Spaces:
Running
on
Zero
Running
on
Zero
Update hf_gradio_app.py
Browse files- hf_gradio_app.py +24 -22
hf_gradio_app.py
CHANGED
@@ -73,34 +73,31 @@ with torch.inference_mode():
|
|
73 |
pipeline = VideoPipeline(vae=vae, reference_net=reference_net, diffusion_net=diffusion_net, scheduler=noise_scheduler, image_proj=image_proj)
|
74 |
pipeline.to(device=device, dtype=weight_dtype)
|
75 |
|
76 |
-
def process_audio(file_path):
|
77 |
-
#
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
print(f"Processed audio saved at: {output_path}")
|
93 |
-
|
94 |
-
# Return the path for reference (optional)
|
95 |
-
return output_path
|
96 |
|
97 |
@torch.inference_mode()
|
98 |
def generate(input_video, input_audio, seed, progress=gr.Progress(track_tqdm=True)):
|
99 |
|
100 |
is_shared_ui = True if "fffiloni/MEMO" in os.environ['SPACE_ID'] else False
|
101 |
-
|
102 |
if is_shared_ui:
|
103 |
-
|
|
|
104 |
print(f"Processed file was stored temporarily at: {input_audio}")
|
105 |
|
106 |
resolution = 512
|
@@ -125,6 +122,11 @@ def generate(input_video, input_audio, seed, progress=gr.Progress(track_tqdm=Tru
|
|
125 |
os.makedirs(cache_dir, exist_ok=True)
|
126 |
input_audio = resample_audio(input_audio, os.path.join(cache_dir, f"{os.path.basename(input_audio).split('.')[0]}-16k.wav"))
|
127 |
|
|
|
|
|
|
|
|
|
|
|
128 |
audio_emb, audio_length = preprocess_audio(
|
129 |
wav_path=input_audio,
|
130 |
num_generated_frames_per_clip=num_generated_frames_per_clip,
|
|
|
73 |
pipeline = VideoPipeline(vae=vae, reference_net=reference_net, diffusion_net=diffusion_net, scheduler=noise_scheduler, image_proj=image_proj)
|
74 |
pipeline.to(device=device, dtype=weight_dtype)
|
75 |
|
76 |
+
def process_audio(file_path, temp_dir):
|
77 |
+
# Load the audio file
|
78 |
+
audio = AudioSegment.from_file(file_path)
|
79 |
+
|
80 |
+
# Check and cut the audio if longer than 4 seconds
|
81 |
+
max_duration = 4 * 1000 # 4 seconds in milliseconds
|
82 |
+
if len(audio) > max_duration:
|
83 |
+
audio = audio[:max_duration]
|
84 |
+
|
85 |
+
# Save the processed audio in the temporary directory
|
86 |
+
output_path = os.path.join(temp_dir, "trimmed_audio.wav")
|
87 |
+
audio.export(output_path, format="wav")
|
88 |
+
|
89 |
+
# Return the path to the trimmed file
|
90 |
+
print(f"Processed audio saved at: {output_path}")
|
91 |
+
return output_path
|
|
|
|
|
|
|
|
|
92 |
|
93 |
@torch.inference_mode()
|
94 |
def generate(input_video, input_audio, seed, progress=gr.Progress(track_tqdm=True)):
|
95 |
|
96 |
is_shared_ui = True if "fffiloni/MEMO" in os.environ['SPACE_ID'] else False
|
97 |
+
temp_dir = None
|
98 |
if is_shared_ui:
|
99 |
+
temp_dir = tempfile.mkdtemp()
|
100 |
+
input_audio = process_audio(input_audio, temp_dir)
|
101 |
print(f"Processed file was stored temporarily at: {input_audio}")
|
102 |
|
103 |
resolution = 512
|
|
|
122 |
os.makedirs(cache_dir, exist_ok=True)
|
123 |
input_audio = resample_audio(input_audio, os.path.join(cache_dir, f"{os.path.basename(input_audio).split('.')[0]}-16k.wav"))
|
124 |
|
125 |
+
# Clean up the temporary directory
|
126 |
+
if os.path.exists(temp_dir):
|
127 |
+
shutil.rmtree(temp_dir)
|
128 |
+
print(f"Temporary directory {temp_dir} deleted.")
|
129 |
+
|
130 |
audio_emb, audio_length = preprocess_audio(
|
131 |
wav_path=input_audio,
|
132 |
num_generated_frames_per_clip=num_generated_frames_per_clip,
|