MEMO / memo /utils /audio_utils.py
fffiloni's picture
Migrated from GitHub
1a9b87d verified
raw
history blame
11.1 kB
import logging
import math
import os
import subprocess
from io import BytesIO
import librosa
import numpy as np
import torch
import torch.nn.functional as F
import torchaudio
from audio_separator.separator import Separator
from einops import rearrange
from funasr.download.download_from_hub import download_model
from funasr.models.emotion2vec.model import Emotion2vec
from transformers import Wav2Vec2FeatureExtractor
from memo.models.emotion_classifier import AudioEmotionClassifierModel
from memo.models.wav2vec import Wav2VecModel
logger = logging.getLogger(__name__)
def resample_audio(input_audio_file: str, output_audio_file: str, sample_rate: int = 16000):
p = subprocess.Popen(
[
"ffmpeg",
"-y",
"-v",
"error",
"-i",
input_audio_file,
"-ar",
str(sample_rate),
output_audio_file,
]
)
ret = p.wait()
assert ret == 0, f"Resample audio failed! Input: {input_audio_file}, Output: {output_audio_file}"
return output_audio_file
@torch.no_grad()
def preprocess_audio(
wav_path: str,
fps: int,
wav2vec_model: str,
vocal_separator_model: str = None,
cache_dir: str = "",
device: str = "cuda",
sample_rate: int = 16000,
num_generated_frames_per_clip: int = -1,
):
"""
Preprocess the audio file and extract audio embeddings.
Args:
wav_path (str): Path to the input audio file.
fps (int): Frames per second for the audio processing.
wav2vec_model (str): Path to the pretrained Wav2Vec model.
vocal_separator_model (str, optional): Path to the vocal separator model. Defaults to None.
cache_dir (str, optional): Directory for cached files. Defaults to "".
device (str, optional): Device to use ('cuda' or 'cpu'). Defaults to "cuda".
sample_rate (int, optional): Sampling rate for audio processing. Defaults to 16000.
num_generated_frames_per_clip (int, optional): Number of generated frames per clip for padding. Defaults to -1.
Returns:
tuple: A tuple containing:
- audio_emb (torch.Tensor): The processed audio embeddings.
- audio_length (int): The length of the audio in frames.
"""
# Initialize Wav2Vec model
audio_encoder = Wav2VecModel.from_pretrained(wav2vec_model).to(device=device)
audio_encoder.feature_extractor._freeze_parameters()
# Initialize Wav2Vec feature extractor
wav2vec_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(wav2vec_model)
# Initialize vocal separator if provided
vocal_separator = None
if vocal_separator_model is not None:
os.makedirs(cache_dir, exist_ok=True)
vocal_separator = Separator(
output_dir=cache_dir,
output_single_stem="vocals",
model_file_dir=os.path.dirname(vocal_separator_model),
)
vocal_separator.load_model(os.path.basename(vocal_separator_model))
assert vocal_separator.model_instance is not None, "Failed to load audio separation model."
# Perform vocal separation if applicable
if vocal_separator is not None:
outputs = vocal_separator.separate(wav_path)
assert len(outputs) > 0, "Audio separation failed."
vocal_audio_file = outputs[0]
vocal_audio_name, _ = os.path.splitext(vocal_audio_file)
vocal_audio_file = os.path.join(vocal_separator.output_dir, vocal_audio_file)
vocal_audio_file = resample_audio(
vocal_audio_file,
os.path.join(vocal_separator.output_dir, f"{vocal_audio_name}-16k.wav"),
sample_rate,
)
else:
vocal_audio_file = wav_path
# Load audio and extract Wav2Vec features
speech_array, sampling_rate = librosa.load(vocal_audio_file, sr=sample_rate)
audio_feature = np.squeeze(wav2vec_feature_extractor(speech_array, sampling_rate=sampling_rate).input_values)
audio_length = math.ceil(len(audio_feature) / sample_rate * fps)
audio_feature = torch.from_numpy(audio_feature).float().to(device=device)
# Pad audio features to match the required length
if num_generated_frames_per_clip > 0 and audio_length % num_generated_frames_per_clip != 0:
audio_feature = torch.nn.functional.pad(
audio_feature,
(
0,
(num_generated_frames_per_clip - audio_length % num_generated_frames_per_clip) * (sample_rate // fps),
),
"constant",
0.0,
)
audio_length += num_generated_frames_per_clip - audio_length % num_generated_frames_per_clip
audio_feature = audio_feature.unsqueeze(0)
# Extract audio embeddings
with torch.no_grad():
embeddings = audio_encoder(audio_feature, seq_len=audio_length, output_hidden_states=True)
assert len(embeddings) > 0, "Failed to extract audio embeddings."
audio_emb = torch.stack(embeddings.hidden_states[1:], dim=1).squeeze(0)
audio_emb = rearrange(audio_emb, "b s d -> s b d")
# Concatenate embeddings with surrounding frames
audio_emb = audio_emb.cpu().detach()
concatenated_tensors = []
for i in range(audio_emb.shape[0]):
vectors_to_concat = [audio_emb[max(min(i + j, audio_emb.shape[0] - 1), 0)] for j in range(-2, 3)]
concatenated_tensors.append(torch.stack(vectors_to_concat, dim=0))
audio_emb = torch.stack(concatenated_tensors, dim=0)
if vocal_separator is not None:
del vocal_separator
del audio_encoder
return audio_emb, audio_length
@torch.no_grad()
def extract_audio_emotion_labels(
model: str,
wav_path: str,
emotion2vec_model: str,
audio_length: int,
sample_rate: int = 16000,
device: str = "cuda",
):
"""
Extract audio emotion labels from an audio file.
Args:
model (str): Path to the MEMO model.
wav_path (str): Path to the input audio file.
emotion2vec_model (str): Path to the Emotion2vec model.
audio_length (int): Target length for interpolated emotion labels.
sample_rate (int, optional): Sample rate of the input audio. Default is 16000.
device (str, optional): Device to use ('cuda' or 'cpu'). Default is "cuda".
Returns:
torch.Tensor: Processed emotion labels with shape matching the target audio length.
"""
# Load models
logger.info("Downloading emotion2vec models from modelscope")
kwargs = download_model(model=emotion2vec_model)
kwargs["tokenizer"] = None
kwargs["input_size"] = None
kwargs["frontend"] = None
emotion_model = Emotion2vec(**kwargs, vocab_size=-1).to(device)
init_param = kwargs.get("init_param", None)
load_emotion2vec_model(
model=emotion_model,
path=init_param,
ignore_init_mismatch=kwargs.get("ignore_init_mismatch", True),
oss_bucket=kwargs.get("oss_bucket", None),
scope_map=kwargs.get("scope_map", []),
)
emotion_model.eval()
classifier = AudioEmotionClassifierModel.from_pretrained(
model,
subfolder="misc/audio_emotion_classifier",
use_safetensors=True,
).to(device=device)
classifier.eval()
# Load audio
wav, sr = torchaudio.load(wav_path)
if sr != sample_rate:
wav = torchaudio.functional.resample(wav, sr, sample_rate)
wav = wav.view(-1) if wav.dim() == 1 else wav[0].view(-1)
emotion_labels = torch.full_like(wav, -1, dtype=torch.int32)
def extract_emotion(x):
"""
Extract emotion for a given audio segment.
"""
x = x.to(device=device)
x = F.layer_norm(x, x.shape).view(1, -1)
feats = emotion_model.extract_features(x)
x = feats["x"].mean(dim=1) # average across frames
x = classifier(x)
x = torch.softmax(x, dim=-1)
return torch.argmax(x, dim=-1)
# Process start, middle, and end segments
start_label = extract_emotion(wav[: sample_rate * 2]).item()
emotion_labels[:sample_rate] = start_label
for i in range(sample_rate, len(wav) - sample_rate, sample_rate):
mid_wav = wav[i - sample_rate : i - sample_rate + sample_rate * 3]
mid_label = extract_emotion(mid_wav).item()
emotion_labels[i : i + sample_rate] = mid_label
end_label = extract_emotion(wav[-sample_rate * 2 :]).item()
emotion_labels[-sample_rate:] = end_label
# Interpolate to match the target audio length
emotion_labels = emotion_labels.unsqueeze(0).unsqueeze(0).float()
emotion_labels = F.interpolate(emotion_labels, size=audio_length, mode="nearest").squeeze(0).squeeze(0).int()
num_emotion_classes = classifier.num_emotion_classes
del emotion_model
del classifier
return emotion_labels, num_emotion_classes
def load_emotion2vec_model(
path: str,
model: torch.nn.Module,
ignore_init_mismatch: bool = True,
map_location: str = "cpu",
oss_bucket=None,
scope_map=[],
):
obj = model
dst_state = obj.state_dict()
logger.debug(f"Emotion2vec checkpoint: {path}")
if oss_bucket is None:
src_state = torch.load(path, map_location=map_location)
else:
buffer = BytesIO(oss_bucket.get_object(path).read())
src_state = torch.load(buffer, map_location=map_location)
src_state = src_state["state_dict"] if "state_dict" in src_state else src_state
src_state = src_state["model_state_dict"] if "model_state_dict" in src_state else src_state
src_state = src_state["model"] if "model" in src_state else src_state
if isinstance(scope_map, str):
scope_map = scope_map.split(",")
scope_map += ["module.", "None"]
for k in dst_state.keys():
k_src = k
if scope_map is not None:
src_prefix = ""
dst_prefix = ""
for i in range(0, len(scope_map), 2):
src_prefix = scope_map[i] if scope_map[i].lower() != "none" else ""
dst_prefix = scope_map[i + 1] if scope_map[i + 1].lower() != "none" else ""
if dst_prefix == "" and (src_prefix + k) in src_state.keys():
k_src = src_prefix + k
if not k_src.startswith("module."):
logger.debug(f"init param, map: {k} from {k_src} in ckpt")
elif k.startswith(dst_prefix) and k.replace(dst_prefix, src_prefix, 1) in src_state.keys():
k_src = k.replace(dst_prefix, src_prefix, 1)
if not k_src.startswith("module."):
logger.debug(f"init param, map: {k} from {k_src} in ckpt")
if k_src in src_state.keys():
if ignore_init_mismatch and dst_state[k].shape != src_state[k_src].shape:
logger.debug(
f"ignore_init_mismatch:{ignore_init_mismatch}, dst: {k, dst_state[k].shape}, src: {k_src, src_state[k_src].shape}"
)
else:
dst_state[k] = src_state[k_src]
else:
logger.debug(f"Warning, miss key in ckpt: {k}, mapped: {k_src}")
obj.load_state_dict(dst_state, strict=True)