File size: 4,076 Bytes
fc7c93b
b44de48
fc7c93b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e048ff5
97a5903
b44de48
 
e048ff5
fc7c93b
 
 
 
 
e048ff5
 
 
 
 
b44de48
 
 
fc7c93b
97a5903
 
 
fc7c93b
 
 
 
8e8a01a
fc7c93b
e048ff5
 
fc7c93b
 
 
e048ff5
afa1b5a
 
 
 
 
 
 
 
 
 
fc7c93b
 
e048ff5
 
fc7c93b
e048ff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c7dbc1
e048ff5
 
fc7c93b
e048ff5
 
fc7c93b
 
 
e048ff5
 
fc7c93b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import os
import torch
import gradio as gr
import subprocess
import datetime
import sys

def run_command(command):
    """Run a shell command and print its output."""
    print(f"Running command: {' '.join(command)}")
    try:
        subprocess.check_call(command, shell=True)
    except subprocess.CalledProcessError as e:
        print(f"Error running command {command}: {e}")
        sys.exit(1)

def check_for_mp4_in_outputs(given_folder):
    # Define the path to the outputs folder
    outputs_folder = given_folder
    
    # Check if the outputs folder exists
    if not os.path.exists(outputs_folder):
        return None
    
    # Check if there is a .mp4 file in the outputs folder
    mp4_files = [f for f in os.listdir(outputs_folder) if f.endswith('.mp4')]
    
    # Return the path to the mp4 file if it exists
    if mp4_files:
        return os.path.join(outputs_folder, mp4_files[0])
    else:
        return None


def infer(input_video, cropped_and_aligned):

    torch.cuda.empty_cache()

    filepath = input_video
    # Get the current timestamp
    timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")

    output_folder_name = f"results_{timestamp}"

    if cropped_and_aligned is True:
        # Example: Run the inference script (replace with your actual command)
        run_command(f"{sys.executable} inference_keep.py -i={filepath} -o={output_folder_name} --has_aligned --save_video -s=1")
    else:
        run_command(f"{sys.executable} inference_keep.py -i={filepath} -o={output_folder_name} --draw_box --save_video -s=1 --bg_upsampler=realesrgan")
    
    torch.cuda.empty_cache()
    
    # Call the function and print the result
    this_infer_folder = os.path.splitext(os.path.basename(filepath))[0]
    joined_path = os.path.join(output_folder_name, this_infer_folder)
    mp4_file_path = check_for_mp4_in_outputs(joined_path)
    print(mp4_file_path)

    print(f"RESULT: {mp4_file_path}")
    
    return mp4_file_path


result_video = gr.Video()
with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("# KEEP")
        gr.Markdown("## Kalman-Inspired Feature Propagation for Video Face Super-Resolution")
        gr.HTML("""
        <div style="display:flex;column-gap:4px;">
            <a href='https://jnjaby.github.io/projects/KEEP/'>
                <img src='https://img.shields.io/badge/Project-Page-Green'>
            </a> 
            <a href='https://arxiv.org/abs/2408.05205'>
                <img src='https://img.shields.io/badge/Paper-Arxiv-red'>
            </a>
        </div>
        """)
        with gr.Row():
            with gr.Column():
                input_video = gr.Video(label="Input Video")
                is_cropped_and_aligned = gr.Checkbox(label="Synthetic data", info="Is your input video ready with cropped and aligned faces ?", value=False)
                submit_btn = gr.Button("Submit")
                gr.Examples(
                    examples = [
                        ["./assets/examples/synthetic_1.mp4", True],
                        ["./assets/examples/synthetic_2.mp4", True],
                        ["./assets/examples/synthetic_3.mp4", True],
                        ["./assets/examples/synthetic_4.mp4", True],
                        ["./assets/examples/real_1.mp4", False],
                        ["./assets/examples/real_2.mp4", False],
                        ["./assets/examples/real_3.mp4", False],
                        ["./assets/examples/real_4.mp4", False]
                    ],
                    fn = infer,
                    inputs = [input_video, is_cropped_and_aligned],
                    outputs = [result_video],
                    run_on_click = False,
                    cache_examples = "lazy"
                )
            
            with gr.Column():
                result_video.render()
                

    submit_btn.click(
        fn = infer, 
        inputs = [input_video, is_cropped_and_aligned],
        outputs = [result_video],
        show_api=False
    )

demo.queue().launch(show_error=True, show_api=False)