MangaNinja-demo / inference /manganinjia_pipeline.py
fffiloni's picture
Migrated from GitHub
459fa69 verified
from typing import Any, Dict, Union
import torchvision.transforms as transforms
import torch
from torch.utils.data import DataLoader, TensorDataset
import numpy as np
from tqdm.auto import tqdm
from PIL import Image
from diffusers import (
DiffusionPipeline,
ControlNetModel,
DDIMScheduler,
AutoencoderKL,
)
from diffusers.utils import BaseOutput
from transformers import CLIPTextModel, CLIPTokenizer
from transformers import CLIPImageProcessor
from transformers import CLIPVisionModelWithProjection
from utils.image_util import resize_max_res,chw2hwc
from src.point_network import PointNet
from src.models.mutual_self_attention_multi_scale import ReferenceAttentionControl
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.refunet_2d_condition import RefUNet2DConditionModel
class MangaNinjiaPipelineOutput(BaseOutput):
img_np: np.ndarray
img_pil: Image.Image
to_save_dict: dict
class MangaNinjiaPipeline(DiffusionPipeline):
rgb_latent_scale_factor = 0.18215
def __init__(self,
reference_unet: RefUNet2DConditionModel,
controlnet: ControlNetModel,
denoising_unet: UNet2DConditionModel,
vae: AutoencoderKL,
refnet_tokenizer: CLIPTokenizer,
refnet_text_encoder: CLIPTextModel,
refnet_image_encoder: CLIPVisionModelWithProjection,
controlnet_tokenizer: CLIPTokenizer,
controlnet_text_encoder: CLIPTextModel,
controlnet_image_encoder: CLIPVisionModelWithProjection,
scheduler: DDIMScheduler,
point_net: PointNet
):
super().__init__()
self.register_modules(
reference_unet=reference_unet,
controlnet=controlnet,
denoising_unet=denoising_unet,
vae=vae,
refnet_tokenizer=refnet_tokenizer,
refnet_text_encoder=refnet_text_encoder,
refnet_image_encoder=refnet_image_encoder,
controlnet_tokenizer=controlnet_tokenizer,
controlnet_text_encoder=controlnet_text_encoder,
controlnet_image_encoder=controlnet_image_encoder,
point_net=point_net,
scheduler=scheduler,
)
self.empty_text_embed = None
self.clip_image_processor = CLIPImageProcessor()
@torch.no_grad()
def __call__(
self,
is_lineart: bool,
ref1: Image.Image,
raw2: Image.Image,
edit2: Image.Image,
denosing_steps: int = 20,
processing_res: int = 512,
match_input_res: bool = True,
batch_size: int = 0,
show_progress_bar: bool = True,
guidance_scale_ref: float = 7,
guidance_scale_point: float = 12,
preprocessor=None,
generator=None,
point_ref=None,
point_main=None,
) -> MangaNinjiaPipelineOutput:
device = self.device
input_size = raw2.size
point_ref=point_ref.float().to(device)
point_main=point_main.float().to(device)
def img2embeds(img, image_enc):
clip_image = self.clip_image_processor.preprocess(
img, return_tensors="pt"
).pixel_values
clip_image_embeds = image_enc(
clip_image.to(device, dtype=image_enc.dtype)
).image_embeds
encoder_hidden_states = clip_image_embeds.unsqueeze(1)
return encoder_hidden_states
if self.reference_unet:
refnet_encoder_hidden_states = img2embeds(ref1, self.refnet_image_encoder)
else:
refnet_encoder_hidden_states = None
if self.controlnet:
controlnet_encoder_hidden_states = img2embeds(ref1, self.controlnet_image_encoder)
else:
controlnet_encoder_hidden_states = None
prompt = ""
def prompt2embeds(prompt, tokenizer, text_encoder):
text_inputs = tokenizer(
prompt,
padding="do_not_pad",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(device) #[1,2]
empty_text_embed = text_encoder(text_input_ids)[0].to(self.dtype)
uncond_encoder_hidden_states = empty_text_embed.repeat((1, 1, 1))[:,0,:].unsqueeze(0)
return uncond_encoder_hidden_states
if self.reference_unet:
refnet_uncond_encoder_hidden_states = prompt2embeds(prompt, self.refnet_tokenizer, self.refnet_text_encoder)
else:
refnet_uncond_encoder_hidden_states = None
if self.controlnet:
controlnet_uncond_encoder_hidden_states = prompt2embeds(prompt, self.controlnet_tokenizer, self.controlnet_text_encoder)
else:
controlnet_uncond_encoder_hidden_states = None
do_classifier_free_guidance = guidance_scale_ref > 1.0
# adjust the input resolution.
if not match_input_res:
assert (
processing_res is not None
)," Value Error: `resize_output_back` is only valid with "
assert processing_res >= 0
assert denosing_steps >= 1
# --------------- Image Processing ------------------------
# Resize image
if processing_res > 0:
def resize_img(img):
img = resize_max_res(img, max_edge_resolution=processing_res)
return img
ref1 = resize_img(ref1)
raw2 = resize_img(raw2)
edit2 = resize_img(edit2)
# Normalize image
def normalize_img(img):
img = img.convert("RGB")
img = np.array(img)
# Normalize RGB Values.
rgb = np.transpose(img,(2,0,1))
rgb_norm = rgb / 255.0 * 2.0 - 1.0
rgb_norm = torch.from_numpy(rgb_norm).to(self.dtype)
rgb_norm = rgb_norm.to(device)
img = rgb_norm
assert img.min() >= -1.0 and img.max() <= 1.0
return img
raw2_real = raw2.convert('L')
ref1 = normalize_img(ref1)
raw2 = normalize_img(raw2)
edit2 = normalize_img(edit2)
single_rgb_dataset = TensorDataset(ref1[None], raw2[None], edit2[None])
# find the batch size
if batch_size>0:
_bs = batch_size
else:
_bs = 1
point_ref=self.point_net(point_ref)
point_main=self.point_net(point_main)
single_rgb_loader = DataLoader(single_rgb_dataset,batch_size=_bs,shuffle=False)
# classifier guidance
if do_classifier_free_guidance:
if self.reference_unet:
refnet_encoder_hidden_states = torch.cat(
[refnet_uncond_encoder_hidden_states, refnet_encoder_hidden_states,refnet_encoder_hidden_states], dim=0
)
else:
refnet_encoder_hidden_states = None
if self.controlnet:
controlnet_encoder_hidden_states = torch.cat(
[controlnet_uncond_encoder_hidden_states, controlnet_encoder_hidden_states,controlnet_encoder_hidden_states], dim=0
)
else:
controlnet_encoder_hidden_states = None
if self.reference_unet:
reference_control_writer = ReferenceAttentionControl(
self.reference_unet,
do_classifier_free_guidance=do_classifier_free_guidance,
mode="write",
batch_size=batch_size,
fusion_blocks="full",
)
reference_control_reader = ReferenceAttentionControl(
self.denoising_unet,
do_classifier_free_guidance=do_classifier_free_guidance,
mode="read",
batch_size=batch_size,
fusion_blocks="full",
)
else:
reference_control_writer = None
reference_control_reader = None
if show_progress_bar:
iterable_bar = tqdm(
single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
)
else:
iterable_bar = single_rgb_loader
assert len(iterable_bar) == 1
for batch in iterable_bar:
(ref1, raw2, edit2) = batch # here the image is still around 0-1
if is_lineart:
raw2 = raw2_real
img_pred, to_save_dict = self.single_infer(
is_lineart=is_lineart,
ref1=ref1,
raw2=raw2,
edit2=edit2,
num_inference_steps=denosing_steps,
show_pbar=show_progress_bar,
guidance_scale_ref=guidance_scale_ref,
guidance_scale_point=guidance_scale_point,
refnet_encoder_hidden_states=refnet_encoder_hidden_states,
controlnet_encoder_hidden_states=controlnet_encoder_hidden_states,
reference_control_writer=reference_control_writer,
reference_control_reader=reference_control_reader,
preprocessor=preprocessor,
generator=generator,
point_ref=point_ref,
point_main=point_main
)
for k, v in to_save_dict.items():
if k =='edge2_black':
to_save_dict[k] = Image.fromarray(
((to_save_dict['edge2_black'][:,0].squeeze().detach().cpu().numpy() + 1.) / 2 * 255).astype(np.uint8)
)
else:
try:
to_save_dict[k] = Image.fromarray(
chw2hwc(((v.squeeze().detach().cpu().numpy() + 1.) / 2 * 255).astype(np.uint8))
)
except:
import ipdb;ipdb.set_trace()
torch.cuda.empty_cache() # clear vram cache for ensembling
# ----------------- Post processing -----------------
# Convert to numpy
img_pred = img_pred.squeeze().cpu().numpy().astype(np.float32)
img_pred_np = (((img_pred + 1.) / 2.) * 255).astype(np.uint8)
img_pred_np = chw2hwc(img_pred_np)
img_pred_pil = Image.fromarray(img_pred_np)
# Resize back to original resolution
if match_input_res:
img_pred_pil = img_pred_pil.resize(input_size)
img_pred_np = np.asarray(img_pred_pil)
return MangaNinjiaPipelineOutput(
img_np=img_pred_np,
img_pil=img_pred_pil,
to_save_dict=to_save_dict
)
def __encode_empty_text(self):
"""
Encode text embedding for empty prompt
"""
prompt = ""
text_inputs = self.tokenizer(
prompt,
padding="do_not_pad",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(self.text_encoder.device) #[1,2]
# print(text_input_ids.shape)
self.empty_text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype) #[1,2,1024]
def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
# get the original timestep using init_timestep
if denoising_start is None:
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
else:
t_start = 0
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
# Strength is irrelevant if we directly request a timestep to start at;
# that is, strength is determined by the denoising_start instead.
if denoising_start is not None:
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (denoising_start * self.scheduler.config.num_train_timesteps)
)
)
timesteps = list(filter(lambda ts: ts < discrete_timestep_cutoff, timesteps))
return torch.tensor(timesteps), len(timesteps)
return timesteps, num_inference_steps - t_start
@torch.no_grad()
def single_infer(
self,
is_lineart: bool,
ref1: torch.Tensor,
raw2: torch.Tensor,
edit2: torch.Tensor,
num_inference_steps: int,
show_pbar: bool,
guidance_scale_ref: float,
guidance_scale_point: float,
refnet_encoder_hidden_states: torch.Tensor,
controlnet_encoder_hidden_states: torch.Tensor,
reference_control_writer: ReferenceAttentionControl,
reference_control_reader: ReferenceAttentionControl,
preprocessor,
generator,
point_ref,
point_main
):
do_classifier_free_guidance = guidance_scale_ref > 1.0
device = ref1.device
to_save_dict = {
'ref1': ref1,
}
# Set timesteps: inherit from the diffuison pipeline
self.scheduler.set_timesteps(num_inference_steps, device=device) # here the numbers of the steps is only 10.
timesteps = self.scheduler.timesteps # [T]
# encode image
ref1_latents = self.encode_RGB(ref1, generator=generator) # 1/8 Resolution with a channel nums of 4.
edge2_src = raw2
timesteps_add,_=self.get_timesteps(num_inference_steps, 1.0, device, denoising_start=None)
if is_lineart is not True:
edge2 = preprocessor(edge2_src)
else:
gray_image_np = np.array(edge2_src)
gray_image_np = gray_image_np / 255.0
edge2 = torch.from_numpy(gray_image_np.astype(np.float32)).unsqueeze(0).unsqueeze(0).cuda()
edge2[edge2<=0.24]=0
edge2_black = edge2.repeat(1, 3, 1, 1) * 2 - 1.
to_save_dict['edge2_black']=edge2_black
edge2 = edge2.repeat(1, 3, 1, 1) * 2 - 1.
to_save_dict['edge2'] = (1-((edge2+1.)/2))*2-1
noisy_edit2_latents = torch.randn(
ref1_latents.shape, device=device, dtype=self.dtype
) # [B, 4, H/8, W/8]
# Denoising loop
if show_pbar:
iterable = tqdm(
enumerate(timesteps),
total=len(timesteps),
leave=False,
desc=" " * 4 + "Diffusion denoising",
)
else:
iterable = enumerate(timesteps)
for i, t in iterable:
refnet_input = ref1_latents
controlnet_inputs = (noisy_edit2_latents, edge2)
unet_input = torch.cat([noisy_edit2_latents], dim=1)
if i == 0:
if self.reference_unet:
self.reference_unet(
refnet_input.repeat(
(3 if do_classifier_free_guidance else 1), 1, 1, 1
),
torch.zeros_like(t),
encoder_hidden_states=refnet_encoder_hidden_states,
return_dict=False,
)
reference_control_reader.update(reference_control_writer,point_embedding_ref=point_ref,point_embedding_main=point_main)#size不对
if self.controlnet:
noisy_latents, controlnet_cond = controlnet_inputs
down_block_res_samples, mid_block_res_sample = self.controlnet(
noisy_latents.repeat(
(3 if do_classifier_free_guidance else 1), 1, 1, 1
),
t,
encoder_hidden_states=controlnet_encoder_hidden_states,
controlnet_cond=controlnet_cond.repeat(
(3 if do_classifier_free_guidance else 1), 1, 1, 1
),
return_dict=False,
)
else:
down_block_res_samples, mid_block_res_sample = None, None
# predict the noise residual
noise_pred = self.denoising_unet(
unet_input.repeat(
(3 if do_classifier_free_guidance else 1), 1, 1, 1
).to(dtype=self.denoising_unet.dtype),
t,
encoder_hidden_states=refnet_encoder_hidden_states,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
).sample # [B, 4, h, w]
noise_pred_uncond, noise_pred_ref, noise_pred_point = noise_pred.chunk(3)
noise_pred_1 = noise_pred_uncond + guidance_scale_ref * (
noise_pred_ref - noise_pred_uncond
)
noise_pred_2 = noise_pred_ref + guidance_scale_point * (
noise_pred_point - noise_pred_ref
)
noise_pred=(noise_pred_1+noise_pred_2)/2
noisy_edit2_latents = self.scheduler.step(noise_pred, t, noisy_edit2_latents).prev_sample
reference_control_reader.clear()
reference_control_writer.clear()
torch.cuda.empty_cache()
# clip prediction
edit2 = self.decode_RGB(noisy_edit2_latents)
edit2 = torch.clip(edit2, -1.0, 1.0)
return edit2, to_save_dict
def encode_RGB(self, rgb_in: torch.Tensor, generator) -> torch.Tensor:
"""
Encode RGB image into latent.
Args:
rgb_in (`torch.Tensor`):
Input RGB image to be encoded.
Returns:
`torch.Tensor`: Image latent.
"""
# generator = None
rgb_latent = self.vae.encode(rgb_in).latent_dist.sample(generator)
rgb_latent = rgb_latent * self.rgb_latent_scale_factor
return rgb_latent
def decode_RGB(self, rgb_latent: torch.Tensor) -> torch.Tensor:
"""
Decode depth latent into depth map.
Args:
rgb_latent (`torch.Tensor`):
Depth latent to be decoded.
Returns:
`torch.Tensor`: Decoded depth map.
"""
rgb_latent = rgb_latent / self.rgb_latent_scale_factor
rgb_out = self.vae.decode(rgb_latent, return_dict=False)[0]
return rgb_out