1], np.shape(rays_d)) | |
| # calculate the camera origin | |
| rays_o = -np.dot(np.linalg.inv(R), T).ravel()+np.array([0,0,500]) | |
| # calculate the world coordinates of pixels | |
| i, j = np.meshgrid(np.arange(W, dtype=np.float32), | |
| np.arange(H, dtype=np.float32), | |
| indexing='xy') | |
| #xy1 = np.stack([i, j, np.ones_like(i)], axis=2) | |
| pixel_camera = np.stack([(i-256)/K[0][0], -(j-256)/K[1][1], -np.ones_like(i)], -1) | |
| pixel_world = np.dot(R.T, (pixel_camera - T.ravel()).reshape(-1,3).T).T.reshape(H,W,3) | |
| # calculate the ray direction | |
| rays_d = pixel_world - rays_o[None, None] | |
| rays_d = rays_d / np.linalg.norm(rays_d, axis=2, keepdims=True) | |
| rays_o = np.broadcast_to(rays_o, rays_d.shape) | |
| return rays_o, rays_d | |
| def get_bound_corners(bounds): | |
| min_x, min_y, min_z = bounds[0] | |
| max_x, max_y, max_z = bounds[1] | |
| corners_3d = np.array([ | |
| [min_x, min_y, min_z], | |
| [min_x, min_y, max_z], | |
| [min_x, max_y, min_z], | |
| [min_x, max_y, max_z], | |
| [max_x, min_y, min_z], | |
| [max_x, min_y, max_z], | |
| [max_x, max_y, min_z], | |
| [max_x, max_y, max_z], | |
| ]) | |
| return corners_3d | |
| def get_bound_2d_mask(bounds, K, pose, H, W): | |
| corners_3d = get_bound_corners(bounds) | |
| corners_2d = project(corners_3d, K, pose) | |
| corners_2d = np.round(corners_2d).astype(int) | |
| mask = np.zeros((H, W), dtype=np.uint8) | |
| cv2.fillPoly(mask, [corners_2d[[0, 1, 3, 2, 0]]], 1) | |
| cv2.fillPoly(mask, [corners_2d[[4, 5, 7, 6, 4]]], 1) | |
| cv2.fillPoly(mask, [corners_2d[[0, 1, 5, 4, 0]]], 1) | |
| cv2.fillPoly(mask, [corners_2d[[2, 3, 7, 6, 2]]], 1) | |
| cv2.fillPoly(mask, [corners_2d[[0, 2, 6, 4, 0]]], 1) | |
| cv2.fillPoly(mask, [corners_2d[[1, 3, 7, 5, 1]]], 1) | |
| return mask | |
| def get_near_far(bounds, ray_o, ray_d): | |
| """calculate intersections with 3d bounding box""" | |
| bounds = bounds + np.array([-0.01, 0.01])[:, None] | |
| nominator = bounds[None] - ray_o[:, None] | |
| # calculate the step of intersections at six planes of the 3d bounding box | |
| d_intersect = (nominator / (ray_d[:, None] + 1e-9)).reshape(-1, 6) | |
| # calculate the six interections | |
| p_intersect = d_intersect[..., None] * ray_d[:, None] + ray_o[:, None] | |
| # calculate the intersections located at the 3d bounding box | |
| min_x, min_y, min_z, max_x, max_y, max_z = bounds.ravel() | |
| eps = 1e-6 | |
| p_mask_at_box = (p_intersect[..., 0] >= (min_x - eps)) * \ | |
| (p_intersect[..., 0] <= (max_x + eps)) * \ | |
| (p_intersect[..., 1] >= (min_y - eps)) * \ | |
| (p_intersect[..., 1] <= (max_y + eps)) * \ | |
| (p_intersect[..., 2] >= (min_z - eps)) * \ | |
| (p_intersect[..., 2] <= (max_z + eps)) | |
| # obtain the intersections of rays which intersect exactly twice | |
| mask_at_box = p_mask_at_box.sum(-1) == 2 | |
| p_intervals = p_intersect[mask_at_box][p_mask_at_box[mask_at_box]].reshape( | |
| -1, 2, 3) | |
| # calculate the step of intersections | |
| ray_o = ray_o[mask_at_box] | |
| ray_d = ray_d[mask_at_box] | |
| norm_ray = np.linalg.norm(ray_d, axis=1) | |
| d0 = np.linalg.norm(p_intervals[:, 0] - ray_o, axis=1) / norm_ray | |
| d1 = np.linalg.norm(p_intervals[:, 1] - ray_o, axis=1) / norm_ray | |
| near = np.minimum(d0, d1) | |
| far = np.maximum(d0, d1) | |
| return near, far, mask_at_box | |
| def sample_ray_h36m(img, msk, K, R, T, bounds, nrays, training = True): | |
| H, W = img.shape[:2] | |
| K[2,2]=1 | |
| ray_o, ray_d = get_rays(H, W, K, R, T) # world coordinate | |
| pose = np.concatenate([R, T], axis=1) | |
| bound_mask = get_bound_2d_mask(bounds, K, pose, H, W) # 可视化bound mask | |
| # # bound_mask [512,512] | |
| # # save bound mask as image | |
| # bound_mask = bound_mask.astype(np.uint8) | |
| # bound_mask = bound_mask * 255 | |
| # bound_mask = Image.fromarray(bound_mask) | |
| # msk_image=Image.fromarray(msk) | |
| # bound_mask.save('bound_mask.png') | |
| # msk_image.save('msk.png') | |
| img[bound_mask != 1] = 0 | |
| #msk = msk * bound_mask | |
| if training: | |
| nsampled_rays = 0 | |
| # face_sample_ratio = cfg.face_sample_ratio | |
| # body_sample_ratio = cfg.body_sample_ratio | |
| body_sample_ratio = 0.8 | |
| ray_o_list = [] | |
| ray_d_list = [] | |
| rgb_list = [] | |
| body_mask_list = [] | |
| near_list = [] | |
| far_list = [] | |
| coord_list = [] | |
| mask_at_box_list = [] | |
| while nsampled_rays < nrays: | |
| n_body = int((nrays - nsampled_rays) * body_sample_ratio) | |
| n_rand = (nrays - nsampled_rays) - n_body | |
| # sample rays on body | |
| coord_body = np.argwhere(msk > 0) | |
| coord_body = coord_body[np.random.randint(0, len(coord_body)-1, n_body)] | |
| # sample rays in the bound mask | |
| coord = np.argwhere(bound_mask > 0) | |
| coord = coord[np.random.randint(0, len(coord), n_rand)] | |
| coord = np.concatenate([coord_body, coord], axis=0) | |
| ray_o_ = ray_o[coord[:, 0], coord[:, 1]] | |
| ray_d_ = ray_d[coord[:, 0], coord[:, 1]] | |
| rgb_ = img[coord[:, 0], coord[:, 1]] | |
| body_mask_ = msk[coord[:, 0], coord[:, 1]] | |
| near_, far_, mask_at_box = get_near_far(bounds, ray_o_, ray_d_) | |
| ray_o_list.append(ray_o_[mask_at_box]) | |
| ray_d_list.append(ray_d_[mask_at_box]) | |
| rgb_list.append(rgb_[mask_at_box]) | |
| body_mask_list.append(body_mask_[mask_at_box]) | |
| near_list.append(near_) | |
| far_list.append(far_) | |
| coord_list.append(coord[mask_at_box]) | |
| mask_at_box_list.append(mask_at_box[mask_at_box]) | |
| nsampled_rays += len(near_) | |
| ray_o = np.concatenate(ray_o_list).astype(np.float32) | |
| ray_d = np.concatenate(ray_d_list).astype(np.float32) | |
| rgb = np.concatenate(rgb_list).astype(np.float32) | |
| body_mask = (np.concatenate(body_mask_list) > 0).astype(np.float32) | |
| near = np.concatenate(near_list).astype(np.float32) | |
| far = np.concatenate(far_list).astype(np.float32) | |
| coord = np.concatenate(coord_list) | |
| mask_at_box = np.concatenate(mask_at_box_list) | |
| else: | |
| rgb = img.reshape(-1, 3).astype(np.float32) | |
| body_mask = msk.reshape(-1).astype(np.float32) | |
| ray_o = ray_o.reshape(-1, 3).astype(np.float32) | |
| ray_d = ray_d.reshape(-1, 3).astype(np.float32) | |
| near, far, mask_at_box = get_near_far(bounds, ray_o, ray_d) | |
| mask_at_box = np.logical_and(mask_at_box > 0, body_mask > 0) | |
| near = near.astype(np.float32) | |
| far = far.astype(np.float32) | |
| rgb = rgb[mask_at_box] | |
| body_mask = body_mask[mask_at_box] | |
| ray_o = ray_o[mask_at_box] | |
| ray_d = ray_d[mask_at_box] | |
| coord = np.argwhere(mask_at_box.reshape(H, W) == 1) | |
| return rgb, body_mask, ray_o, ray_d, near, far, coord, mask_at_box | |
| def raw2outputs(raw, z_vals, rays_d, white_bkgd=False): | |
| """Transforms model's predictions to semantically meaningful values. | |
| Args: | |
| raw: [num_rays, num_samples along ray, 4]. Prediction from model. | |
| z_vals: [num_rays, num_samples along ray]. Integration time. | |
| rays_d: [num_rays, 3]. Direction of each ray. | |
| Returns: | |
| rgb_map: [num_rays, 3]. Estimated RGB color of a ray. | |
| disp_map: [num_rays]. Disparity map. Inverse of depth map. | |
| acc_map: [num_rays]. Sum of weights along each ray. | |
| weights: [num_rays, num_samples]. Weights assigned to each sampled color. | |
| depth_map: [num_rays]. Estimated distance to object. | |
| """ | |
| raw2alpha = lambda raw, dists, act_fn=F.relu: 1.-torch.exp(-act_fn(raw)*dists) | |
| dists = z_vals[...,1:] - z_vals[...,:-1] | |
| dists = torch.cat([dists, torch.Tensor([1e10]).expand(dists[...,:1].shape).to(z_vals.device)], -1) # [N_rays, N_samples] | |
| dists = dists * torch.norm(rays_d[...,None,:], dim=-1) | |
| rgb = raw[...,:3] # [N_rays, N_samples, 3]A | |
| noise = 0. | |
| alpha = raw2alpha(raw[...,3] + noise, dists) # [N_rays, N_samples] | |
| # weights = alpha * tf.math.cumprod(1.-alpha + 1e-10, -1, exclusive=True) | |
| weights = alpha * torch.cumprod(torch.cat([torch.ones((alpha.shape[0], 1)).to(z_vals.device), 1.-alpha + 1e-10], -1), -1)[:, :-1] #后面的cumprod是累乘函数,是求Ti这个积分项 | |
| rgb_map = torch.sum(weights[...,None] * rgb, -2) # [N_rays, 3] C and c | |
| depth_map = torch.sum(weights * z_vals, -1) | |
| disp_map = 1./torch.max(1e-10 * torch.ones_like(depth_map).to(z_vals.device), depth_map / torch.sum(weights, -1)) | |
| acc_map = torch.sum(weights, -1) | |
| if white_bkgd: | |
| rgb_map = rgb_map + (1.-acc_map[...,None]) | |
| return rgb_map, disp_map, acc_map, weights, depth_map | |
| def get_wsampling_points(ray_o, ray_d, near, far): | |
| """ | |
| sample pts on rays | |
| """ | |
| N_samples=64 | |
| # calculate the steps for each ray | |
| t_vals = torch.linspace(0., 1., steps=N_samples) | |
| z_vals = near[..., None] * (1. - t_vals) + far[..., None] * t_vals | |
| # get intervals between samples | |
| mids = .5 * (z_vals[..., 1:] + z_vals[..., :-1]) | |
| upper = torch.cat([mids, z_vals[..., -1:]], -1) | |
| lower = torch.cat([z_vals[..., :1], mids], -1) | |
| # stratified samples in those intervals | |
| t_rand = torch.rand(z_vals.shape) | |
| z_vals = lower + (upper - lower) * t_rand | |
| pts = ray_o[ :, None] + ray_d[ :, None] * z_vals[..., None] | |
| return pts, z_vals | |