import cv2 import numpy as np import torch import torch.nn as nn def set_requires_grad(module: nn.Module, requires_grad: bool): for p in module.parameters(): p.requires_grad_(requires_grad) def compute_distance_transform(mask: torch.Tensor): image_size = mask.shape[-1] distance_transform = torch.stack([ torch.from_numpy(cv2.distanceTransform( (1 - m), distanceType=cv2.DIST_L2, maskSize=cv2.DIST_MASK_3 ) / (image_size / 2)) for m in mask.squeeze(1).detach().cpu().numpy().astype(np.uint8) ]).unsqueeze(1).clip(0, 1).to(mask.device) return distance_transform def default(x, d): return d if x is None else x def get_custom_betas(beta_start: float, beta_end: float, warmup_frac: float = 0.3, num_train_timesteps: int = 1000): """Custom beta schedule""" betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32) warmup_frac = 0.3 warmup_time = int(num_train_timesteps * warmup_frac) warmup_steps = np.linspace(beta_start, beta_end, warmup_time, dtype=np.float64) warmup_time = min(warmup_time, num_train_timesteps) betas[:warmup_time] = warmup_steps[:warmup_time] return betas