import torch import os import shutil import subprocess import gradio as gr import json import tempfile from huggingface_hub import snapshot_download import soundfile as sf import tempfile from datetime import datetime is_shared_ui = True if "fffiloni/Meigen-MultiTalk" in os.environ['SPACE_ID'] else False is_gpu_associated = torch.cuda.is_available() def trim_audio_to_5s_temp(audio_path, sample_rate=16000): max_duration_sec = 5 audio, sr = sf.read(audio_path) if sr != sample_rate: sample_rate = sr max_samples = max_duration_sec * sample_rate if len(audio) > max_samples: audio = audio[:max_samples] timestamp = datetime.now().strftime("%Y%m%d%H%M%S%f") base_name = os.path.splitext(os.path.basename(audio_path))[0] temp_filename = f"{base_name}_trimmed_{timestamp}.wav" temp_path = os.path.join(tempfile.gettempdir(), temp_filename) sf.write(temp_path, audio, samplerate=sample_rate) return temp_path if is_gpu_associated: num_gpus = torch.cuda.device_count() print(f"GPU AVAILABLE: {num_gpus}") if not is_shared_ui and is_gpu_associated: # Download All Required Models using `snapshot_download` # Download Wan2.1-I2V-14B-480P model wan_model_path = snapshot_download( repo_id="Wan-AI/Wan2.1-I2V-14B-480P", local_dir="./weights/Wan2.1-I2V-14B-480P", #local_dir_use_symlinks=False ) # Download Chinese wav2vec2 model wav2vec_path = snapshot_download( repo_id="TencentGameMate/chinese-wav2vec2-base", local_dir="./weights/chinese-wav2vec2-base", #local_dir_use_symlinks=False ) # Download MeiGen MultiTalk weights multitalk_path = snapshot_download( repo_id="MeiGen-AI/MeiGen-MultiTalk", local_dir="./weights/MeiGen-MultiTalk", #local_dir_use_symlinks=False ) # Define paths base_model_dir = "./weights/Wan2.1-I2V-14B-480P" multitalk_dir = "./weights/MeiGen-MultiTalk" # File to rename original_index = os.path.join(base_model_dir, "diffusion_pytorch_model.safetensors.index.json") backup_index = os.path.join(base_model_dir, "diffusion_pytorch_model.safetensors.index.json_old") # Rename the original index file if os.path.exists(original_index): os.rename(original_index, backup_index) print("Renamed original index file to .json_old") # Copy updated index file from MultiTalk shutil.copy2( os.path.join(multitalk_dir, "diffusion_pytorch_model.safetensors.index.json"), base_model_dir ) # Copy MultiTalk model weights shutil.copy2( os.path.join(multitalk_dir, "multitalk.safetensors"), base_model_dir ) print("Copied MultiTalk files into base model directory.") if not is_shared_ui: # Check if CUDA-compatible GPU is available if torch.cuda.is_available(): # Get current GPU name gpu_name = torch.cuda.get_device_name(torch.cuda.current_device()) print(f"Current GPU: {gpu_name}") # Enforce GPU requirement if "A100" not in gpu_name and "L4" not in gpu_name: #raise RuntimeError(f"This notebook requires an A100 or L4 GPU. Found: {gpu_name}") print(f"This notebook requires an A100 or L4 GPU. Found: {gpu_name}") elif "L4" in gpu_name: print("Warning: L4 or L40S is supported, but A100 is recommended for faster inference.") else: #raise RuntimeError("No CUDA-compatible GPU found. An A100, L4 or L40S GPU is required.") print("No CUDA-compatible GPU found. An A100, L4 or L40S GPU is required.") GPU_TO_VRAM_PARAMS = { "NVIDIA A100": 11000000000, "NVIDIA A100-SXM4-40GB": 11000000000, "NVIDIA A100-SXM4-80GB": 22000000000, "NVIDIA L4": 5000000000, "NVIDIA L40S": 11000000000 } USED_VRAM_PARAMS = GPU_TO_VRAM_PARAMS[gpu_name] print("Using", USED_VRAM_PARAMS, "for num_persistent_param_in_dit") def create_temp_input_json(prompt: str, cond_image_path: str, cond_audio_path_spk1: str, cond_audio_path_spk2: str) -> str: """ Create a temporary JSON file with the user-provided prompt, image, and audio paths. Returns the path to the temporary JSON file. """ # Structure based on your original JSON format if cond_audio_path_spk2 is None: data = { "prompt": prompt, "cond_image": cond_image_path, "cond_audio": { "person1": cond_audio_path_spk1 } } else: data = { "prompt": prompt, "cond_image": cond_image_path, "audio_type": "para", "cond_audio": { "person1": cond_audio_path_spk1, "person2": cond_audio_path_spk2 } } # Create a temp file temp_json = tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode='w', encoding='utf-8') json.dump(data, temp_json, indent=4) temp_json_path = temp_json.name temp_json.close() print(f"Temporary input JSON saved to: {temp_json_path}") return temp_json_path def infer(prompt, cond_image_path, cond_audio_path_spk1, cond_audio_path_spk2, sample_steps): timestamp = datetime.now().strftime("%Y%m%d%H%M%S%f") result_filename = f"meigen_multitalk_result_{sample_steps}_steps_{timestamp}" temp_files_to_cleanup = [] if is_shared_ui: trimmed_audio_path_spk1 = trim_audio_to_5s_temp(cond_audio_path_spk1) if trimmed_audio_path_spk1 != cond_audio_path_spk1: cond_audio_path_spk1 = trimmed_audio_path_spk1 temp_files_to_cleanup.append(trimmed_audio_path_spk1) if cond_audio_path_spk2 is not None: trimmed_audio_path_spk2 = trim_audio_to_5s_temp(cond_audio_path_spk2) if trimmed_audio_path_spk2 != cond_audio_path_spk2: cond_audio_path_spk2 = trimmed_audio_path_spk2 temp_files_to_cleanup.append(trimmed_audio_path_spk2) # Prepare input JSON input_json_path = create_temp_input_json(prompt, cond_image_path, cond_audio_path_spk1, cond_audio_path_spk2) temp_files_to_cleanup.append(input_json_path) # Base args common_args = [ "--ckpt_dir", "weights/Wan2.1-I2V-14B-480P", "--wav2vec_dir", "weights/chinese-wav2vec2-base", "--input_json", input_json_path, "--sample_steps", str(sample_steps), "--mode", "streaming", "--use_teacache", "--save_file", result_filename ] if num_gpus > 1: cmd = [ "torchrun", f"--nproc_per_node={num_gpus}", "--standalone", "generate_multitalk.py", #"--num_persistent_param_in_dit", "22000000000", # On 4xL40S "--dit_fsdp", "--t5_fsdp", "--ulysses_size", str(num_gpus), ] + common_args else: cmd = [ "python3", "generate_multitalk.py", "--num_persistent_param_in_dit", str(USED_VRAM_PARAMS), ] + common_args try: # Log to file and stream with open("inference.log", "w") as log_file: process = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True, bufsize=1 ) for line in process.stdout: print(line, end="") log_file.write(line) process.wait() if process.returncode != 0: raise RuntimeError("Inference failed. Check inference.log for details.") return f"{result_filename}.mp4" finally: for f in temp_files_to_cleanup: try: if os.path.exists(f): os.remove(f) print(f"[INFO] Removed temporary file: {f}") except Exception as e: print(f"[WARNING] Could not remove {f}: {e}") def load_prerendered_examples(prompt, cond_image_path, cond_audio_path_spk1, cond_audio_path_spk2, sample_steps): output_video = None if cond_image_path == "examples/single/single1.png": output_video = "examples/results/multitalk_single_example_1.mp4" elif cond_image_path == "examples/multi/3/multi3.png": output_video = "examples/results/multitalk_multi_example_2.mp4" return output_video css = """ div#warning-duplicate { background-color: #ebf5ff; padding: 0 16px 16px; margin: 0px 0; color: #030303!important; } div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p { color: #0f4592!important; } div#warning-duplicate strong { color: #0f4592; } p.actions { display: flex; align-items: center; margin: 20px 0; } div#warning-duplicate .actions a { display: inline-block; margin-right: 10px; } div#warning-setgpu { background-color: #fff4eb; padding: 0 16px 16px; margin: 0px 0; color: #030303!important; } div#warning-setgpu > .gr-prose > h2, div#warning-setgpu > .gr-prose > p { color: #92220f!important; } div#warning-setgpu a, div#warning-setgpu b { color: #91230f; } div#warning-setgpu p.actions > a { display: inline-block; background: #1f1f23; border-radius: 40px; padding: 6px 24px; color: antiquewhite; text-decoration: none; font-weight: 600; font-size: 1.2em; } div#warning-ready { background-color: #ecfdf5; padding: 0 16px 16px; margin: 0px 0; color: #030303!important; } div#warning-ready > .gr-prose > h2, div#warning-ready > .gr-prose > p { color: #057857!important; } .custom-color { color: #030303 !important; } """ with gr.Blocks(title="MultiTalk Inference", css=css) as demo: gr.Markdown("## 🎤 Meigen MultiTalk Inference Demo") gr.Markdown("Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation") if is_shared_ui: gr.Markdown("Audio will be trimmed to max 5 seconds on fffiloni's shared UI. Sample steps are limited to 12. Gradio queue size is set to 4. Generating a 5 seconds video will take approximatively 20 minutes. Duplicate to skip the queue and work with longer audio inference. ") gr.HTML("""
""") with gr.Row(): with gr.Column(scale=1): prompt_input = gr.Textbox( label="Text Prompt", placeholder="Describe the scene...", ) image_input = gr.Image( type="filepath", label="Conditioning Image" ) audio_input_spk1 = gr.Audio( type="filepath", label="Conditioning Audio for speaker 1(.wav)" ) audio_input_spk2 = gr.Audio( type="filepath", label="Conditioning Audio for speaker 2(.wav) (Optional)" ) with gr.Accordion("Advanced settings", open=False): sample_steps = gr.Slider( label="sample steps", value=12, minimum=2, maximum=25, step=1, interactive=False if is_shared_ui else True ) submit_btn = gr.Button("Generate", interactive=False if is_shared_ui else True) with gr.Column(scale=3): if is_shared_ui: top_description = gr.HTML(f''' ''', elem_id="warning-duplicate") else: if(is_gpu_associated): top_description = gr.HTML(f'''You will be billed by the minute from when you activated the GPU until when it is turned off.
There's only one step left before you can properly play with this demo: attribute a GPU to it (via the Settings tab) and run the app below. You will be billed by the minute from when you activate the GPU until when it is turned off.