diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..2fff30bd39acafec860467a322b02527e853e457 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +example/audio_driven/WDA_BenCardin1_000.wav filter=lfs diff=lfs merge=lfs -text +example/audio_driven/WRA_MarkwayneMullin_000.wav filter=lfs diff=lfs merge=lfs -text +example/audio_driven/WRA_MikeJohanns1_000.wav filter=lfs diff=lfs merge=lfs -text +src/utils/dependencies/insightface/data/images/t1.jpg filter=lfs diff=lfs merge=lfs -text diff --git a/ORIGINAL_README.md b/ORIGINAL_README.md new file mode 100644 index 0000000000000000000000000000000000000000..3b2b445b980fc48b2470c19b376bde43250d8403 --- /dev/null +++ b/ORIGINAL_README.md @@ -0,0 +1,118 @@ +
+ +# Unlock Pose Diversity: Accurate and Efficient Implicit Keypoint-based Spatiotemporal Diffusion for Audio-driven Talking Portrait +[![arXiv](https://img.shields.io/badge/arXiv-KDTalker-9065CA.svg?logo=arXiv)](https://arxiv.org/abs/2503.12963) +[![License](https://img.shields.io/badge/license-CC--BY--NC%204.0-green)](https://creativecommons.org/licenses/by-nc/4.0/) +[![GitHub Stars](https://img.shields.io/github/stars/chaolongy/KDTalker?style=social)](https://github.com/chaolongy/KDTalker) + +
+ Chaolong Yang 1,3*   + Kai Yao 2*  + Yuyao Yan 3   + Chenru Jiang 4   + Weiguang Zhao 1,3
+ Jie Sun 3   + Guangliang Cheng 1   + Yifei Zhang 5   + Bin Dong 4   + Kaizhu Huang 4   +
+
+ +
+ 1 University of Liverpool   2 Ant Group   3 Xi’an Jiaotong-Liverpool University  
+ 4 Duke Kunshan University   5 Ricoh Software Research Center   +
+ + +
+ +# Comparative videos +https://github.com/user-attachments/assets/08ebc6e0-41c5-4bf4-8ee8-2f7d317d92cd + + +# Demo +Gradio Demo [`KDTalker`](https://kdtalker.com/). The model was trained using only 4,282 video clips from [`VoxCeleb`](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/). + +![shot](https://github.com/user-attachments/assets/810e9dc8-ab66-4187-ab4f-bf92759621fa) + +# To Do List +- [ ] Train a community version using more datasets +- [ ] Release training code + + +# Environment +Our KDTalker could be conducted on one RTX4090 or RTX3090. + +### 1. Clone the code and prepare the environment + +**Note:** Make sure your system has [`git`](https://git-scm.com/), [`conda`](https://anaconda.org/anaconda/conda), and [`FFmpeg`](https://ffmpeg.org/download.html) installed. + +``` +git clone https://github.com/chaolongy/KDTalker +cd KDTalker + +# create env using conda +conda create -n KDTalker python=3.9 +conda activate KDTalker + +conda install pytorch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 pytorch-cuda=11.8 -c pytorch -c nvidia + +pip install -r requirements.txt +``` + +### 2. Download pretrained weights + +First, you can download all LiverPorait pretrained weights from [Google Drive](https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib). Unzip and place them in `./pretrained_weights`. +Ensuring the directory structure is as follows: +```text +pretrained_weights +├── insightface +│ └── models +│ └── buffalo_l +│ ├── 2d106det.onnx +│ └── det_10g.onnx +└── liveportrait + ├── base_models + │ ├── appearance_feature_extractor.pth + │ ├── motion_extractor.pth + │ ├── spade_generator.pth + │ └── warping_module.pth + ├── landmark.onnx + └── retargeting_models + └── stitching_retargeting_module.pth +``` +You can download the weights for the face detector, audio extractor and KDTalker from [Google Drive](https://drive.google.com/drive/folders/1OkfiFArUCsnkF_0tI2SCEAwVCBLSjzd6?hl=zh-CN). Put them in `./ckpts`. + +OR, you can download above all weights in [Huggingface](https://huggingface.co/ChaolongYang/KDTalker/tree/main). + + + +# Inference +``` +python inference.py -source_image ./example/source_image/WDA_BenCardin1_000.png -driven_audio ./example/driven_audio/WDA_BenCardin1_000.wav -output ./results/output.mp4 +``` + + +# Contact +Our code is under the CC-BY-NC 4.0 license and intended solely for research purposes. If you have any questions or wish to use it for commercial purposes, please contact us at chaolong.yang@liverpool.ac.uk + + +# Citation +If you find this code helpful for your research, please cite: +``` +@misc{yang2025kdtalker, + title={Unlock Pose Diversity: Accurate and Efficient Implicit Keypoint-based Spatiotemporal Diffusion for Audio-driven Talking Portrait}, + author={Chaolong Yang and Kai Yao and Yuyao Yan and Chenru Jiang and Weiguang Zhao and Jie Sun and Guangliang Cheng and Yifei Zhang and Bin Dong and Kaizhu Huang}, + year={2025}, + eprint={2503.12963}, + archivePrefix={arXiv}, + primaryClass={cs.CV}, + url={https://arxiv.org/abs/2503.12963}, +} +``` + + +# Acknowledge +We acknowledge these works for their public code and selfless help: [SadTalker](https://github.com/OpenTalker/SadTalker), [LivePortrait](https://github.com/KwaiVGI/LivePortrait), [Wav2Lip](https://github.com/Rudrabha/Wav2Lip), [Face-vid2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis) etc. +
diff --git a/dataset_process/audio.py b/dataset_process/audio.py new file mode 100644 index 0000000000000000000000000000000000000000..653cdd88738ccd95a89039650f1342df17564dec --- /dev/null +++ b/dataset_process/audio.py @@ -0,0 +1,156 @@ +import librosa +import librosa.filters +import numpy as np +# import tensorflow as tf +from scipy import signal +from scipy.io import wavfile +from src.utils.hparams import hparams as hp + + +def load_wav(path, sr): + return librosa.core.load(path, sr=sr)[0] + + +def save_wav(wav, path, sr): + wav *= 32767 / max(0.01, np.max(np.abs(wav))) + # proposed by @dsmiller + wavfile.write(path, sr, wav.astype(np.int16)) + + +def save_wavenet_wav(wav, path, sr): + librosa.output.write_wav(path, wav, sr=sr) + + +def preemphasis(wav, k, preemphasize=True): + if preemphasize: + return signal.lfilter([1, -k], [1], wav) + return wav + + +def inv_preemphasis(wav, k, inv_preemphasize=True): + if inv_preemphasize: + return signal.lfilter([1], [1, -k], wav) + return wav + + +def get_hop_size(): + hop_size = hp.hop_size + if hop_size is None: + assert hp.frame_shift_ms is not None + hop_size = int(hp.frame_shift_ms / 1000 * hp.sample_rate) + return hop_size + + +def linearspectrogram(wav): + D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize)) + S = _amp_to_db(np.abs(D)) - hp.ref_level_db + + if hp.signal_normalization: + return _normalize(S) + return S + + +def melspectrogram(wav): + D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize)) + S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp.ref_level_db + + if hp.signal_normalization: + return _normalize(S) + return S + + +def _lws_processor(): + import lws + return lws.lws(hp.n_fft, get_hop_size(), fftsize=hp.win_size, mode="speech") + + +def _stft(y): + if hp.use_lws: + return _lws_processor(hp).stft(y).T + else: + return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=get_hop_size(), win_length=hp.win_size) + + +########################################################## +# Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!) +def num_frames(length, fsize, fshift): + """Compute number of time frames of spectrogram + """ + pad = (fsize - fshift) + if length % fshift == 0: + M = (length + pad * 2 - fsize) // fshift + 1 + else: + M = (length + pad * 2 - fsize) // fshift + 2 + return M + + +def pad_lr(x, fsize, fshift): + """Compute left and right padding + """ + M = num_frames(len(x), fsize, fshift) + pad = (fsize - fshift) + T = len(x) + 2 * pad + r = (M - 1) * fshift + fsize - T + return pad, pad + r + + +########################################################## +# Librosa correct padding +def librosa_pad_lr(x, fsize, fshift): + return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0] + + +# Conversions +_mel_basis = None + + +def _linear_to_mel(spectogram): + global _mel_basis + if _mel_basis is None: + _mel_basis = _build_mel_basis() + return np.dot(_mel_basis, spectogram) + + +def _build_mel_basis(): + assert hp.fmax <= hp.sample_rate // 2 + return librosa.filters.mel(sr=hp.sample_rate, n_fft=hp.n_fft, n_mels=hp.num_mels, + fmin=hp.fmin, fmax=hp.fmax) + + +def _amp_to_db(x): + min_level = np.exp(hp.min_level_db / 20 * np.log(10)) + return 20 * np.log10(np.maximum(min_level, x)) + + +def _db_to_amp(x): + return np.power(10.0, (x) * 0.05) + + +def _normalize(S): + if hp.allow_clipping_in_normalization: + if hp.symmetric_mels: + return np.clip((2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value, + -hp.max_abs_value, hp.max_abs_value) + else: + return np.clip(hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)), 0, hp.max_abs_value) + + assert S.max() <= 0 and S.min() - hp.min_level_db >= 0 + if hp.symmetric_mels: + return (2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value + else: + return hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)) + + +def _denormalize(D): + if hp.allow_clipping_in_normalization: + if hp.symmetric_mels: + return (((np.clip(D, -hp.max_abs_value, + hp.max_abs_value) + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + + hp.min_level_db) + else: + return ((np.clip(D, 0, hp.max_abs_value) * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db) + + if hp.symmetric_mels: + return (((D + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + hp.min_level_db) + else: + return ((D * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db) diff --git a/dataset_process/croper.py b/dataset_process/croper.py new file mode 100644 index 0000000000000000000000000000000000000000..639ec5206960b8a3940bbb882e4ab6ec97770684 --- /dev/null +++ b/dataset_process/croper.py @@ -0,0 +1,154 @@ +import cv2 + +""" +brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset) +author: lzhbrian (https://lzhbrian.me) +date: 2020.1.5 +note: code is heavily borrowed from + https://github.com/NVlabs/ffhq-dataset + http://dlib.net/face_landmark_detection.py.html +requirements: + apt install cmake + conda install Pillow numpy scipy + pip install dlib + # download face landmark model from: + # http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 +""" + +import numpy as np +from PIL import Image +import dlib + + +class Croper: + def __init__(self, path_of_lm): + # download model from: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 + self.predictor = dlib.shape_predictor(path_of_lm) + + def get_landmark(self, img_np): + """get landmark with dlib + :return: np.array shape=(68, 2) + """ + detector = dlib.get_frontal_face_detector() + dets = detector(img_np, 1) + # print("Number of faces detected: {}".format(len(dets))) + # for k, d in enumerate(dets): + if len(dets) == 0: + return None + d = dets[0] + # Get the landmarks/parts for the face in box d. + shape = self.predictor(img_np, d) + # print("Part 0: {}, Part 1: {} ...".format(shape.part(0), shape.part(1))) + t = list(shape.parts()) + a = [] + for tt in t: + a.append([tt.x, tt.y]) + lm = np.array(a) + # lm is a shape=(68,2) np.array + return lm + + def align_face(self, img, lm, output_size=1024): + """ + :param filepath: str + :return: PIL Image + """ + lm_chin = lm[0: 17] # left-right + lm_eyebrow_left = lm[17: 22] # left-right + lm_eyebrow_right = lm[22: 27] # left-right + lm_nose = lm[27: 31] # top-down + lm_nostrils = lm[31: 36] # top-down + lm_eye_left = lm[36: 42] # left-clockwise + lm_eye_right = lm[42: 48] # left-clockwise + lm_mouth_outer = lm[48: 60] # left-clockwise + lm_mouth_inner = lm[60: 68] # left-clockwise + + # Calculate auxiliary vectors. + eye_left = np.mean(lm_eye_left, axis=0) + eye_right = np.mean(lm_eye_right, axis=0) + eye_avg = (eye_left + eye_right) * 0.5 + eye_to_eye = eye_right - eye_left + mouth_left = lm_mouth_outer[0] + mouth_right = lm_mouth_outer[6] + mouth_avg = (mouth_left + mouth_right) * 0.5 + eye_to_mouth = mouth_avg - eye_avg + + # Choose oriented crop rectangle. + x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] # Addition of binocular difference and double mouth difference + x /= np.hypot(*x) + x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) + y = np.flipud(x) * [-1, 1] + c = eye_avg + eye_to_mouth * 0.1 + quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) + qsize = np.hypot(*x) * 2 + + # Shrink. + shrink = int(np.floor(qsize / output_size * 0.5)) + if shrink > 1: + rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) + img = img.resize(rsize, Image.ANTIALIAS) + quad /= shrink + qsize /= shrink + else: + rsize = (int(np.rint(float(img.size[0]))), int(np.rint(float(img.size[1])))) + + # Crop. + border = max(int(np.rint(qsize * 0.1)), 3) + crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), + int(np.ceil(max(quad[:, 1])))) + crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), + min(crop[3] + border, img.size[1])) + if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: + # img = img.crop(crop) + quad -= crop[0:2] + + # Pad. + pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), + int(np.ceil(max(quad[:, 1])))) + pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), + max(pad[3] - img.size[1] + border, 0)) + # if enable_padding and max(pad) > border - 4: + # pad = np.maximum(pad, int(np.rint(qsize * 0.3))) + # img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') + # h, w, _ = img.shape + # y, x, _ = np.ogrid[:h, :w, :1] + # mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]), + # 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3])) + # blur = qsize * 0.02 + # img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) + # img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) + # img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') + # quad += pad[:2] + + # Transform. + quad = (quad + 0.5).flatten() + lx = max(min(quad[0], quad[2]), 0) + ly = max(min(quad[1], quad[7]), 0) + rx = min(max(quad[4], quad[6]), img.size[0]) + ry = min(max(quad[3], quad[5]), img.size[0]) + # img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), + # Image.BILINEAR) + # if output_size < transform_size: + # img = img.resize((output_size, output_size), Image.ANTIALIAS) + + # Save aligned image. + return rsize, crop, [lx, ly, rx, ry] + + def crop(self, img_np_list, still=False, xsize=512): # first frame for all video + img_np = img_np_list[0] + lm = self.get_landmark(img_np) + if lm is None: + raise 'can not detect the landmark from source image' + rsize, crop, quad = self.align_face(img=Image.fromarray(img_np), lm=lm, output_size=xsize) + clx, cly, crx, cry = crop + lx, ly, rx, ry = quad + lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry) + for _i in range(len(img_np_list)): + _inp = img_np_list[_i] + _inp = cv2.resize(_inp, (rsize[0], rsize[1])) + _inp = _inp[cly:cry, clx:crx] + # cv2.imwrite('test1.jpg', _inp) + if not still: + _inp = _inp[ly:ry, lx:rx] + # cv2.imwrite('test2.jpg', _inp) + img_np_list[_i] = _inp + return img_np_list, crop, quad diff --git a/dataset_process/norm.npz b/dataset_process/norm.npz new file mode 100644 index 0000000000000000000000000000000000000000..09d73394389ba43100ca7e4355130aac7fe4a4f4 --- /dev/null +++ b/dataset_process/norm.npz @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9422e503e75df9d1bd455d8e0f9f5e2826b12956cdedbb5566097c0151bddafb +size 5580 diff --git a/example/audio_driven/WDA_BenCardin1_000.wav b/example/audio_driven/WDA_BenCardin1_000.wav new file mode 100644 index 0000000000000000000000000000000000000000..2fbd5be4cda05e7a52d69c89f656d82ae46e627a --- /dev/null +++ b/example/audio_driven/WDA_BenCardin1_000.wav @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:46cba9e5aa26d94ce13ff5eeef3e40e8086337e07f6c3d553497ea1b9f8a5e23 +size 512774 diff --git a/example/audio_driven/WRA_MarkwayneMullin_000.wav b/example/audio_driven/WRA_MarkwayneMullin_000.wav new file mode 100644 index 0000000000000000000000000000000000000000..6ddf75087dc80fdebc113ad174788d941acc1c89 --- /dev/null +++ b/example/audio_driven/WRA_MarkwayneMullin_000.wav @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:791104d8663ca5af3d11dde1c042cf3f42957c6356c044d6bd8b8ee311442fc5 +size 512774 diff --git a/example/audio_driven/WRA_MikeJohanns1_000.wav b/example/audio_driven/WRA_MikeJohanns1_000.wav new file mode 100644 index 0000000000000000000000000000000000000000..ee2173db1fbedad055615ecde7ca287f6c8a9246 --- /dev/null +++ b/example/audio_driven/WRA_MikeJohanns1_000.wav @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e9fc02acff776d4bd59bad02fbb773d1201948616e279ffc853b83753f4f4f2b +size 512774 diff --git a/example/source_image/WDA_BenCardin1_000.png b/example/source_image/WDA_BenCardin1_000.png new file mode 100644 index 0000000000000000000000000000000000000000..dcb91cbce53e5ef7bb97f505b9f774f7513b9d32 Binary files /dev/null and b/example/source_image/WDA_BenCardin1_000.png differ diff --git a/example/source_image/WRA_MarkwayneMullin_000.png b/example/source_image/WRA_MarkwayneMullin_000.png new file mode 100644 index 0000000000000000000000000000000000000000..803f2dfb687cb099c4c7993b8f9f0e5cfbfcfcf8 Binary files /dev/null and b/example/source_image/WRA_MarkwayneMullin_000.png differ diff --git a/example/source_image/WRA_MikeJohanns1_000.png b/example/source_image/WRA_MikeJohanns1_000.png new file mode 100644 index 0000000000000000000000000000000000000000..0970330745b3eee97ea8d8cce78e2da1261353fe Binary files /dev/null and b/example/source_image/WRA_MikeJohanns1_000.png differ diff --git a/inference.py b/inference.py new file mode 100644 index 0000000000000000000000000000000000000000..b995b9889585147d44a57551f3cd9b506aa6592f --- /dev/null +++ b/inference.py @@ -0,0 +1,383 @@ +# -*- coding: UTF-8 -*- +import os +os.environ['HYDRA_FULL_ERROR']='1' +os.environ['CUDA_VISIBLE_DEVICES'] = '0' + +import argparse +import shutil +import uuid +import os +import numpy as np +from tqdm import tqdm +import cv2 +from rich.progress import track +import tyro + + +from PIL import Image +import time +import torch +import torch.nn.functional as F +from torch import nn +import imageio +from pydub import AudioSegment +from pykalman import KalmanFilter + + +from src.config.argument_config import ArgumentConfig +from src.config.inference_config import InferenceConfig +from src.config.crop_config import CropConfig +from src.live_portrait_pipeline import LivePortraitPipeline +from src.utils.camera import get_rotation_matrix +from dataset_process import audio + +from dataset_process.croper import Croper + + +def parse_audio_length(audio_length, sr, fps): + bit_per_frames = sr / fps + num_frames = int(audio_length / bit_per_frames) + audio_length = int(num_frames * bit_per_frames) + return audio_length, num_frames + +def crop_pad_audio(wav, audio_length): + if len(wav) > audio_length: + wav = wav[:audio_length] + elif len(wav) < audio_length: + wav = np.pad(wav, [0, audio_length - len(wav)], mode='constant', constant_values=0) + return wav + +class Conv2d(nn.Module): + def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, use_act=True, *args, **kwargs): + super().__init__(*args, **kwargs) + self.conv_block = nn.Sequential( + nn.Conv2d(cin, cout, kernel_size, stride, padding), + nn.BatchNorm2d(cout) + ) + self.act = nn.ReLU() + self.residual = residual + self.use_act = use_act + + def forward(self, x): + out = self.conv_block(x) + if self.residual: + out += x + + if self.use_act: + return self.act(out) + else: + return out + +class AudioEncoder(nn.Module): + def __init__(self, wav2lip_checkpoint, device): + super(AudioEncoder, self).__init__() + + self.audio_encoder = nn.Sequential( + Conv2d(1, 32, kernel_size=3, stride=1, padding=1), + Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), + Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), + + Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1), + Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), + Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), + + Conv2d(64, 128, kernel_size=3, stride=3, padding=1), + Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), + Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), + + Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1), + Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), + + Conv2d(256, 512, kernel_size=3, stride=1, padding=0), + Conv2d(512, 512, kernel_size=1, stride=1, padding=0),) + + #### load the pre-trained audio_encoder + wav2lip_state_dict = torch.load(wav2lip_checkpoint, map_location=torch.device(device))['state_dict'] + state_dict = self.audio_encoder.state_dict() + + for k,v in wav2lip_state_dict.items(): + if 'audio_encoder' in k: + state_dict[k.replace('module.audio_encoder.', '')] = v + self.audio_encoder.load_state_dict(state_dict) + + def forward(self, audio_sequences): + B = audio_sequences.size(0) + + audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0) + + audio_embedding = self.audio_encoder(audio_sequences) # B, 512, 1, 1 + dim = audio_embedding.shape[1] + audio_embedding = audio_embedding.reshape((B, -1, dim, 1, 1)) + + return audio_embedding.squeeze(-1).squeeze(-1) #B seq_len+1 512 + +def partial_fields(target_class, kwargs): + return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)}) + +def dct2device(dct: dict, device): + for key in dct: + dct[key] = torch.tensor(dct[key]).to(device) + return dct + +def save_video_with_watermark(video, audio, save_path): + temp_file = str(uuid.uuid4())+'.mp4' + cmd = r'ffmpeg -y -i "%s" -i "%s" -vcodec copy "%s"' % (video, audio, temp_file) + os.system(cmd) + shutil.move(temp_file, save_path) + +class Inferencer(object): + def __init__(self): + st=time.time() + print('#'*25+'Start initialization'+'#'*25) + self.device = 'cuda' + + from model import get_model + self.point_diffusion = get_model() + ckpt = torch.load('KDTalker.pth') + + self.point_diffusion.load_state_dict(ckpt['model']) + self.point_diffusion.eval() + self.point_diffusion.to(self.device) + + lm_croper_checkpoint = 'ckpts/shape_predictor_68_face_landmarks.dat' + self.croper = Croper(lm_croper_checkpoint) + + self.norm_info = dict(np.load('dataset_process/norm.npz')) + + wav2lip_checkpoint = 'ckpts/wav2lip.pth' + self.wav2lip_model = AudioEncoder(wav2lip_checkpoint, 'cuda') + self.wav2lip_model.cuda() + self.wav2lip_model.eval() + + # set tyro theme + tyro.extras.set_accent_color("bright_cyan") + args = tyro.cli(ArgumentConfig) + + # specify configs for inference + self.inf_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig + self.crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig + + self.live_portrait_pipeline = LivePortraitPipeline(inference_cfg=self.inf_cfg, crop_cfg=self.crop_cfg) + + def _norm(self, data_dict): + for k in data_dict.keys(): + if k in ['yaw', 'pitch', 'roll', 't', 'exp', 'scale', 'kp', ]: + v=data_dict[k] + data_dict[k] = (v - self.norm_info[k+'_mean'])/self.norm_info[k+'_std'] + return data_dict + + def _denorm(self, data_dict): + for k in data_dict.keys(): + if k in ['yaw', 'pitch', 'roll', 't', 'exp', 'scale', 'kp']: + v=data_dict[k] + data_dict[k] = v * self.norm_info[k+'_std'] + self.norm_info[k+'_mean'] + return data_dict + + def output_to_dict(self, data): + output = {} + output['scale'] = data[:, 0] + output['yaw'] = data[:, 1, None] + output['pitch'] = data[:, 2, None] + output['roll'] = data[:, 3, None] + output['t'] = data[:, 4:7] + output['exp'] = data[:, 7:] + return output + + def extract_mel_from_audio(self, audio_file_path): + syncnet_mel_step_size = 16 + fps = 25 + wav = audio.load_wav(audio_file_path, 16000) + wav_length, num_frames = parse_audio_length(len(wav), 16000, 25) + wav = crop_pad_audio(wav, wav_length) + orig_mel = audio.melspectrogram(wav).T + spec = orig_mel.copy() + indiv_mels = [] + + for i in tqdm(range(num_frames), 'mel:'): + start_frame_num = i - 2 + start_idx = int(80. * (start_frame_num / float(fps))) + end_idx = start_idx + syncnet_mel_step_size + seq = list(range(start_idx, end_idx)) + seq = [min(max(item, 0), orig_mel.shape[0] - 1) for item in seq] + m = spec[seq, :] + indiv_mels.append(m.T) + indiv_mels = np.asarray(indiv_mels) # T 80 16 + return indiv_mels + + def extract_wav2lip_from_audio(self, audio_file_path): + asd_mel = self.extract_mel_from_audio(audio_file_path) + asd_mel = torch.FloatTensor(asd_mel).cuda().unsqueeze(0).unsqueeze(2) + with torch.no_grad(): + hidden = self.wav2lip_model(asd_mel) + return hidden[0].cpu().detach().numpy() + + def headpose_pred_to_degree(self, pred): + device = pred.device + idx_tensor = [idx for idx in range(66)] + idx_tensor = torch.FloatTensor(idx_tensor).to(device) + pred = F.softmax(pred) + degree = torch.sum(pred * idx_tensor, 1) * 3 - 99 + return degree + + @torch.no_grad() + def generate_with_audio_img(self, image_path, audio_path, save_path): + image = np.array(Image.open(image_path).convert('RGB')) + cropped_image, crop, quad = self.croper.crop([image], still=False, xsize=512) + input_image = cv2.resize(cropped_image[0], (256, 256)) + + I_s = torch.FloatTensor(input_image.transpose((2, 0, 1))).unsqueeze(0).cuda() / 255 + + x_s_info = self.live_portrait_pipeline.live_portrait_wrapper.get_kp_info(I_s) + x_c_s = x_s_info['kp'].reshape(1, 21, -1) + R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll']) + f_s = self.live_portrait_pipeline.live_portrait_wrapper.extract_feature_3d(I_s) + x_s = self.live_portrait_pipeline.live_portrait_wrapper.transform_keypoint(x_s_info) + + ######## process driving info ######## + kp_info = {} + for k in x_s_info.keys(): + kp_info[k] = x_s_info[k].cpu().numpy() + + kp_info = self._norm(kp_info) + + ori_kp = torch.cat([torch.zeros([1, 7]), torch.Tensor(kp_info['kp'])], -1).cuda() + + input_x = np.concatenate([kp_info[k] for k in ['scale', 'yaw', 'pitch', 'roll', 't', 'exp']], 1) + input_x = np.expand_dims(input_x, -1) + input_x = np.expand_dims(input_x, 0) + input_x = np.concatenate([input_x, input_x, input_x], -1) + + aud_feat = self.extract_wav2lip_from_audio(audio_path) + + sample_frame = 64 + padding_size = (sample_frame - aud_feat.shape[0] % sample_frame) % sample_frame + + if padding_size > 0: + aud_feat = np.concatenate((aud_feat, aud_feat[:padding_size, :]), axis=0) + else: + aud_feat = aud_feat + + outputs = [input_x] + + sample_frame = 64 + for i in range(0, aud_feat.shape[0] - 1, sample_frame): + input_mel = torch.Tensor(aud_feat[i: i + sample_frame]).unsqueeze(0).cuda() + kp0 = torch.Tensor(outputs[-1])[:, -1].cuda() + pred_kp = self.point_diffusion.forward_sample(70, ref_kps=kp0, ori_kps=ori_kp, aud_feat=input_mel, + scheduler='ddim', num_inference_steps=50) + outputs.append(pred_kp.cpu().numpy()) + + outputs = np.mean(np.concatenate(outputs, 1)[0, 1:aud_feat.shape[0] - padding_size + 1], -1) + output_dict = self.output_to_dict(outputs) + output_dict = self._denorm(output_dict) + + num_frame = output_dict['yaw'].shape[0] + x_d_info = {} + for key in output_dict: + x_d_info[key] = torch.tensor(output_dict[key]).cuda() + + # smooth + def smooth(sequence, n_dim_state=1): + kf = KalmanFilter(initial_state_mean=sequence[0], + transition_covariance=0.05 * np.eye(n_dim_state), + observation_covariance=0.001 * np.eye(n_dim_state)) + state_means, _ = kf.smooth(sequence) + return state_means + + yaw_data = x_d_info['yaw'].cpu().numpy() + pitch_data = x_d_info['pitch'].cpu().numpy() + roll_data = x_d_info['roll'].cpu().numpy() + t_data = x_d_info['t'].cpu().numpy() + exp_data = x_d_info['exp'].cpu().numpy() + + smoothed_pitch = smooth(pitch_data, n_dim_state=1) + smoothed_yaw = smooth(yaw_data, n_dim_state=1) + smoothed_roll = smooth(roll_data, n_dim_state=1) + smoothed_t = smooth(t_data, n_dim_state=3) + smoothed_exp = smooth(exp_data, n_dim_state=63) + + x_d_info['pitch'] = torch.Tensor(smoothed_pitch).cuda() + x_d_info['yaw'] = torch.Tensor(smoothed_yaw).cuda() + x_d_info['roll'] = torch.Tensor(smoothed_roll).cuda() + x_d_info['t'] = torch.Tensor(smoothed_t).cuda() + x_d_info['exp'] = torch.Tensor(smoothed_exp).cuda() + + template_dct = {'motion': [], 'c_d_eyes_lst': [], 'c_d_lip_lst': []} + for i in track(range(num_frame), description='Making motion templates...', total=num_frame): + x_d_i_info = x_d_info + R_d_i = get_rotation_matrix(x_d_i_info['pitch'][i], x_d_i_info['yaw'][i], x_d_i_info['roll'][i]) + + item_dct = { + 'scale': x_d_i_info['scale'][i].cpu().numpy().astype(np.float32), + 'R_d': R_d_i.cpu().numpy().astype(np.float32), + 'exp': x_d_i_info['exp'][i].reshape(1, 21, -1).cpu().numpy().astype(np.float32), + 't': x_d_i_info['t'][i].cpu().numpy().astype(np.float32), + } + + template_dct['motion'].append(item_dct) + + I_p_lst = [] + R_d_0, x_d_0_info = None, None + + for i in track(range(num_frame), description='🚀Animating...', total=num_frame): + x_d_i_info = template_dct['motion'][i] + for key in x_d_i_info: + x_d_i_info[key] = torch.tensor(x_d_i_info[key]).cuda() + R_d_i = x_d_i_info['R_d'] + + if i == 0: + R_d_0 = R_d_i + x_d_0_info = x_d_i_info + + if self.inf_cfg.flag_relative_motion: + R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s + delta_new = x_s_info['exp'].reshape(1, 21, -1) + (x_d_i_info['exp'] - x_d_0_info['exp']) + scale_new = x_s_info['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale']) + t_new = x_s_info['t'] + (x_d_i_info['t'] - x_d_0_info['t']) + else: + R_new = R_d_i + delta_new = x_d_i_info['exp'] + scale_new = x_s_info['scale'] + t_new = x_d_i_info['t'] + + t_new[..., 2].fill_(0) + x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new + + out = self.live_portrait_pipeline.live_portrait_wrapper.warp_decode(f_s, x_s, x_d_i_new) + I_p_i = self.live_portrait_pipeline.live_portrait_wrapper.parse_output(out['out'])[0] + I_p_lst.append(I_p_i) + + video_name = save_path.split('/')[-1] + video_save_dir = os.path.dirname(save_path) + path = os.path.join(video_save_dir, 'temp_' + video_name) + + imageio.mimsave(path, I_p_lst, fps=float(25)) + + audio_name = audio_path.split('/')[-1] + new_audio_path = os.path.join(video_save_dir, audio_name) + start_time = 0 + sound = AudioSegment.from_file(audio_path) + end_time = start_time + num_frame * 1 / 25 * 1000 + word1 = sound.set_frame_rate(16000) + word = word1[start_time:end_time] + word.export(new_audio_path, format="wav") + + save_video_with_watermark(path, new_audio_path, save_path, watermark=False) + print(f'The generated video is named {video_save_dir}/{video_name}') + + os.remove(path) + os.remove(new_audio_path) + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument("-source_image", type=str, default="example/source_image/WDA_BenCardin1_000.png", + help="source image") + parser.add_argument("-driven_audio", type=str, default="example/driven_audio/WDA_BenCardin1_000.wav", + help="driving audio") + parser.add_argument("-output", type=str, default="results/output.mp4", help="output video file name", ) + + args = parser.parse_args() + + Infer = Inferencer() + Infer.generate_with_audio_img(args.source_image, args.driven_audio, args.output) \ No newline at end of file diff --git a/model/__init__.py b/model/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a1775c3f81c2aa1c64e3664b4f05e19380c89975 --- /dev/null +++ b/model/__init__.py @@ -0,0 +1,6 @@ +from .model import ConditionalPointCloudDiffusionModel + +def get_model(): + model = ConditionalPointCloudDiffusionModel() + return model + diff --git a/model/model.py b/model/model.py new file mode 100644 index 0000000000000000000000000000000000000000..9be3352de0aada9056102dee8cba7901faf398f1 --- /dev/null +++ b/model/model.py @@ -0,0 +1,230 @@ +import inspect +from typing import Optional +from einops import rearrange +import torch +import torch.nn.functional as F +from diffusers.schedulers.scheduling_ddpm import DDPMScheduler +from diffusers.schedulers.scheduling_ddim import DDIMScheduler +from diffusers.schedulers.scheduling_pndm import PNDMScheduler + +from torch import Tensor +from tqdm import tqdm +from diffusers import ModelMixin +from .model_utils import get_custom_betas +from .point_model import PointModel +import copy +import torch.nn as nn + +class TemporalSmoothnessLoss(nn.Module): + def __init__(self): + super(TemporalSmoothnessLoss, self).__init__() + + def forward(self, input): + # Calculate the difference between consecutive frames + diff = input[:, 1:, :] - input[:, :-1, :] + + # Compute the L2 norm (squared) of the differences + smoothness_loss = torch.mean(torch.sum(diff ** 2, dim=2)) + + return smoothness_loss + +class ConditionalPointCloudDiffusionModel(ModelMixin): + def __init__( + self, + beta_start: float = 1e-5, + beta_end: float = 8e-3, + beta_schedule: str = 'linear', + point_cloud_model: str = 'simple', + point_cloud_model_embed_dim: int = 64, + ): + super().__init__() + self.in_channels = 70 # 3 for 3D point positions + self.out_channels = 70 + + # Checks + # Create diffusion model schedulers which define the sampling timesteps + scheduler_kwargs = {} + if beta_schedule == 'custom': + scheduler_kwargs.update(dict(trained_betas=get_custom_betas(beta_start=beta_start, beta_end=beta_end))) + else: + scheduler_kwargs.update(dict(beta_start=beta_start, beta_end=beta_end, beta_schedule=beta_schedule)) + self.schedulers_map = { + 'ddpm': DDPMScheduler(**scheduler_kwargs, clip_sample=False), + 'ddim': DDIMScheduler(**scheduler_kwargs, clip_sample=False), + 'pndm': PNDMScheduler(**scheduler_kwargs), + } + self.scheduler = self.schedulers_map['ddim'] # this can be changed for inference + + # Create point cloud model for processing point cloud at each diffusion step + self.point_model = PointModel( + model_type=point_cloud_model, + embed_dim=point_cloud_model_embed_dim, + in_channels=self.in_channels, + out_channels=self.out_channels, + ) + + def forward_train( + self, + pc: Optional[Tensor], + ref_kps: Optional[Tensor], + ori_kps: Optional[Tensor], + aud_feat: Optional[Tensor], + mode: str = 'train', + return_intermediate_steps: bool = False + ): + + # Normalize colors and convert to tensor + x_0 = pc + B, Nf, Np, D = x_0.shape# batch, nums of frames, nums of points, 3 + + + x_0=x_0[:,:,:,0]# batch, nums of frames, 70 + + # Sample random noise + noise = torch.randn_like(x_0) + + # Sample random timesteps for each point_cloud + timestep = torch.randint(0, self.scheduler.num_train_timesteps, (B,), + device=self.device, dtype=torch.long) + + # Add noise to points + x_t = self.scheduler.add_noise(x_0, noise, timestep) + + # Conditioning + ref_kps = ref_kps[:, :, 0] + + x_t_input = torch.cat([ori_kps.unsqueeze(1), ref_kps.unsqueeze(1), x_t], dim=1) + + aud_feat = torch.cat([torch.zeros(B, 2, 512).cuda(), aud_feat], 1) + + # Augmentation for audio feature + if mode in 'train': + if torch.rand(1) > 0.3: + mean = torch.mean(aud_feat) + std = torch.std(aud_feat) + sample = torch.normal(mean=torch.full(aud_feat.shape, mean), std=torch.full(aud_feat.shape, std)).cuda() + aud_feat = sample + aud_feat + else: + pass + else: + pass + + # Forward + noise_pred = self.point_model(x_t_input, timestep, context=aud_feat) #torch.cat([mel_feat,style_embed],-1)) + noise_pred = noise_pred[:, 2:] + + # Check + if not noise_pred.shape == noise.shape: + raise ValueError(f'{noise_pred.shape=} and {noise.shape=}') + + loss = F.mse_loss(noise_pred, noise) + + loss_pose = F.mse_loss(noise_pred[:, :, 1:7], noise[:, :, 1:7]) + loss_exp = F.mse_loss(noise_pred[:, :, 7:], noise[:, :, 7:]) + + + # Whether to return intermediate steps + if return_intermediate_steps: + return loss, (x_0, x_t, noise, noise_pred) + + return loss, loss_exp, loss_pose + + @torch.no_grad() + def forward_sample( + self, + num_points: int, + ref_kps: Optional[Tensor], + ori_kps: Optional[Tensor], + aud_feat: Optional[Tensor], + # Optional overrides + scheduler: Optional[str] = 'ddpm', + # Inference parameters + num_inference_steps: Optional[int] = 50, + eta: Optional[float] = 0.0, # for DDIM + # Whether to return all the intermediate steps in generation + return_sample_every_n_steps: int = -1, + # Whether to disable tqdm + disable_tqdm: bool = False, + ): + + # Get scheduler from mapping, or use self.scheduler if None + scheduler = self.scheduler if scheduler is None else self.schedulers_map[scheduler] + + # Get the size of the noise + Np = num_points + Nf = aud_feat.size(1) + B = 1 + D = 3 + device = self.device + + # Sample noise + x_t = torch.randn(B, Nf, Np, D, device=device) + + x_t = x_t[:, :, :, 0] + + ref_kps = ref_kps[:,:,0] + + # Set timesteps + accepts_offset = "offset" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + extra_set_kwargs = {"offset": 1} if accepts_offset else {} + scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) + + accepts_eta = "eta" in set(inspect.signature(scheduler.step).parameters.keys()) + extra_step_kwargs = {"eta": eta} if accepts_eta else {} + + # Loop over timesteps + all_outputs = [] + return_all_outputs = (return_sample_every_n_steps > 0) + progress_bar = tqdm(scheduler.timesteps.to(device), desc=f'Sampling ({x_t.shape})', disable=disable_tqdm) + + aud_feat = torch.cat([torch.zeros(B, 2, 512).cuda(), aud_feat], 1) + + for i, t in enumerate(progress_bar): + x_t_input = torch.cat([ori_kps.unsqueeze(1).detach(),ref_kps.unsqueeze(1).detach(), x_t], dim=1) + + # Forward + noise_pred = self.point_model(x_t_input, t.reshape(1).expand(B), context=aud_feat)[:, 2:] + + # Step + x_t = scheduler.step(noise_pred, t, x_t, **extra_step_kwargs).prev_sample + + # Append to output list if desired + if (return_all_outputs and (i % return_sample_every_n_steps == 0 or i == len(scheduler.timesteps) - 1)): + all_outputs.append(x_t) + + # Convert output back into a point cloud, undoing normalization and scaling + output = x_t + output = torch.stack([output,output,output],-1) + if return_all_outputs: + all_outputs = torch.stack(all_outputs, dim=1) # (B, sample_steps, N, D) + return (output, all_outputs) if return_all_outputs else output + + def forward(self, batch: dict, mode: str = 'train', **kwargs): + """A wrapper around the forward method for training and inference""" + + if mode == 'train': + return self.forward_train( + pc=batch['sequence_keypoints'], + ref_kps=batch['ref_keypoint'], + ori_kps=batch['ori_keypoint'], + aud_feat=batch['aud_feat'], + mode='train', + **kwargs) + elif mode == 'val': + return self.forward_train( + pc=batch['sequence_keypoints'], + ref_kps=batch['ref_keypoint'], + ori_kps=batch['ori_keypoint'], + aud_feat=batch['aud_feat'], + mode='val', + **kwargs) + elif mode == 'sample': + num_points = 70 + return self.forward_sample( + num_points=num_points, + ref_kps=batch['ref_keypoint'], + ori_kps=batch['ori_keypoint'], + aud_feat=batch['aud_feat'], + **kwargs) + else: + raise NotImplementedError() \ No newline at end of file diff --git a/model/model_utils.py b/model/model_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..1e1e0c8ac665bc49f91c62ca2004243de6871a70 --- /dev/null +++ b/model/model_utils.py @@ -0,0 +1,33 @@ +import cv2 +import numpy as np +import torch +import torch.nn as nn + +def set_requires_grad(module: nn.Module, requires_grad: bool): + for p in module.parameters(): + p.requires_grad_(requires_grad) + + +def compute_distance_transform(mask: torch.Tensor): + image_size = mask.shape[-1] + distance_transform = torch.stack([ + torch.from_numpy(cv2.distanceTransform( + (1 - m), distanceType=cv2.DIST_L2, maskSize=cv2.DIST_MASK_3 + ) / (image_size / 2)) + for m in mask.squeeze(1).detach().cpu().numpy().astype(np.uint8) + ]).unsqueeze(1).clip(0, 1).to(mask.device) + return distance_transform + + +def default(x, d): + return d if x is None else x + +def get_custom_betas(beta_start: float, beta_end: float, warmup_frac: float = 0.3, num_train_timesteps: int = 1000): + """Custom beta schedule""" + betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32) + warmup_frac = 0.3 + warmup_time = int(num_train_timesteps * warmup_frac) + warmup_steps = np.linspace(beta_start, beta_end, warmup_time, dtype=np.float64) + warmup_time = min(warmup_time, num_train_timesteps) + betas[:warmup_time] = warmup_steps[:warmup_time] + return betas diff --git a/model/point_model.py b/model/point_model.py new file mode 100644 index 0000000000000000000000000000000000000000..36526f9ca52e4add43fae6ae1b59e3340501ae23 --- /dev/null +++ b/model/point_model.py @@ -0,0 +1,38 @@ +import torch +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers import ModelMixin +from torch import Tensor + +from .temporaltrans.temptrans import SimpleTransModel + +class PointModel(ModelMixin, ConfigMixin): + @register_to_config + def __init__( + self, + model_type: str = 'pvcnn', + in_channels: int = 3, + out_channels: int = 3, + embed_dim: int = 64, + dropout: float = 0.1, + width_multiplier: int = 1, + voxel_resolution_multiplier: int = 1, + ): + super().__init__() + self.model_type = model_type + if self.model_type == 'simple': + self.autocast_context = torch.autocast('cuda', dtype=torch.float32) + self.model = SimpleTransModel( + embed_dim=embed_dim, + num_classes=out_channels, + extra_feature_channels=(in_channels - 3), + ) + self.model.output_projection.bias.data.normal_(0, 1e-6) + self.model.output_projection.weight.data.normal_(0, 1e-6) + else: + raise NotImplementedError() + + def forward(self, inputs: Tensor, t: Tensor, context=None) -> Tensor: + """ Receives input of shape (B, N, in_channels) and returns output + of shape (B, N, out_channels) """ + with self.autocast_context: + return self.model(inputs, t, context) diff --git a/model/temporaltrans/temptrans.py b/model/temporaltrans/temptrans.py new file mode 100644 index 0000000000000000000000000000000000000000..4ab5798dadfe12b7c40d14ea40f8d881d1728beb --- /dev/null +++ b/model/temporaltrans/temptrans.py @@ -0,0 +1,267 @@ +import torch +import torch.nn.functional as F +from torch import nn +from einops import rearrange +from .transformer_utils import BaseTemperalPointModel +import math +from einops_exts import check_shape, rearrange_many +from functools import partial +from rotary_embedding_torch import RotaryEmbedding + +def exists(x): + return x is not None + +class SinusoidalPosEmb(nn.Module): + def __init__(self, dim): + super().__init__() + self.dim = dim + + def forward(self, x): + device = x.device + half_dim = self.dim // 2 + emb = math.log(10000) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, device=device) * -emb) + emb = x[:, None] * emb[None, :] + emb = torch.cat((emb.sin(), emb.cos()), dim=-1) + return emb + + +class RelativePositionBias(nn.Module): + def __init__( + self, + heads = 8, + num_buckets = 32, + max_distance = 128 + ): + super().__init__() + self.num_buckets = num_buckets + self.max_distance = max_distance + self.relative_attention_bias = nn.Embedding(num_buckets, heads) + + @staticmethod + def _relative_position_bucket(relative_position, num_buckets = 32, max_distance = 128): + ret = 0 + n = -relative_position + + num_buckets //= 2 + ret += (n < 0).long() * num_buckets + n = torch.abs(n) + + max_exact = num_buckets // 2 + is_small = n < max_exact + + val_if_large = max_exact + ( + torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) + ).long() + val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) + + ret += torch.where(is_small, n, val_if_large) + return ret + + def forward(self, n, device): + q_pos = torch.arange(n, dtype = torch.long, device = device) + k_pos = torch.arange(n, dtype = torch.long, device = device) + rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1') + rp_bucket = self._relative_position_bucket(rel_pos, num_buckets = self.num_buckets, max_distance = self.max_distance) + values = self.relative_attention_bias(rp_bucket) + return rearrange(values, 'i j h -> h i j') + + +class Residual(nn.Module): + def __init__(self, fn): + super().__init__() + self.fn = fn + + def forward(self, x, *args, **kwargs): + return self.fn(x, *args, **kwargs) + x + + +class LayerNorm(nn.Module): + def __init__(self, dim, eps = 1e-5): + super().__init__() + self.eps = eps + self.gamma = nn.Parameter(torch.ones(1, 1, dim)) + self.beta = nn.Parameter(torch.zeros(1, 1, dim)) + + def forward(self, x): + var = torch.var(x, dim = -1, unbiased = False, keepdim = True) + mean = torch.mean(x, dim = -1, keepdim = True) + return (x - mean) / (var + self.eps).sqrt() * self.gamma + self.beta + + +class PreNorm(nn.Module): + def __init__(self, dim, fn): + super().__init__() + self.fn = fn + self.norm = LayerNorm(dim) + + def forward(self, x, **kwargs): + x = self.norm(x) + return self.fn(x, **kwargs) + + +class EinopsToAndFrom(nn.Module): + def __init__(self, from_einops, to_einops, fn): + super().__init__() + self.from_einops = from_einops + self.to_einops = to_einops + self.fn = fn + + def forward(self, x, **kwargs): + shape = x.shape + reconstitute_kwargs = dict(tuple(zip(self.from_einops.split(' '), shape))) + x = rearrange(x, f'{self.from_einops} -> {self.to_einops}') + x = self.fn(x, **kwargs) + x = rearrange(x, f'{self.to_einops} -> {self.from_einops}', **reconstitute_kwargs) + return x + + +class Attention(nn.Module): + def __init__( + self, dim, heads=4, attn_head_dim=None, casual_attn=False,rotary_emb = None): + super().__init__() + self.num_heads = heads + head_dim = dim // heads + self.casual_attn = casual_attn + + if attn_head_dim is not None: + head_dim = attn_head_dim + + all_head_dim = head_dim * self.num_heads + self.scale = head_dim ** -0.5 + self.to_qkv = nn.Linear(dim, all_head_dim * 3, bias=False) + self.proj = nn.Linear(all_head_dim, dim) + self.rotary_emb = rotary_emb + + def forward(self, x, pos_bias = None): + N, device = x.shape[-2], x.device + qkv = self.to_qkv(x).chunk(3, dim = -1) + + q, k, v = rearrange_many(qkv, '... n (h d) -> ... h n d', h=self.num_heads) + + q = q * self.scale + + if exists(self.rotary_emb): + q = self.rotary_emb.rotate_queries_or_keys(q) + k = self.rotary_emb.rotate_queries_or_keys(k) + + sim = torch.einsum('... h i d, ... h j d -> ... h i j', q, k) + + if exists(pos_bias): + sim = sim + pos_bias + + if self.casual_attn: + mask = torch.tril(torch.ones(sim.size(-1), sim.size(-2))).to(device) + sim = sim.masked_fill(mask[..., :, :] == 0, float('-inf')) + + attn = sim.softmax(dim = -1) + x = torch.einsum('... h i j, ... h j d -> ... h i d', attn, v) + x = rearrange(x, '... h n d -> ... n (h d)') + x = self.proj(x) + return x + + +class Block(nn.Module): + def __init__(self, dim, dim_out): + super().__init__() + self.proj = nn.Linear(dim, dim_out) + self.norm = LayerNorm(dim) + self.act = nn.SiLU() + + def forward(self, x, scale_shift=None): + x = self.proj(x) + + if exists(scale_shift): + x = self.norm(x) + scale, shift = scale_shift + x = x * (scale + 1) + shift + return self.act(x) + + +class ResnetBlock(nn.Module): + def __init__(self, dim, dim_out, cond_dim=None): + super().__init__() + self.mlp = nn.Sequential( + nn.SiLU(), + nn.Linear(cond_dim, dim_out * 2) + ) if exists(cond_dim) else None + + self.block1 = Block(dim, dim_out) + self.block2 = Block(dim_out, dim_out) + + def forward(self, x, cond_emb=None): + scale_shift = None + if exists(self.mlp): + assert exists(cond_emb), 'time emb must be passed in' + cond_emb = self.mlp(cond_emb) + #cond_emb = rearrange(cond_emb, 'b f c -> b f 1 c') + scale_shift = cond_emb.chunk(2, dim=-1) + + h = self.block1(x, scale_shift=scale_shift) + h = self.block2(h) + return h + x + +class SimpleTransModel(BaseTemperalPointModel): + """ + A simple model that processes a point cloud by applying a series of MLPs to each point + individually, along with some pooled global features. + """ + + def get_layers(self): + self.input_projection = nn.Linear( + in_features=70, + out_features=self.dim + ) + + cond_dim = 512 + self.timestep_embed_dim + + num_head = self.dim//64 + + rotary_emb = RotaryEmbedding(min(32, num_head)) + + self.time_rel_pos_bias = RelativePositionBias(heads=num_head, max_distance=128) # realistically will not be able to generate that many frames of video... yet + + temporal_casual_attn = lambda dim: Attention(dim, heads=num_head, casual_attn=False,rotary_emb=rotary_emb) + + cond_block = partial(ResnetBlock, cond_dim=cond_dim) + + layers = nn.ModuleList([]) + + for _ in range(self.num_layers): + layers.append(nn.ModuleList([ + cond_block(self.dim, self.dim), + cond_block(self.dim, self.dim), + Residual(PreNorm(self.dim, temporal_casual_attn(self.dim))) + ])) + + return layers + + def forward(self, inputs: torch.Tensor, timesteps: torch.Tensor, context=None): + """ + Apply the model to an input batch. + :param x: an [N x C x ...] Tensor of inputs. + :param timesteps: a 1-D batch of timesteps. + :param context: conditioning plugged in via crossattn + """ + # Prepare inputs + + batch, num_frames, channels = inputs.size() + + device = inputs.device + x = self.input_projection(inputs) + + t_emb = self.time_mlp(timesteps) if exists(self.time_mlp) else None + t_emb = t_emb[:,None,:].expand(-1, num_frames, -1) # b f c + if context is not None: + t_emb = torch.cat([t_emb, context],-1) + + time_rel_pos_bias = self.time_rel_pos_bias(num_frames, device=device) + + for block1, block2, temporal_attn in self.layers: + x = block1(x, t_emb) + x = block2(x, t_emb) + x = temporal_attn(x, pos_bias=time_rel_pos_bias) + + # Project + x = self.output_projection(x) + return x \ No newline at end of file diff --git a/model/temporaltrans/transformer_utils.py b/model/temporaltrans/transformer_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..97af01dd96288c3e8382255eec11d9474cd325d9 --- /dev/null +++ b/model/temporaltrans/transformer_utils.py @@ -0,0 +1,147 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch import nn +from einops import rearrange +import math +from einops_exts import check_shape, rearrange_many +from torch import Size, Tensor, nn + +class SinusoidalPosEmb(nn.Module): + def __init__(self, dim): + super().__init__() + self.dim = dim + + def forward(self, x): + device = x.device + half_dim = self.dim // 2 + emb = math.log(10000) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, device=device) * -emb) + emb = x[:, None] * emb[None, :] + emb = torch.cat((emb.sin(), emb.cos()), dim=-1) + return emb + + +def map_positional_encoding(v: Tensor, freq_bands: Tensor) -> Tensor: + """Map v to positional encoding representation phi(v) + + Arguments: + v (Tensor): input features (B, IFeatures) + freq_bands (Tensor): frequency bands (N_freqs, ) + + Returns: + phi(v) (Tensor): fourrier features (B, 3 + (2 * N_freqs) * 3) + """ + pe = [v] + for freq in freq_bands: + fv = freq * v + pe += [torch.sin(fv), torch.cos(fv)] + return torch.cat(pe, dim=-1) + +class FeatureMapping(nn.Module): + """FeatureMapping nn.Module + + Maps v to features following transformation phi(v) + + Arguments: + i_dim (int): input dimensions + o_dim (int): output dimensions + """ + + def __init__(self, i_dim: int, o_dim: int) -> None: + super().__init__() + self.i_dim = i_dim + self.o_dim = o_dim + + def forward(self, v: Tensor) -> Tensor: + """FeratureMapping forward pass + + Arguments: + v (Tensor): input features (B, IFeatures) + + Returns: + phi(v) (Tensor): mapped features (B, OFeatures) + """ + raise NotImplementedError("Forward pass not implemented yet!") + +class PositionalEncoding(FeatureMapping): + """PositionalEncoding module + + Maps v to positional encoding representation phi(v) + + Arguments: + i_dim (int): input dimension for v + N_freqs (int): #frequency to sample (default: 10) + """ + + def __init__( + self, + i_dim: int, + N_freqs: int = 10, + ) -> None: + super().__init__(i_dim, 3 + (2 * N_freqs) * 3) + self.N_freqs = N_freqs + + a, b = 1, self.N_freqs - 1 + freq_bands = 2 ** torch.linspace(a, b, self.N_freqs) + self.register_buffer("freq_bands", freq_bands) + + def forward(self, v: Tensor) -> Tensor: + """Map v to positional encoding representation phi(v) + + Arguments: + v (Tensor): input features (B, IFeatures) + + Returns: + phi(v) (Tensor): fourrier features (B, 3 + (2 * N_freqs) * 3) + """ + return map_positional_encoding(v, self.freq_bands) + +class BaseTemperalPointModel(nn.Module): + """ A base class providing useful methods for point cloud processing. """ + + def __init__( + self, + *, + num_classes, + embed_dim, + extra_feature_channels, + dim: int = 768, + num_layers: int = 6 + ): + super().__init__() + + self.extra_feature_channels = extra_feature_channels + self.timestep_embed_dim = 256 + self.output_dim = num_classes + self.dim = dim + self.num_layers = num_layers + + + self.time_mlp = nn.Sequential( + SinusoidalPosEmb(dim), + nn.Linear(dim, self.timestep_embed_dim ), + nn.SiLU(), + nn.Linear(self.timestep_embed_dim , self.timestep_embed_dim ) + ) + + self.positional_encoding = PositionalEncoding(i_dim=3, N_freqs=10) + positional_encoding_d_out = 3 + (2 * 10) * 3 + + # Input projection (point coords, point coord encodings, other features, and timestep embeddings) + + self.input_projection = nn.Linear( + in_features=(3 + positional_encoding_d_out), + out_features=self.dim + )#b f p c + + # Transformer layers + self.layers = self.get_layers() + + # Output projection + self.output_projection = nn.Linear(self.dim, self.output_dim) + def get_layers(self): + raise NotImplementedError('This method should be implemented by subclasses') + + def forward(self, inputs: torch.Tensor, t: torch.Tensor): + raise NotImplementedError('This method should be implemented by subclasses') diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..f6a696fb823660a120ff58c9980dc0f6acb4cfad --- /dev/null +++ b/requirements.txt @@ -0,0 +1,44 @@ +onnxruntime-gpu==1.18.0 +transformers==4.33.0 +pyyaml==6.0.1 +scipy==1.10.0 +imageio==2.34.2 +lmdb==1.4.1 +tqdm==4.64.1 +rich==13.7.1 +ffmpeg-python==0.2.0 +protobuf==3.20.2 +onnx==1.16.1 +scikit-image==0.24.0 +scikit-learn==1.3.2 +albumentations==1.4.10 +matplotlib==3.7.0 +imageio-ffmpeg==0.5.1 +tyro==0.8.5 +pykalman==0.9.7 +pillow>=10.2.0 +pytorch_fid +cpbd + +wandb==0.17.5 +accelerate==0.23.0 +basicsr==1.4.2 +diffusers==0.10.2 +einops==0.6.0 +einops_exts==0.0.4 +hydra-core==1.3.2 +librosa==0.10.0.post2 +lws==1.2.7 +moviepy==1.0.3 +omegaconf==2.3.0 +opencv_python_headless>=4.9.0.80 +pydub==0.25.1 +PyYAML==6.0.1 +realesrgan==0.3.0 +rotary_embedding_torch==0.3.0 +timm==0.4.12 +torch_ema==0.3 +warmup_scheduler==0.3 +yacs==0.1.8 +numpy==1.24.4 +dlib==19.24.99 \ No newline at end of file diff --git a/src/config/__init__.py b/src/config/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/config/argument_config.py b/src/config/argument_config.py new file mode 100644 index 0000000000000000000000000000000000000000..bacf15abe59b0899f3c4c25e4fcf9ae9b2a7f427 --- /dev/null +++ b/src/config/argument_config.py @@ -0,0 +1,48 @@ +# coding: utf-8 + +""" +All configs for user +""" + +from dataclasses import dataclass +import tyro +from typing_extensions import Annotated +from typing import Optional +from .base_config import PrintableConfig, make_abs_path + + +@dataclass(repr=False) # use repr from PrintableConfig +class ArgumentConfig(PrintableConfig): + ########## input arguments ########## + source_image: Annotated[str, tyro.conf.arg(aliases=["-s"])] = make_abs_path('../../assets/examples/source/s6.jpg') # path to the source portrait + driving_info: Annotated[str, tyro.conf.arg(aliases=["-d"])] = make_abs_path('../../assets/examples/driving/d12.mp4') # path to driving video or template (.pkl format) + output_dir: Annotated[str, tyro.conf.arg(aliases=["-o"])] = 'animations/' # directory to save output video + + ########## inference arguments ########## + flag_use_half_precision: bool = False # whether to use half precision (FP16). If black boxes appear, it might be due to GPU incompatibility; set to False. + flag_crop_driving_video: bool = False # whether to crop the driving video, if the given driving info is a video + device_id: int = 0 # gpu device id + flag_force_cpu: bool = False # force cpu inference, WIP! + flag_lip_zero: bool = False # whether let the lip to close state before animation, only take effect when flag_eye_retargeting and flag_lip_retargeting is False + flag_eye_retargeting: bool = False # not recommend to be True, WIP + flag_lip_retargeting: bool = False # not recommend to be True, WIP + flag_stitching: bool = False # recommend to True if head movement is small, False if head movement is large + flag_relative_motion: bool = False # whether to use relative motion + flag_pasteback: bool = False # whether to paste-back/stitch the animated face cropping from the face-cropping space to the original image space + flag_do_crop: bool = False # whether to crop the source portrait to the face-cropping space + flag_do_rot: bool = False # whether to conduct the rotation when flag_do_crop is True + + ########## crop arguments ########## + scale: float = 2.3 # the ratio of face area is smaller if scale is larger + vx_ratio: float = 0 # the ratio to move the face to left or right in cropping space + vy_ratio: float = -0.125 # the ratio to move the face to up or down in cropping space + + scale_crop_video: float = 2.2 # scale factor for cropping video + vx_ratio_crop_video: float = 0. # adjust y offset + vy_ratio_crop_video: float = -0.1 # adjust x offset + + ########## gradio arguments ########## + server_port: Annotated[int, tyro.conf.arg(aliases=["-p"])] = 8890 # port for gradio server + share: bool = False # whether to share the server to public + server_name: Optional[str] = "127.0.0.1" # set the local server name, "0.0.0.0" to broadcast all + flag_do_torch_compile: bool = False # whether to use torch.compile to accelerate generation diff --git a/src/config/base_config.py b/src/config/base_config.py new file mode 100644 index 0000000000000000000000000000000000000000..216b8be50aecc8af4b9d1d2a9401e034dd7769e4 --- /dev/null +++ b/src/config/base_config.py @@ -0,0 +1,29 @@ +# coding: utf-8 + +""" +pretty printing class +""" + +from __future__ import annotations +import os.path as osp +from typing import Tuple + + +def make_abs_path(fn): + return osp.join(osp.dirname(osp.realpath(__file__)), fn) + + +class PrintableConfig: # pylint: disable=too-few-public-methods + """Printable Config defining str function""" + + def __repr__(self): + lines = [self.__class__.__name__ + ":"] + for key, val in vars(self).items(): + if isinstance(val, Tuple): + flattened_val = "[" + for item in val: + flattened_val += str(item) + "\n" + flattened_val = flattened_val.rstrip("\n") + val = flattened_val + "]" + lines += f"{key}: {str(val)}".split("\n") + return "\n ".join(lines) diff --git a/src/config/crop_config.py b/src/config/crop_config.py new file mode 100644 index 0000000000000000000000000000000000000000..d6d6370dd5572e5ebb5f607540baac08c26997bb --- /dev/null +++ b/src/config/crop_config.py @@ -0,0 +1,29 @@ +# coding: utf-8 + +""" +parameters used for crop faces +""" + +from dataclasses import dataclass + +from .base_config import PrintableConfig + + +@dataclass(repr=False) # use repr from PrintableConfig +class CropConfig(PrintableConfig): + insightface_root: str = "../../pretrained_weights/insightface" + landmark_ckpt_path: str = "../../pretrained_weights/liveportrait/landmark.onnx" + device_id: int = 0 # gpu device id + flag_force_cpu: bool = False # force cpu inference, WIP + ########## source image cropping option ########## + dsize: int = 512 # crop size + scale: float = 2.0 # scale factor + vx_ratio: float = 0 # vx ratio + vy_ratio: float = -0.125 # vy ratio +up, -down + max_face_num: int = 0 # max face number, 0 mean no limit + + ########## driving video auto cropping option ########## + scale_crop_video: float = 2.2 # 2.0 # scale factor for cropping video + vx_ratio_crop_video: float = 0.0 # adjust y offset + vy_ratio_crop_video: float = -0.1 # adjust x offset + direction: str = "large-small" # direction of cropping diff --git a/src/config/inference_config.py b/src/config/inference_config.py new file mode 100644 index 0000000000000000000000000000000000000000..b14d7cba6205ba4a868d834adc21e9786a17689b --- /dev/null +++ b/src/config/inference_config.py @@ -0,0 +1,52 @@ +# coding: utf-8 + +""" +config dataclass used for inference +""" + +import os.path as osp +import cv2 +from numpy import ndarray +from dataclasses import dataclass +from typing import Literal, Tuple +from .base_config import PrintableConfig, make_abs_path + + +@dataclass(repr=False) # use repr from PrintableConfig +class InferenceConfig(PrintableConfig): + # MODEL CONFIG, NOT EXPORTED PARAMS + models_config: str = make_abs_path('./models.yaml') # portrait animation config + checkpoint_F: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/appearance_feature_extractor.pth') # path to checkpoint of F + checkpoint_M: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/motion_extractor.pth') # path to checkpoint pf M + checkpoint_G: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/spade_generator.pth') # path to checkpoint of G + checkpoint_W: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/warping_module.pth') # path to checkpoint of W + checkpoint_S: str = make_abs_path('../../pretrained_weights/liveportrait/retargeting_models/stitching_retargeting_module.pth') # path to checkpoint to S and R_eyes, R_lip + + # EXPORTED PARAMS + flag_use_half_precision: bool = True + flag_crop_driving_video: bool = False + device_id: int = 0 + flag_lip_zero: bool = False + flag_eye_retargeting: bool = False + flag_lip_retargeting: bool = False + flag_stitching: bool = False + flag_relative_motion: bool = False + flag_pasteback: bool = False + flag_do_crop: bool = False + flag_do_rot: bool = False + flag_force_cpu: bool = False + flag_do_torch_compile: bool = False + + # NOT EXPORTED PARAMS + lip_zero_threshold: float = 0.03 # threshold for flag_lip_zero + anchor_frame: int = 0 # TO IMPLEMENT + + input_shape: Tuple[int, int] = (256, 256) # input shape + output_format: Literal['mp4', 'gif'] = 'mp4' # output video format + crf: int = 15 # crf for output video + output_fps: int = 25 # default output fps + + mask_crop: ndarray = cv2.imread(make_abs_path('../utils/resources/mask_template.png'), cv2.IMREAD_COLOR) + size_gif: int = 256 # default gif size, TO IMPLEMENT + source_max_dim: int = 1280 # the max dim of height and width of source image + source_division: int = 2 # make sure the height and width of source image can be divided by this number diff --git a/src/config/models.yaml b/src/config/models.yaml new file mode 100644 index 0000000000000000000000000000000000000000..131d1c65025c31e37af9239e211ea14454128a2e --- /dev/null +++ b/src/config/models.yaml @@ -0,0 +1,43 @@ +model_params: + appearance_feature_extractor_params: # the F in the paper + image_channel: 3 + block_expansion: 64 + num_down_blocks: 2 + max_features: 512 + reshape_channel: 32 + reshape_depth: 16 + num_resblocks: 6 + motion_extractor_params: # the M in the paper + num_kp: 21 + backbone: convnextv2_tiny + warping_module_params: # the W in the paper + num_kp: 21 + block_expansion: 64 + max_features: 512 + num_down_blocks: 2 + reshape_channel: 32 + estimate_occlusion_map: True + dense_motion_params: + block_expansion: 32 + max_features: 1024 + num_blocks: 5 + reshape_depth: 16 + compress: 4 + spade_generator_params: # the G in the paper + upscale: 2 # represents upsample factor 256x256 -> 512x512 + block_expansion: 64 + max_features: 512 + num_down_blocks: 2 + stitching_retargeting_module_params: # the S in the paper + stitching: + input_size: 126 # (21*3)*2 + hidden_sizes: [128, 128, 64] + output_size: 65 # (21*3)+2(tx,ty) + lip: + input_size: 65 # (21*3)+2 + hidden_sizes: [128, 128, 64] + output_size: 63 # (21*3) + eye: + input_size: 66 # (21*3)+3 + hidden_sizes: [256, 256, 128, 128, 64] + output_size: 63 # (21*3) diff --git a/src/gradio_pipeline.py b/src/gradio_pipeline.py new file mode 100644 index 0000000000000000000000000000000000000000..f7343f7df6b8a6c6815c5af3526ed6dc857a7c0c --- /dev/null +++ b/src/gradio_pipeline.py @@ -0,0 +1,117 @@ +# coding: utf-8 + +""" +Pipeline for gradio +""" +import gradio as gr + +from .config.argument_config import ArgumentConfig +from .live_portrait_pipeline import LivePortraitPipeline +from .utils.io import load_img_online +from .utils.rprint import rlog as log +from .utils.crop import prepare_paste_back, paste_back +from .utils.camera import get_rotation_matrix + + +def update_args(args, user_args): + """update the args according to user inputs + """ + for k, v in user_args.items(): + if hasattr(args, k): + setattr(args, k, v) + return args + + +class GradioPipeline(LivePortraitPipeline): + + def __init__(self, inference_cfg, crop_cfg, args: ArgumentConfig): + super().__init__(inference_cfg, crop_cfg) + # self.live_portrait_wrapper = self.live_portrait_wrapper + self.args = args + + def execute_video( + self, + input_image_path, + input_video_path, + flag_relative_input, + flag_do_crop_input, + flag_remap_input, + flag_crop_driving_video_input + ): + """ for video driven potrait animation + """ + if input_image_path is not None and input_video_path is not None: + args_user = { + 'source_image': input_image_path, + 'driving_info': input_video_path, + 'flag_relative': flag_relative_input, + 'flag_do_crop': flag_do_crop_input, + 'flag_pasteback': flag_remap_input, + 'flag_crop_driving_video': flag_crop_driving_video_input + } + # update config from user input + self.args = update_args(self.args, args_user) + self.live_portrait_wrapper.update_config(self.args.__dict__) + self.cropper.update_config(self.args.__dict__) + # video driven animation + video_path, video_path_concat = self.execute(self.args) + gr.Info("Run successfully!", duration=2) + return video_path, video_path_concat, + else: + raise gr.Error("The input source portrait or driving video hasn't been prepared yet 💥!", duration=5) + + def execute_image(self, input_eye_ratio: float, input_lip_ratio: float, input_image, flag_do_crop=True): + """ for single image retargeting + """ + # disposable feature + f_s_user, x_s_user, source_lmk_user, crop_M_c2o, mask_ori, img_rgb = \ + self.prepare_retargeting(input_image, flag_do_crop) + + if input_eye_ratio is None or input_lip_ratio is None: + raise gr.Error("Invalid ratio input 💥!", duration=5) + else: + inference_cfg = self.live_portrait_wrapper.inference_cfg + x_s_user = x_s_user.to(self.live_portrait_wrapper.device) + f_s_user = f_s_user.to(self.live_portrait_wrapper.device) + # ∆_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i) + combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio([[input_eye_ratio]], source_lmk_user) + eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s_user, combined_eye_ratio_tensor) + # ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i) + combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio([[input_lip_ratio]], source_lmk_user) + lip_delta = self.live_portrait_wrapper.retarget_lip(x_s_user, combined_lip_ratio_tensor) + num_kp = x_s_user.shape[1] + # default: use x_s + x_d_new = x_s_user + eyes_delta.reshape(-1, num_kp, 3) + lip_delta.reshape(-1, num_kp, 3) + # D(W(f_s; x_s, x′_d)) + out = self.live_portrait_wrapper.warp_decode(f_s_user, x_s_user, x_d_new) + out = self.live_portrait_wrapper.parse_output(out['out'])[0] + out_to_ori_blend = paste_back(out, crop_M_c2o, img_rgb, mask_ori) + gr.Info("Run successfully!", duration=2) + return out, out_to_ori_blend + + def prepare_retargeting(self, input_image, flag_do_crop=True): + """ for single image retargeting + """ + if input_image is not None: + # gr.Info("Upload successfully!", duration=2) + inference_cfg = self.live_portrait_wrapper.inference_cfg + ######## process source portrait ######## + img_rgb = load_img_online(input_image, mode='rgb', max_dim=1280, n=16) + log(f"Load source image from {input_image}.") + crop_info = self.cropper.crop_source_image(img_rgb, self.cropper.crop_cfg) + if flag_do_crop: + I_s = self.live_portrait_wrapper.prepare_source(crop_info['img_crop_256x256']) + else: + I_s = self.live_portrait_wrapper.prepare_source(img_rgb) + x_s_info = self.live_portrait_wrapper.get_kp_info(I_s) + R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll']) + ############################################ + f_s_user = self.live_portrait_wrapper.extract_feature_3d(I_s) + x_s_user = self.live_portrait_wrapper.transform_keypoint(x_s_info) + source_lmk_user = crop_info['lmk_crop'] + crop_M_c2o = crop_info['M_c2o'] + mask_ori = prepare_paste_back(inference_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0])) + return f_s_user, x_s_user, source_lmk_user, crop_M_c2o, mask_ori, img_rgb + else: + # when press the clear button, go here + raise gr.Error("The retargeting input hasn't been prepared yet 💥!", duration=5) diff --git a/src/live_portrait_pipeline.py b/src/live_portrait_pipeline.py new file mode 100644 index 0000000000000000000000000000000000000000..e20db99a98c8015b99167d9e8e36aef6c615999e --- /dev/null +++ b/src/live_portrait_pipeline.py @@ -0,0 +1,285 @@ +# coding: utf-8 + +""" +Pipeline of LivePortrait +""" + +import torch +torch.backends.cudnn.benchmark = True # disable CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR warning + +import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False) +import numpy as np +import os +import os.path as osp +from rich.progress import track + +from .config.argument_config import ArgumentConfig +from .config.inference_config import InferenceConfig +from .config.crop_config import CropConfig +from .utils.cropper import Cropper +from .utils.camera import get_rotation_matrix +from .utils.video import images2video, concat_frames, get_fps, add_audio_to_video, has_audio_stream +from .utils.crop import prepare_paste_back, paste_back +from .utils.io import load_image_rgb, load_driving_info, resize_to_limit, dump, load +from .utils.helper import mkdir, basename, dct2device, is_video, is_template, remove_suffix +from .utils.rprint import rlog as log +# from .utils.viz import viz_lmk +from .live_portrait_wrapper import LivePortraitWrapper + + +def make_abs_path(fn): + return osp.join(osp.dirname(osp.realpath(__file__)), fn) + + +class LivePortraitPipeline(object): + + def __init__(self, inference_cfg: InferenceConfig, crop_cfg: CropConfig): + self.live_portrait_wrapper: LivePortraitWrapper = LivePortraitWrapper(inference_cfg=inference_cfg) + self.cropper: Cropper = Cropper(crop_cfg=crop_cfg) + + def execute(self, args: ArgumentConfig): + # for convenience + inf_cfg = self.live_portrait_wrapper.inference_cfg + device = self.live_portrait_wrapper.device + crop_cfg = self.cropper.crop_cfg + + ######## process source portrait ######## + img_rgb = load_image_rgb(args.source_image) + img_rgb = resize_to_limit(img_rgb, inf_cfg.source_max_dim, inf_cfg.source_division) + log(f"Load source image from {args.source_image}") + + crop_info = self.cropper.crop_source_image(img_rgb, crop_cfg) + if crop_info is None: + raise Exception("No face detected in the source image!") + source_lmk = crop_info['lmk_crop'] + img_crop, img_crop_256x256 = crop_info['img_crop'], crop_info['img_crop_256x256'] + + if inf_cfg.flag_do_crop: + I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256) + else: + img_crop_256x256 = cv2.resize(img_rgb, (256, 256)) # force to resize to 256x256 + I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256) + x_s_info = self.live_portrait_wrapper.get_kp_info(I_s) + x_c_s = x_s_info['kp'] + R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll']) + f_s = self.live_portrait_wrapper.extract_feature_3d(I_s) + x_s = self.live_portrait_wrapper.transform_keypoint(x_s_info) + + flag_lip_zero = inf_cfg.flag_lip_zero # not overwrite + if flag_lip_zero: + # let lip-open scalar to be 0 at first + c_d_lip_before_animation = [0.] + combined_lip_ratio_tensor_before_animation = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_before_animation, source_lmk) + if combined_lip_ratio_tensor_before_animation[0][0] < inf_cfg.lip_zero_threshold: + flag_lip_zero = False + else: + lip_delta_before_animation = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor_before_animation) + ############################################ + + ######## process driving info ######## + flag_load_from_template = is_template(args.driving_info) + driving_rgb_crop_256x256_lst = None + wfp_template = None + + if flag_load_from_template: + # NOTE: load from template, it is fast, but the cropping video is None + log(f"Load from template: {args.driving_info}, NOT the video, so the cropping video and audio are both NULL.", style='bold green') + template_dct = load(args.driving_info) + n_frames = template_dct['n_frames'] + + # set output_fps + output_fps = template_dct.get('output_fps', inf_cfg.output_fps) + log(f'The FPS of template: {output_fps}') + + if args.flag_crop_driving_video: + log("Warning: flag_crop_driving_video is True, but the driving info is a template, so it is ignored.") + + elif osp.exists(args.driving_info) and is_video(args.driving_info): + # load from video file, AND make motion template + log(f"Load video: {args.driving_info}") + if osp.isdir(args.driving_info): + output_fps = inf_cfg.output_fps + else: + output_fps = int(get_fps(args.driving_info)) + log(f'The FPS of {args.driving_info} is: {output_fps}') + + log(f"Load video file (mp4 mov avi etc...): {args.driving_info}") + driving_rgb_lst = load_driving_info(args.driving_info) + + ######## make motion template ######## + log("Start making motion template...") + if inf_cfg.flag_crop_driving_video: + ret = self.cropper.crop_driving_video(driving_rgb_lst) + log(f'Driving video is cropped, {len(ret["frame_crop_lst"])} frames are processed.') + driving_rgb_crop_lst, driving_lmk_crop_lst = ret['frame_crop_lst'], ret['lmk_crop_lst'] + driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_crop_lst] + else: + driving_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(driving_rgb_lst) + driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_lst] # force to resize to 256x256 + + c_d_eyes_lst, c_d_lip_lst = self.live_portrait_wrapper.calc_driving_ratio(driving_lmk_crop_lst) + # save the motion template + I_d_lst = self.live_portrait_wrapper.prepare_driving_videos(driving_rgb_crop_256x256_lst) + template_dct = self.make_motion_template(I_d_lst, c_d_eyes_lst, c_d_lip_lst, output_fps=output_fps) + + wfp_template = remove_suffix(args.driving_info) + '.pkl' + dump(wfp_template, template_dct) + log(f"Dump motion template to {wfp_template}") + + n_frames = I_d_lst.shape[0] + else: + raise Exception(f"{args.driving_info} not exists or unsupported driving info types!") + ######################################### + + ######## prepare for pasteback ######## + I_p_pstbk_lst = None + if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching: + mask_ori_float = prepare_paste_back(inf_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0])) + I_p_pstbk_lst = [] + log("Prepared pasteback mask done.") + ######################################### + + I_p_lst = [] + R_d_0, x_d_0_info = None, None + + for i in track(range(n_frames), description='🚀Animating...', total=n_frames): + x_d_i_info = template_dct['motion'][i] + x_d_i_info = dct2device(x_d_i_info, device) + R_d_i = x_d_i_info['R_d'] + + if i == 0: + R_d_0 = R_d_i + x_d_0_info = x_d_i_info + + if inf_cfg.flag_relative_motion: + R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s + delta_new = x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp']) + scale_new = x_s_info['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale']) + t_new = x_s_info['t'] + (x_d_i_info['t'] - x_d_0_info['t']) + else: + R_new = R_d_i + delta_new = x_d_i_info['exp'] + scale_new = x_s_info['scale'] + t_new = x_d_i_info['t'] + + t_new[..., 2].fill_(0) # zero tz + x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new + + # Algorithm 1: + if not inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting: + # without stitching or retargeting + if flag_lip_zero: + x_d_i_new += lip_delta_before_animation.reshape(-1, x_s.shape[1], 3) + else: + pass + elif inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting: + # with stitching and without retargeting + if flag_lip_zero: + x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new) + lip_delta_before_animation.reshape(-1, x_s.shape[1], 3) + else: + x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new) + else: + eyes_delta, lip_delta = None, None + if inf_cfg.flag_eye_retargeting: + c_d_eyes_i = c_d_eyes_lst[i] + combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio(c_d_eyes_i, source_lmk) + # ∆_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i) + eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s, combined_eye_ratio_tensor) + if inf_cfg.flag_lip_retargeting: + c_d_lip_i = c_d_lip_lst[i] + combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_i, source_lmk) + # ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i) + lip_delta = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor) + + if inf_cfg.flag_relative_motion: # use x_s + x_d_i_new = x_s + \ + (eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \ + (lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0) + else: # use x_d,i + x_d_i_new = x_d_i_new + \ + (eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \ + (lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0) + + if inf_cfg.flag_stitching: + x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new) + + out = self.live_portrait_wrapper.warp_decode(f_s, x_s, x_d_i_new) + I_p_i = self.live_portrait_wrapper.parse_output(out['out'])[0] + I_p_lst.append(I_p_i) + + if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching: + # TODO: pasteback is slow, considering optimize it using multi-threading or GPU + I_p_pstbk = paste_back(I_p_i, crop_info['M_c2o'], img_rgb, mask_ori_float) + I_p_pstbk_lst.append(I_p_pstbk) + + mkdir(args.output_dir) + wfp_concat = None + flag_has_audio = (not flag_load_from_template) and has_audio_stream(args.driving_info) + + ######### build final concact result ######### + # driving frame | source image | generation, or source image | generation + frames_concatenated = concat_frames(driving_rgb_crop_256x256_lst, img_crop_256x256, I_p_lst) + wfp_concat = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_concat.mp4') + images2video(frames_concatenated, wfp=wfp_concat, fps=output_fps) + + if flag_has_audio: + # final result with concact + wfp_concat_with_audio = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_concat_with_audio.mp4') + add_audio_to_video(wfp_concat, args.driving_info, wfp_concat_with_audio) + os.replace(wfp_concat_with_audio, wfp_concat) + log(f"Replace {wfp_concat} with {wfp_concat_with_audio}") + + # save drived result + wfp = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}.mp4') + if I_p_pstbk_lst is not None and len(I_p_pstbk_lst) > 0: + images2video(I_p_pstbk_lst, wfp=wfp, fps=output_fps) + else: + images2video(I_p_lst, wfp=wfp, fps=output_fps) + + ######### build final result ######### + if flag_has_audio: + wfp_with_audio = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_with_audio.mp4') + add_audio_to_video(wfp, args.driving_info, wfp_with_audio) + os.replace(wfp_with_audio, wfp) + log(f"Replace {wfp} with {wfp_with_audio}") + + # final log + if wfp_template not in (None, ''): + log(f'Animated template: {wfp_template}, you can specify `-d` argument with this template path next time to avoid cropping video, motion making and protecting privacy.', style='bold green') + log(f'Animated video: {wfp}') + log(f'Animated video with concact: {wfp_concat}') + + return wfp, wfp_concat + + def make_motion_template(self, I_d_lst, c_d_eyes_lst, c_d_lip_lst, **kwargs): + n_frames = I_d_lst.shape[0] + template_dct = { + 'n_frames': n_frames, + 'output_fps': kwargs.get('output_fps', 25), + 'motion': [], + 'c_d_eyes_lst': [], + 'c_d_lip_lst': [], + } + + for i in track(range(n_frames), description='Making motion templates...', total=n_frames): + # collect s_d, R_d, δ_d and t_d for inference + I_d_i = I_d_lst[i] + x_d_i_info = self.live_portrait_wrapper.get_kp_info(I_d_i) + R_d_i = get_rotation_matrix(x_d_i_info['pitch'], x_d_i_info['yaw'], x_d_i_info['roll']) + + item_dct = { + 'scale': x_d_i_info['scale'].cpu().numpy().astype(np.float32), + 'R_d': R_d_i.cpu().numpy().astype(np.float32), + 'exp': x_d_i_info['exp'].cpu().numpy().astype(np.float32), + 't': x_d_i_info['t'].cpu().numpy().astype(np.float32), + } + + template_dct['motion'].append(item_dct) + + c_d_eyes = c_d_eyes_lst[i].astype(np.float32) + template_dct['c_d_eyes_lst'].append(c_d_eyes) + + c_d_lip = c_d_lip_lst[i].astype(np.float32) + template_dct['c_d_lip_lst'].append(c_d_lip) + + return template_dct diff --git a/src/live_portrait_wrapper.py b/src/live_portrait_wrapper.py new file mode 100644 index 0000000000000000000000000000000000000000..6c5bd6eebe929d9aa535dc3000c48272e7cdf417 --- /dev/null +++ b/src/live_portrait_wrapper.py @@ -0,0 +1,318 @@ +# coding: utf-8 + +""" +Wrapper for LivePortrait core functions +""" + +import os.path as osp +import numpy as np +import cv2 +import torch +import yaml + +from .utils.timer import Timer +from .utils.helper import load_model, concat_feat +from .utils.camera import headpose_pred_to_degree, get_rotation_matrix +from .utils.retargeting_utils import calc_eye_close_ratio, calc_lip_close_ratio +from .config.inference_config import InferenceConfig +from .utils.rprint import rlog as log + + +class LivePortraitWrapper(object): + + def __init__(self, inference_cfg: InferenceConfig): + + self.inference_cfg = inference_cfg + self.device_id = inference_cfg.device_id + self.compile = inference_cfg.flag_do_torch_compile + if inference_cfg.flag_force_cpu: + self.device = 'cpu' + else: + self.device = 'cuda:' + str(self.device_id) + + model_config = yaml.load(open(inference_cfg.models_config, 'r'), Loader=yaml.SafeLoader) + # init F + self.appearance_feature_extractor = load_model(inference_cfg.checkpoint_F, model_config, self.device, 'appearance_feature_extractor') + log(f'Load appearance_feature_extractor done.') + # init M + self.motion_extractor = load_model(inference_cfg.checkpoint_M, model_config, self.device, 'motion_extractor') + log(f'Load motion_extractor done.') + # init W + self.warping_module = load_model(inference_cfg.checkpoint_W, model_config, self.device, 'warping_module') + log(f'Load warping_module done.') + # init G + self.spade_generator = load_model(inference_cfg.checkpoint_G, model_config, self.device, 'spade_generator') + log(f'Load spade_generator done.') + # init S and R + if inference_cfg.checkpoint_S is not None and osp.exists(inference_cfg.checkpoint_S): + self.stitching_retargeting_module = load_model(inference_cfg.checkpoint_S, model_config, self.device, 'stitching_retargeting_module') + log(f'Load stitching_retargeting_module done.') + else: + self.stitching_retargeting_module = None + # Optimize for inference + if self.compile: + self.warping_module = torch.compile(self.warping_module, mode='max-autotune') + self.spade_generator = torch.compile(self.spade_generator, mode='max-autotune') + + self.timer = Timer() + + def update_config(self, user_args): + for k, v in user_args.items(): + if hasattr(self.inference_cfg, k): + setattr(self.inference_cfg, k, v) + + def prepare_source(self, img: np.ndarray) -> torch.Tensor: + """ construct the input as standard + img: HxWx3, uint8, 256x256 + """ + h, w = img.shape[:2] + if h != self.inference_cfg.input_shape[0] or w != self.inference_cfg.input_shape[1]: + x = cv2.resize(img, (self.inference_cfg.input_shape[0], self.inference_cfg.input_shape[1])) + else: + x = img.copy() + + if x.ndim == 3: + x = x[np.newaxis].astype(np.float32) / 255. # HxWx3 -> 1xHxWx3, normalized to 0~1 + elif x.ndim == 4: + x = x.astype(np.float32) / 255. # BxHxWx3, normalized to 0~1 + else: + raise ValueError(f'img ndim should be 3 or 4: {x.ndim}') + x = np.clip(x, 0, 1) # clip to 0~1 + x = torch.from_numpy(x).permute(0, 3, 1, 2) # 1xHxWx3 -> 1x3xHxW + x = x.to(self.device) + return x + + def prepare_driving_videos(self, imgs) -> torch.Tensor: + """ construct the input as standard + imgs: NxBxHxWx3, uint8 + """ + if isinstance(imgs, list): + _imgs = np.array(imgs)[..., np.newaxis] # TxHxWx3x1 + elif isinstance(imgs, np.ndarray): + _imgs = imgs + else: + raise ValueError(f'imgs type error: {type(imgs)}') + + y = _imgs.astype(np.float32) / 255. + y = np.clip(y, 0, 1) # clip to 0~1 + y = torch.from_numpy(y).permute(0, 4, 3, 1, 2) # TxHxWx3x1 -> Tx1x3xHxW + y = y.to(self.device) + + return y + + def extract_feature_3d(self, x: torch.Tensor) -> torch.Tensor: + """ get the appearance feature of the image by F + x: Bx3xHxW, normalized to 0~1 + """ + with torch.no_grad(): + with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.inference_cfg.flag_use_half_precision): + feature_3d = self.appearance_feature_extractor(x) + + return feature_3d.float() + + def get_kp_info(self, x: torch.Tensor, **kwargs) -> dict: + """ get the implicit keypoint information + x: Bx3xHxW, normalized to 0~1 + flag_refine_info: whether to trandform the pose to degrees and the dimention of the reshape + return: A dict contains keys: 'pitch', 'yaw', 'roll', 't', 'exp', 'scale', 'kp' + """ + with torch.no_grad(): + with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.inference_cfg.flag_use_half_precision): + kp_info = self.motion_extractor(x) + + if self.inference_cfg.flag_use_half_precision: + # float the dict + for k, v in kp_info.items(): + if isinstance(v, torch.Tensor): + kp_info[k] = v.float() + + flag_refine_info: bool = kwargs.get('flag_refine_info', True) + if flag_refine_info: + bs = kp_info['kp'].shape[0] + kp_info['pitch'] = headpose_pred_to_degree(kp_info['pitch'])[:, None] # Bx1 + kp_info['yaw'] = headpose_pred_to_degree(kp_info['yaw'])[:, None] # Bx1 + kp_info['roll'] = headpose_pred_to_degree(kp_info['roll'])[:, None] # Bx1 + kp_info['kp'] = kp_info['kp'].reshape(bs, -1) # B,Nx3 + kp_info['exp'] = kp_info['exp'].reshape(bs, -1) # B,Nx3 + + return kp_info + + def get_pose_dct(self, kp_info: dict) -> dict: + pose_dct = dict( + pitch=headpose_pred_to_degree(kp_info['pitch']).item(), + yaw=headpose_pred_to_degree(kp_info['yaw']).item(), + roll=headpose_pred_to_degree(kp_info['roll']).item(), + ) + return pose_dct + + def get_fs_and_kp_info(self, source_prepared, driving_first_frame): + + # get the canonical keypoints of source image by M + source_kp_info = self.get_kp_info(source_prepared, flag_refine_info=True) + source_rotation = get_rotation_matrix(source_kp_info['pitch'], source_kp_info['yaw'], source_kp_info['roll']) + + # get the canonical keypoints of first driving frame by M + driving_first_frame_kp_info = self.get_kp_info(driving_first_frame, flag_refine_info=True) + driving_first_frame_rotation = get_rotation_matrix( + driving_first_frame_kp_info['pitch'], + driving_first_frame_kp_info['yaw'], + driving_first_frame_kp_info['roll'] + ) + + # get feature volume by F + source_feature_3d = self.extract_feature_3d(source_prepared) + + return source_kp_info, source_rotation, source_feature_3d, driving_first_frame_kp_info, driving_first_frame_rotation + + def transform_keypoint(self, kp_info: dict): + """ + transform the implicit keypoints with the pose, shift, and expression deformation + kp: BxNx3 + """ + kp = kp_info['kp'] # (bs, k, 3) + pitch, yaw, roll = kp_info['pitch'], kp_info['yaw'], kp_info['roll'] + + t, exp = kp_info['t'], kp_info['exp'] + scale = kp_info['scale'] + + pitch = headpose_pred_to_degree(pitch) + yaw = headpose_pred_to_degree(yaw) + roll = headpose_pred_to_degree(roll) + + bs = kp.shape[0] + if kp.ndim == 2: + num_kp = kp.shape[1] // 3 # Bx(num_kpx3) + else: + num_kp = kp.shape[1] # Bxnum_kpx3 + + rot_mat = get_rotation_matrix(pitch, yaw, roll) # (bs, 3, 3) + + # Eqn.2: s * (R * x_c,s + exp) + t + kp_transformed = kp.view(bs, num_kp, 3) @ rot_mat + exp.view(bs, num_kp, 3) + kp_transformed *= scale[..., None] # (bs, k, 3) * (bs, 1, 1) = (bs, k, 3) + kp_transformed[:, :, 0:2] += t[:, None, 0:2] # remove z, only apply tx ty + # kp_transformed[:, :, :] += t[:, None, :] + + return kp_transformed + + def retarget_eye(self, kp_source: torch.Tensor, eye_close_ratio: torch.Tensor) -> torch.Tensor: + """ + kp_source: BxNx3 + eye_close_ratio: Bx3 + Return: Bx(3*num_kp+2) + """ + feat_eye = concat_feat(kp_source, eye_close_ratio) + + with torch.no_grad(): + delta = self.stitching_retargeting_module['eye'](feat_eye) + + return delta + + def retarget_lip(self, kp_source: torch.Tensor, lip_close_ratio: torch.Tensor) -> torch.Tensor: + """ + kp_source: BxNx3 + lip_close_ratio: Bx2 + """ + feat_lip = concat_feat(kp_source, lip_close_ratio) + + with torch.no_grad(): + delta = self.stitching_retargeting_module['lip'](feat_lip) + + return delta + + def stitch(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: + """ + kp_source: BxNx3 + kp_driving: BxNx3 + Return: Bx(3*num_kp+2) + """ + feat_stiching = concat_feat(kp_source, kp_driving) + + with torch.no_grad(): + delta = self.stitching_retargeting_module['stitching'](feat_stiching) + + return delta + + def stitching(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: + """ conduct the stitching + kp_source: Bxnum_kpx3 + kp_driving: Bxnum_kpx3 + """ + + if self.stitching_retargeting_module is not None: + + bs, num_kp = kp_source.shape[:2] + + kp_driving_new = kp_driving.clone() + delta = self.stitch(kp_source, kp_driving_new) + + delta_exp = delta[..., :3*num_kp].reshape(bs, num_kp, 3) # 1x20x3 + delta_tx_ty = delta[..., 3*num_kp:3*num_kp+2].reshape(bs, 1, 2) # 1x1x2 + + kp_driving_new += delta_exp + kp_driving_new[..., :2] += delta_tx_ty + + return kp_driving_new + + return kp_driving + + def warp_decode(self, feature_3d: torch.Tensor, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: + """ get the image after the warping of the implicit keypoints + feature_3d: Bx32x16x64x64, feature volume + kp_source: BxNx3 + kp_driving: BxNx3 + """ + # The line 18 in Algorithm 1: D(W(f_s; x_s, x′_d,i)) + with torch.no_grad(): + with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.inference_cfg.flag_use_half_precision): + if self.compile: + # Mark the beginning of a new CUDA Graph step + torch.compiler.cudagraph_mark_step_begin() + # get decoder input + ret_dct = self.warping_module(feature_3d, kp_source=kp_source, kp_driving=kp_driving) + # decode + ret_dct['out'] = self.spade_generator(feature=ret_dct['out']) + + # float the dict + if self.inference_cfg.flag_use_half_precision: + for k, v in ret_dct.items(): + if isinstance(v, torch.Tensor): + ret_dct[k] = v.float() + + return ret_dct + + def parse_output(self, out: torch.Tensor) -> np.ndarray: + """ construct the output as standard + return: 1xHxWx3, uint8 + """ + out = np.transpose(out.data.cpu().numpy(), [0, 2, 3, 1]) # 1x3xHxW -> 1xHxWx3 + out = np.clip(out, 0, 1) # clip to 0~1 + out = np.clip(out * 255, 0, 255).astype(np.uint8) # 0~1 -> 0~255 + + return out + + def calc_driving_ratio(self, driving_lmk_lst): + input_eye_ratio_lst = [] + input_lip_ratio_lst = [] + for lmk in driving_lmk_lst: + # for eyes retargeting + input_eye_ratio_lst.append(calc_eye_close_ratio(lmk[None])) + # for lip retargeting + input_lip_ratio_lst.append(calc_lip_close_ratio(lmk[None])) + return input_eye_ratio_lst, input_lip_ratio_lst + + def calc_combined_eye_ratio(self, c_d_eyes_i, source_lmk): + c_s_eyes = calc_eye_close_ratio(source_lmk[None]) + c_s_eyes_tensor = torch.from_numpy(c_s_eyes).float().to(self.device) + c_d_eyes_i_tensor = torch.Tensor([c_d_eyes_i[0][0]]).reshape(1, 1).to(self.device) + # [c_s,eyes, c_d,eyes,i] + combined_eye_ratio_tensor = torch.cat([c_s_eyes_tensor, c_d_eyes_i_tensor], dim=1) + return combined_eye_ratio_tensor + + def calc_combined_lip_ratio(self, c_d_lip_i, source_lmk): + c_s_lip = calc_lip_close_ratio(source_lmk[None]) + c_s_lip_tensor = torch.from_numpy(c_s_lip).float().to(self.device) + c_d_lip_i_tensor = torch.Tensor([c_d_lip_i[0]]).to(self.device).reshape(1, 1) # 1x1 + # [c_s,lip, c_d,lip,i] + combined_lip_ratio_tensor = torch.cat([c_s_lip_tensor, c_d_lip_i_tensor], dim=1) # 1x2 + return combined_lip_ratio_tensor diff --git a/src/modules/__init__.py b/src/modules/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/modules/appearance_feature_extractor.py b/src/modules/appearance_feature_extractor.py new file mode 100644 index 0000000000000000000000000000000000000000..8d89e4f18a2fbe58447f52ab4c5e3f2011a4ec80 --- /dev/null +++ b/src/modules/appearance_feature_extractor.py @@ -0,0 +1,48 @@ +# coding: utf-8 + +""" +Appearance extractor(F) defined in paper, which maps the source image s to a 3D appearance feature volume. +""" + +import torch +from torch import nn +from .util import SameBlock2d, DownBlock2d, ResBlock3d + + +class AppearanceFeatureExtractor(nn.Module): + + def __init__(self, image_channel, block_expansion, num_down_blocks, max_features, reshape_channel, reshape_depth, num_resblocks): + super(AppearanceFeatureExtractor, self).__init__() + self.image_channel = image_channel + self.block_expansion = block_expansion + self.num_down_blocks = num_down_blocks + self.max_features = max_features + self.reshape_channel = reshape_channel + self.reshape_depth = reshape_depth + + self.first = SameBlock2d(image_channel, block_expansion, kernel_size=(3, 3), padding=(1, 1)) + + down_blocks = [] + for i in range(num_down_blocks): + in_features = min(max_features, block_expansion * (2 ** i)) + out_features = min(max_features, block_expansion * (2 ** (i + 1))) + down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1))) + self.down_blocks = nn.ModuleList(down_blocks) + + self.second = nn.Conv2d(in_channels=out_features, out_channels=max_features, kernel_size=1, stride=1) + + self.resblocks_3d = torch.nn.Sequential() + for i in range(num_resblocks): + self.resblocks_3d.add_module('3dr' + str(i), ResBlock3d(reshape_channel, kernel_size=3, padding=1)) + + def forward(self, source_image): + out = self.first(source_image) # Bx3x256x256 -> Bx64x256x256 + + for i in range(len(self.down_blocks)): + out = self.down_blocks[i](out) + out = self.second(out) + bs, c, h, w = out.shape # ->Bx512x64x64 + + f_s = out.view(bs, self.reshape_channel, self.reshape_depth, h, w) # ->Bx32x16x64x64 + f_s = self.resblocks_3d(f_s) # ->Bx32x16x64x64 + return f_s diff --git a/src/modules/convnextv2.py b/src/modules/convnextv2.py new file mode 100644 index 0000000000000000000000000000000000000000..83ea12662b607854915df8c7abb160b588d330b1 --- /dev/null +++ b/src/modules/convnextv2.py @@ -0,0 +1,149 @@ +# coding: utf-8 + +""" +This moudle is adapted to the ConvNeXtV2 version for the extraction of implicit keypoints, poses, and expression deformation. +""" + +import torch +import torch.nn as nn +# from timm.models.layers import trunc_normal_, DropPath +from .util import LayerNorm, DropPath, trunc_normal_, GRN + +__all__ = ['convnextv2_tiny'] + + +class Block(nn.Module): + """ ConvNeXtV2 Block. + + Args: + dim (int): Number of input channels. + drop_path (float): Stochastic depth rate. Default: 0.0 + """ + + def __init__(self, dim, drop_path=0.): + super().__init__() + self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv + self.norm = LayerNorm(dim, eps=1e-6) + self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers + self.act = nn.GELU() + self.grn = GRN(4 * dim) + self.pwconv2 = nn.Linear(4 * dim, dim) + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x): + input = x + x = self.dwconv(x) + x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) + x = self.norm(x) + x = self.pwconv1(x) + x = self.act(x) + x = self.grn(x) + x = self.pwconv2(x) + x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) + + x = input + self.drop_path(x) + return x + + +class ConvNeXtV2(nn.Module): + """ ConvNeXt V2 + + Args: + in_chans (int): Number of input image channels. Default: 3 + num_classes (int): Number of classes for classification head. Default: 1000 + depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] + dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] + drop_path_rate (float): Stochastic depth rate. Default: 0. + head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. + """ + + def __init__( + self, + in_chans=3, + depths=[3, 3, 9, 3], + dims=[96, 192, 384, 768], + drop_path_rate=0., + **kwargs + ): + super().__init__() + self.depths = depths + self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers + stem = nn.Sequential( + nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), + LayerNorm(dims[0], eps=1e-6, data_format="channels_first") + ) + self.downsample_layers.append(stem) + for i in range(3): + downsample_layer = nn.Sequential( + LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), + nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2), + ) + self.downsample_layers.append(downsample_layer) + + self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks + dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] + cur = 0 + for i in range(4): + stage = nn.Sequential( + *[Block(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depths[i])] + ) + self.stages.append(stage) + cur += depths[i] + + self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer + + # NOTE: the output semantic items + num_bins = kwargs.get('num_bins', 66) + num_kp = kwargs.get('num_kp', 24) # the number of implicit keypoints + self.fc_kp = nn.Linear(dims[-1], 3 * num_kp) # implicit keypoints + + # print('dims[-1]: ', dims[-1]) + self.fc_scale = nn.Linear(dims[-1], 1) # scale + self.fc_pitch = nn.Linear(dims[-1], num_bins) # pitch bins + self.fc_yaw = nn.Linear(dims[-1], num_bins) # yaw bins + self.fc_roll = nn.Linear(dims[-1], num_bins) # roll bins + self.fc_t = nn.Linear(dims[-1], 3) # translation + self.fc_exp = nn.Linear(dims[-1], 3 * num_kp) # expression / delta + + def _init_weights(self, m): + if isinstance(m, (nn.Conv2d, nn.Linear)): + trunc_normal_(m.weight, std=.02) + nn.init.constant_(m.bias, 0) + + def forward_features(self, x): + for i in range(4): + x = self.downsample_layers[i](x) + x = self.stages[i](x) + return self.norm(x.mean([-2, -1])) # global average pooling, (N, C, H, W) -> (N, C) + + def forward(self, x): + x = self.forward_features(x) + + # implicit keypoints + kp = self.fc_kp(x) + + # pose and expression deformation + pitch = self.fc_pitch(x) + yaw = self.fc_yaw(x) + roll = self.fc_roll(x) + t = self.fc_t(x) + exp = self.fc_exp(x) + scale = self.fc_scale(x) + + ret_dct = { + 'pitch': pitch, + 'yaw': yaw, + 'roll': roll, + 't': t, + 'exp': exp, + 'scale': scale, + + 'kp': kp, # canonical keypoint + } + + return ret_dct + + +def convnextv2_tiny(**kwargs): + model = ConvNeXtV2(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs) + return model diff --git a/src/modules/dense_motion.py b/src/modules/dense_motion.py new file mode 100644 index 0000000000000000000000000000000000000000..0eec0c46345f8854b125a51eaee730bd4ee77f7d --- /dev/null +++ b/src/modules/dense_motion.py @@ -0,0 +1,104 @@ +# coding: utf-8 + +""" +The module that predicting a dense motion from sparse motion representation given by kp_source and kp_driving +""" + +from torch import nn +import torch.nn.functional as F +import torch +from .util import Hourglass, make_coordinate_grid, kp2gaussian + + +class DenseMotionNetwork(nn.Module): + def __init__(self, block_expansion, num_blocks, max_features, num_kp, feature_channel, reshape_depth, compress, estimate_occlusion_map=True): + super(DenseMotionNetwork, self).__init__() + self.hourglass = Hourglass(block_expansion=block_expansion, in_features=(num_kp+1)*(compress+1), max_features=max_features, num_blocks=num_blocks) # ~60+G + + self.mask = nn.Conv3d(self.hourglass.out_filters, num_kp + 1, kernel_size=7, padding=3) # 65G! NOTE: computation cost is large + self.compress = nn.Conv3d(feature_channel, compress, kernel_size=1) # 0.8G + self.norm = nn.BatchNorm3d(compress, affine=True) + self.num_kp = num_kp + self.flag_estimate_occlusion_map = estimate_occlusion_map + + if self.flag_estimate_occlusion_map: + self.occlusion = nn.Conv2d(self.hourglass.out_filters*reshape_depth, 1, kernel_size=7, padding=3) + else: + self.occlusion = None + + def create_sparse_motions(self, feature, kp_driving, kp_source): + bs, _, d, h, w = feature.shape # (bs, 4, 16, 64, 64) + identity_grid = make_coordinate_grid((d, h, w), ref=kp_source) # (16, 64, 64, 3) + identity_grid = identity_grid.view(1, 1, d, h, w, 3) # (1, 1, d=16, h=64, w=64, 3) + coordinate_grid = identity_grid - kp_driving.view(bs, self.num_kp, 1, 1, 1, 3) + + k = coordinate_grid.shape[1] + + # NOTE: there lacks an one-order flow + driving_to_source = coordinate_grid + kp_source.view(bs, self.num_kp, 1, 1, 1, 3) # (bs, num_kp, d, h, w, 3) + + # adding background feature + identity_grid = identity_grid.repeat(bs, 1, 1, 1, 1, 1) + sparse_motions = torch.cat([identity_grid, driving_to_source], dim=1) # (bs, 1+num_kp, d, h, w, 3) + return sparse_motions + + def create_deformed_feature(self, feature, sparse_motions): + bs, _, d, h, w = feature.shape + feature_repeat = feature.unsqueeze(1).unsqueeze(1).repeat(1, self.num_kp+1, 1, 1, 1, 1, 1) # (bs, num_kp+1, 1, c, d, h, w) + feature_repeat = feature_repeat.view(bs * (self.num_kp+1), -1, d, h, w) # (bs*(num_kp+1), c, d, h, w) + sparse_motions = sparse_motions.view((bs * (self.num_kp+1), d, h, w, -1)) # (bs*(num_kp+1), d, h, w, 3) + sparse_deformed = F.grid_sample(feature_repeat, sparse_motions, align_corners=False) + sparse_deformed = sparse_deformed.view((bs, self.num_kp+1, -1, d, h, w)) # (bs, num_kp+1, c, d, h, w) + + return sparse_deformed + + def create_heatmap_representations(self, feature, kp_driving, kp_source): + spatial_size = feature.shape[3:] # (d=16, h=64, w=64) + gaussian_driving = kp2gaussian(kp_driving, spatial_size=spatial_size, kp_variance=0.01) # (bs, num_kp, d, h, w) + gaussian_source = kp2gaussian(kp_source, spatial_size=spatial_size, kp_variance=0.01) # (bs, num_kp, d, h, w) + heatmap = gaussian_driving - gaussian_source # (bs, num_kp, d, h, w) + + # adding background feature + zeros = torch.zeros(heatmap.shape[0], 1, spatial_size[0], spatial_size[1], spatial_size[2]).type(heatmap.type()).to(heatmap.device) + heatmap = torch.cat([zeros, heatmap], dim=1) + heatmap = heatmap.unsqueeze(2) # (bs, 1+num_kp, 1, d, h, w) + return heatmap + + def forward(self, feature, kp_driving, kp_source): + bs, _, d, h, w = feature.shape # (bs, 32, 16, 64, 64) + + feature = self.compress(feature) # (bs, 4, 16, 64, 64) + feature = self.norm(feature) # (bs, 4, 16, 64, 64) + feature = F.relu(feature) # (bs, 4, 16, 64, 64) + + out_dict = dict() + + # 1. deform 3d feature + sparse_motion = self.create_sparse_motions(feature, kp_driving, kp_source) # (bs, 1+num_kp, d, h, w, 3) + deformed_feature = self.create_deformed_feature(feature, sparse_motion) # (bs, 1+num_kp, c=4, d=16, h=64, w=64) + + # 2. (bs, 1+num_kp, d, h, w) + heatmap = self.create_heatmap_representations(deformed_feature, kp_driving, kp_source) # (bs, 1+num_kp, 1, d, h, w) + + input = torch.cat([heatmap, deformed_feature], dim=2) # (bs, 1+num_kp, c=5, d=16, h=64, w=64) + input = input.view(bs, -1, d, h, w) # (bs, (1+num_kp)*c=105, d=16, h=64, w=64) + + prediction = self.hourglass(input) + + mask = self.mask(prediction) + mask = F.softmax(mask, dim=1) # (bs, 1+num_kp, d=16, h=64, w=64) + out_dict['mask'] = mask + mask = mask.unsqueeze(2) # (bs, num_kp+1, 1, d, h, w) + sparse_motion = sparse_motion.permute(0, 1, 5, 2, 3, 4) # (bs, num_kp+1, 3, d, h, w) + deformation = (sparse_motion * mask).sum(dim=1) # (bs, 3, d, h, w) mask take effect in this place + deformation = deformation.permute(0, 2, 3, 4, 1) # (bs, d, h, w, 3) + + out_dict['deformation'] = deformation + + if self.flag_estimate_occlusion_map: + bs, _, d, h, w = prediction.shape + prediction_reshape = prediction.view(bs, -1, h, w) + occlusion_map = torch.sigmoid(self.occlusion(prediction_reshape)) # Bx1x64x64 + out_dict['occlusion_map'] = occlusion_map + + return out_dict diff --git a/src/modules/motion_extractor.py b/src/modules/motion_extractor.py new file mode 100644 index 0000000000000000000000000000000000000000..b2982e53c52d9ec1e0bec0453cc05edb51a15d23 --- /dev/null +++ b/src/modules/motion_extractor.py @@ -0,0 +1,35 @@ +# coding: utf-8 + +""" +Motion extractor(M), which directly predicts the canonical keypoints, head pose and expression deformation of the input image +""" + +from torch import nn +import torch + +from .convnextv2 import convnextv2_tiny +from .util import filter_state_dict + +model_dict = { + 'convnextv2_tiny': convnextv2_tiny, +} + + +class MotionExtractor(nn.Module): + def __init__(self, **kwargs): + super(MotionExtractor, self).__init__() + + # default is convnextv2_base + backbone = kwargs.get('backbone', 'convnextv2_tiny') + self.detector = model_dict.get(backbone)(**kwargs) + + def load_pretrained(self, init_path: str): + if init_path not in (None, ''): + state_dict = torch.load(init_path, map_location=lambda storage, loc: storage)['model'] + state_dict = filter_state_dict(state_dict, remove_name='head') + ret = self.detector.load_state_dict(state_dict, strict=False) + print(f'Load pretrained model from {init_path}, ret: {ret}') + + def forward(self, x): + out = self.detector(x) + return out diff --git a/src/modules/spade_generator.py b/src/modules/spade_generator.py new file mode 100644 index 0000000000000000000000000000000000000000..147a9aed0c7707fe6ae3d59ce1a30154ef75afcc --- /dev/null +++ b/src/modules/spade_generator.py @@ -0,0 +1,59 @@ +# coding: utf-8 + +""" +Spade decoder(G) defined in the paper, which input the warped feature to generate the animated image. +""" + +import torch +from torch import nn +import torch.nn.functional as F +from .util import SPADEResnetBlock + + +class SPADEDecoder(nn.Module): + def __init__(self, upscale=1, max_features=256, block_expansion=64, out_channels=64, num_down_blocks=2): + for i in range(num_down_blocks): + input_channels = min(max_features, block_expansion * (2 ** (i + 1))) + self.upscale = upscale + super().__init__() + norm_G = 'spadespectralinstance' + label_num_channels = input_channels # 256 + + self.fc = nn.Conv2d(input_channels, 2 * input_channels, 3, padding=1) + self.G_middle_0 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels) + self.G_middle_1 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels) + self.G_middle_2 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels) + self.G_middle_3 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels) + self.G_middle_4 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels) + self.G_middle_5 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels) + self.up_0 = SPADEResnetBlock(2 * input_channels, input_channels, norm_G, label_num_channels) + self.up_1 = SPADEResnetBlock(input_channels, out_channels, norm_G, label_num_channels) + self.up = nn.Upsample(scale_factor=2) + + if self.upscale is None or self.upscale <= 1: + self.conv_img = nn.Conv2d(out_channels, 3, 3, padding=1) + else: + self.conv_img = nn.Sequential( + nn.Conv2d(out_channels, 3 * (2 * 2), kernel_size=3, padding=1), + nn.PixelShuffle(upscale_factor=2) + ) + + def forward(self, feature): + seg = feature # Bx256x64x64 + x = self.fc(feature) # Bx512x64x64 + x = self.G_middle_0(x, seg) + x = self.G_middle_1(x, seg) + x = self.G_middle_2(x, seg) + x = self.G_middle_3(x, seg) + x = self.G_middle_4(x, seg) + x = self.G_middle_5(x, seg) + + x = self.up(x) # Bx512x64x64 -> Bx512x128x128 + x = self.up_0(x, seg) # Bx512x128x128 -> Bx256x128x128 + x = self.up(x) # Bx256x128x128 -> Bx256x256x256 + x = self.up_1(x, seg) # Bx256x256x256 -> Bx64x256x256 + + x = self.conv_img(F.leaky_relu(x, 2e-1)) # Bx64x256x256 -> Bx3xHxW + x = torch.sigmoid(x) # Bx3xHxW + + return x \ No newline at end of file diff --git a/src/modules/stitching_retargeting_network.py b/src/modules/stitching_retargeting_network.py new file mode 100644 index 0000000000000000000000000000000000000000..5f50b7cf5a21cd71c70a7bbaaa4b6b68b4762ea3 --- /dev/null +++ b/src/modules/stitching_retargeting_network.py @@ -0,0 +1,38 @@ +# coding: utf-8 + +""" +Stitching module(S) and two retargeting modules(R) defined in the paper. + +- The stitching module pastes the animated portrait back into the original image space without pixel misalignment, such as in +the stitching region. + +- The eyes retargeting module is designed to address the issue of incomplete eye closure during cross-id reenactment, especially +when a person with small eyes drives a person with larger eyes. + +- The lip retargeting module is designed similarly to the eye retargeting module, and can also normalize the input by ensuring that +the lips are in a closed state, which facilitates better animation driving. +""" +from torch import nn + + +class StitchingRetargetingNetwork(nn.Module): + def __init__(self, input_size, hidden_sizes, output_size): + super(StitchingRetargetingNetwork, self).__init__() + layers = [] + for i in range(len(hidden_sizes)): + if i == 0: + layers.append(nn.Linear(input_size, hidden_sizes[i])) + else: + layers.append(nn.Linear(hidden_sizes[i - 1], hidden_sizes[i])) + layers.append(nn.ReLU(inplace=True)) + layers.append(nn.Linear(hidden_sizes[-1], output_size)) + self.mlp = nn.Sequential(*layers) + + def initialize_weights_to_zero(self): + for m in self.modules(): + if isinstance(m, nn.Linear): + nn.init.zeros_(m.weight) + nn.init.zeros_(m.bias) + + def forward(self, x): + return self.mlp(x) diff --git a/src/modules/util.py b/src/modules/util.py new file mode 100644 index 0000000000000000000000000000000000000000..f83980b24372bee38779ceeb3349fca91735e56e --- /dev/null +++ b/src/modules/util.py @@ -0,0 +1,441 @@ +# coding: utf-8 + +""" +This file defines various neural network modules and utility functions, including convolutional and residual blocks, +normalizations, and functions for spatial transformation and tensor manipulation. +""" + +from torch import nn +import torch.nn.functional as F +import torch +import torch.nn.utils.spectral_norm as spectral_norm +import math +import warnings + + +def kp2gaussian(kp, spatial_size, kp_variance): + """ + Transform a keypoint into gaussian like representation + """ + mean = kp + + coordinate_grid = make_coordinate_grid(spatial_size, mean) + number_of_leading_dimensions = len(mean.shape) - 1 + shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape + coordinate_grid = coordinate_grid.view(*shape) + repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 1) + coordinate_grid = coordinate_grid.repeat(*repeats) + + # Preprocess kp shape + shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 3) + mean = mean.view(*shape) + + mean_sub = (coordinate_grid - mean) + + out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance) + + return out + + +def make_coordinate_grid(spatial_size, ref, **kwargs): + d, h, w = spatial_size + x = torch.arange(w).type(ref.dtype).to(ref.device) + y = torch.arange(h).type(ref.dtype).to(ref.device) + z = torch.arange(d).type(ref.dtype).to(ref.device) + + # NOTE: must be right-down-in + x = (2 * (x / (w - 1)) - 1) # the x axis faces to the right + y = (2 * (y / (h - 1)) - 1) # the y axis faces to the bottom + z = (2 * (z / (d - 1)) - 1) # the z axis faces to the inner + + yy = y.view(1, -1, 1).repeat(d, 1, w) + xx = x.view(1, 1, -1).repeat(d, h, 1) + zz = z.view(-1, 1, 1).repeat(1, h, w) + + meshed = torch.cat([xx.unsqueeze_(3), yy.unsqueeze_(3), zz.unsqueeze_(3)], 3) + + return meshed + + +class ConvT2d(nn.Module): + """ + Upsampling block for use in decoder. + """ + + def __init__(self, in_features, out_features, kernel_size=3, stride=2, padding=1, output_padding=1): + super(ConvT2d, self).__init__() + + self.convT = nn.ConvTranspose2d(in_features, out_features, kernel_size=kernel_size, stride=stride, + padding=padding, output_padding=output_padding) + self.norm = nn.InstanceNorm2d(out_features) + + def forward(self, x): + out = self.convT(x) + out = self.norm(out) + out = F.leaky_relu(out) + return out + + +class ResBlock3d(nn.Module): + """ + Res block, preserve spatial resolution. + """ + + def __init__(self, in_features, kernel_size, padding): + super(ResBlock3d, self).__init__() + self.conv1 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding) + self.conv2 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding) + self.norm1 = nn.BatchNorm3d(in_features, affine=True) + self.norm2 = nn.BatchNorm3d(in_features, affine=True) + + def forward(self, x): + out = self.norm1(x) + out = F.relu(out) + out = self.conv1(out) + out = self.norm2(out) + out = F.relu(out) + out = self.conv2(out) + out += x + return out + + +class UpBlock3d(nn.Module): + """ + Upsampling block for use in decoder. + """ + + def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): + super(UpBlock3d, self).__init__() + + self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, + padding=padding, groups=groups) + self.norm = nn.BatchNorm3d(out_features, affine=True) + + def forward(self, x): + out = F.interpolate(x, scale_factor=(1, 2, 2)) + out = self.conv(out) + out = self.norm(out) + out = F.relu(out) + return out + + +class DownBlock2d(nn.Module): + """ + Downsampling block for use in encoder. + """ + + def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): + super(DownBlock2d, self).__init__() + self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups) + self.norm = nn.BatchNorm2d(out_features, affine=True) + self.pool = nn.AvgPool2d(kernel_size=(2, 2)) + + def forward(self, x): + out = self.conv(x) + out = self.norm(out) + out = F.relu(out) + out = self.pool(out) + return out + + +class DownBlock3d(nn.Module): + """ + Downsampling block for use in encoder. + """ + + def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): + super(DownBlock3d, self).__init__() + ''' + self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, + padding=padding, groups=groups, stride=(1, 2, 2)) + ''' + self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, + padding=padding, groups=groups) + self.norm = nn.BatchNorm3d(out_features, affine=True) + self.pool = nn.AvgPool3d(kernel_size=(1, 2, 2)) + + def forward(self, x): + out = self.conv(x) + out = self.norm(out) + out = F.relu(out) + out = self.pool(out) + return out + + +class SameBlock2d(nn.Module): + """ + Simple block, preserve spatial resolution. + """ + + def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1, lrelu=False): + super(SameBlock2d, self).__init__() + self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups) + self.norm = nn.BatchNorm2d(out_features, affine=True) + if lrelu: + self.ac = nn.LeakyReLU() + else: + self.ac = nn.ReLU() + + def forward(self, x): + out = self.conv(x) + out = self.norm(out) + out = self.ac(out) + return out + + +class Encoder(nn.Module): + """ + Hourglass Encoder + """ + + def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): + super(Encoder, self).__init__() + + down_blocks = [] + for i in range(num_blocks): + down_blocks.append(DownBlock3d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)), min(max_features, block_expansion * (2 ** (i + 1))), kernel_size=3, padding=1)) + self.down_blocks = nn.ModuleList(down_blocks) + + def forward(self, x): + outs = [x] + for down_block in self.down_blocks: + outs.append(down_block(outs[-1])) + return outs + + +class Decoder(nn.Module): + """ + Hourglass Decoder + """ + + def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): + super(Decoder, self).__init__() + + up_blocks = [] + + for i in range(num_blocks)[::-1]: + in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1))) + out_filters = min(max_features, block_expansion * (2 ** i)) + up_blocks.append(UpBlock3d(in_filters, out_filters, kernel_size=3, padding=1)) + + self.up_blocks = nn.ModuleList(up_blocks) + self.out_filters = block_expansion + in_features + + self.conv = nn.Conv3d(in_channels=self.out_filters, out_channels=self.out_filters, kernel_size=3, padding=1) + self.norm = nn.BatchNorm3d(self.out_filters, affine=True) + + def forward(self, x): + out = x.pop() + for up_block in self.up_blocks: + out = up_block(out) + skip = x.pop() + out = torch.cat([out, skip], dim=1) + out = self.conv(out) + out = self.norm(out) + out = F.relu(out) + return out + + +class Hourglass(nn.Module): + """ + Hourglass architecture. + """ + + def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): + super(Hourglass, self).__init__() + self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features) + self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features) + self.out_filters = self.decoder.out_filters + + def forward(self, x): + return self.decoder(self.encoder(x)) + + +class SPADE(nn.Module): + def __init__(self, norm_nc, label_nc): + super().__init__() + + self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False) + nhidden = 128 + + self.mlp_shared = nn.Sequential( + nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1), + nn.ReLU()) + self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) + self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) + + def forward(self, x, segmap): + normalized = self.param_free_norm(x) + segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest') + actv = self.mlp_shared(segmap) + gamma = self.mlp_gamma(actv) + beta = self.mlp_beta(actv) + out = normalized * (1 + gamma) + beta + return out + + +class SPADEResnetBlock(nn.Module): + def __init__(self, fin, fout, norm_G, label_nc, use_se=False, dilation=1): + super().__init__() + # Attributes + self.learned_shortcut = (fin != fout) + fmiddle = min(fin, fout) + self.use_se = use_se + # create conv layers + self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=dilation, dilation=dilation) + self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=dilation, dilation=dilation) + if self.learned_shortcut: + self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False) + # apply spectral norm if specified + if 'spectral' in norm_G: + self.conv_0 = spectral_norm(self.conv_0) + self.conv_1 = spectral_norm(self.conv_1) + if self.learned_shortcut: + self.conv_s = spectral_norm(self.conv_s) + # define normalization layers + self.norm_0 = SPADE(fin, label_nc) + self.norm_1 = SPADE(fmiddle, label_nc) + if self.learned_shortcut: + self.norm_s = SPADE(fin, label_nc) + + def forward(self, x, seg1): + x_s = self.shortcut(x, seg1) + dx = self.conv_0(self.actvn(self.norm_0(x, seg1))) + dx = self.conv_1(self.actvn(self.norm_1(dx, seg1))) + out = x_s + dx + return out + + def shortcut(self, x, seg1): + if self.learned_shortcut: + x_s = self.conv_s(self.norm_s(x, seg1)) + else: + x_s = x + return x_s + + def actvn(self, x): + return F.leaky_relu(x, 2e-1) + + +def filter_state_dict(state_dict, remove_name='fc'): + new_state_dict = {} + for key in state_dict: + if remove_name in key: + continue + new_state_dict[key] = state_dict[key] + return new_state_dict + + +class GRN(nn.Module): + """ GRN (Global Response Normalization) layer + """ + + def __init__(self, dim): + super().__init__() + self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) + self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) + + def forward(self, x): + Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True) + Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) + return self.gamma * (x * Nx) + self.beta + x + + +class LayerNorm(nn.Module): + r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. + The ordering of the dimensions in the inputs. channels_last corresponds to inputs with + shape (batch_size, height, width, channels) while channels_first corresponds to inputs + with shape (batch_size, channels, height, width). + """ + + def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): + super().__init__() + self.weight = nn.Parameter(torch.ones(normalized_shape)) + self.bias = nn.Parameter(torch.zeros(normalized_shape)) + self.eps = eps + self.data_format = data_format + if self.data_format not in ["channels_last", "channels_first"]: + raise NotImplementedError + self.normalized_shape = (normalized_shape, ) + + def forward(self, x): + if self.data_format == "channels_last": + return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + elif self.data_format == "channels_first": + u = x.mean(1, keepdim=True) + s = (x - u).pow(2).mean(1, keepdim=True) + x = (x - u) / torch.sqrt(s + self.eps) + x = self.weight[:, None, None] * x + self.bias[:, None, None] + return x + + +def _no_grad_trunc_normal_(tensor, mean, std, a, b): + # Cut & paste from PyTorch official master until it's in a few official releases - RW + # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf + def norm_cdf(x): + # Computes standard normal cumulative distribution function + return (1. + math.erf(x / math.sqrt(2.))) / 2. + + if (mean < a - 2 * std) or (mean > b + 2 * std): + warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " + "The distribution of values may be incorrect.", + stacklevel=2) + + with torch.no_grad(): + # Values are generated by using a truncated uniform distribution and + # then using the inverse CDF for the normal distribution. + # Get upper and lower cdf values + l = norm_cdf((a - mean) / std) + u = norm_cdf((b - mean) / std) + + # Uniformly fill tensor with values from [l, u], then translate to + # [2l-1, 2u-1]. + tensor.uniform_(2 * l - 1, 2 * u - 1) + + # Use inverse cdf transform for normal distribution to get truncated + # standard normal + tensor.erfinv_() + + # Transform to proper mean, std + tensor.mul_(std * math.sqrt(2.)) + tensor.add_(mean) + + # Clamp to ensure it's in the proper range + tensor.clamp_(min=a, max=b) + return tensor + + +def drop_path(x, drop_prob=0., training=False, scale_by_keep=True): + """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + + This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, + the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... + See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for + changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use + 'survival rate' as the argument. + + """ + if drop_prob == 0. or not training: + return x + keep_prob = 1 - drop_prob + shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets + random_tensor = x.new_empty(shape).bernoulli_(keep_prob) + if keep_prob > 0.0 and scale_by_keep: + random_tensor.div_(keep_prob) + return x * random_tensor + + +class DropPath(nn.Module): + """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + """ + + def __init__(self, drop_prob=None, scale_by_keep=True): + super(DropPath, self).__init__() + self.drop_prob = drop_prob + self.scale_by_keep = scale_by_keep + + def forward(self, x): + return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) + + +def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): + return _no_grad_trunc_normal_(tensor, mean, std, a, b) diff --git a/src/modules/warping_network.py b/src/modules/warping_network.py new file mode 100644 index 0000000000000000000000000000000000000000..9191a197055a954272ee8ed86c5e34f3f33f9ad5 --- /dev/null +++ b/src/modules/warping_network.py @@ -0,0 +1,77 @@ +# coding: utf-8 + +""" +Warping field estimator(W) defined in the paper, which generates a warping field using the implicit +keypoint representations x_s and x_d, and employs this flow field to warp the source feature volume f_s. +""" + +from torch import nn +import torch.nn.functional as F +from .util import SameBlock2d +from .dense_motion import DenseMotionNetwork + + +class WarpingNetwork(nn.Module): + def __init__( + self, + num_kp, + block_expansion, + max_features, + num_down_blocks, + reshape_channel, + estimate_occlusion_map=False, + dense_motion_params=None, + **kwargs + ): + super(WarpingNetwork, self).__init__() + + self.upscale = kwargs.get('upscale', 1) + self.flag_use_occlusion_map = kwargs.get('flag_use_occlusion_map', True) + + if dense_motion_params is not None: + self.dense_motion_network = DenseMotionNetwork( + num_kp=num_kp, + feature_channel=reshape_channel, + estimate_occlusion_map=estimate_occlusion_map, + **dense_motion_params + ) + else: + self.dense_motion_network = None + + self.third = SameBlock2d(max_features, block_expansion * (2 ** num_down_blocks), kernel_size=(3, 3), padding=(1, 1), lrelu=True) + self.fourth = nn.Conv2d(in_channels=block_expansion * (2 ** num_down_blocks), out_channels=block_expansion * (2 ** num_down_blocks), kernel_size=1, stride=1) + + self.estimate_occlusion_map = estimate_occlusion_map + + def deform_input(self, inp, deformation): + return F.grid_sample(inp, deformation, align_corners=False) + + def forward(self, feature_3d, kp_driving, kp_source): + if self.dense_motion_network is not None: + # Feature warper, Transforming feature representation according to deformation and occlusion + dense_motion = self.dense_motion_network( + feature=feature_3d, kp_driving=kp_driving, kp_source=kp_source + ) + if 'occlusion_map' in dense_motion: + occlusion_map = dense_motion['occlusion_map'] # Bx1x64x64 + else: + occlusion_map = None + + deformation = dense_motion['deformation'] # Bx16x64x64x3 + out = self.deform_input(feature_3d, deformation) # Bx32x16x64x64 + + bs, c, d, h, w = out.shape # Bx32x16x64x64 + out = out.view(bs, c * d, h, w) # -> Bx512x64x64 + out = self.third(out) # -> Bx256x64x64 + out = self.fourth(out) # -> Bx256x64x64 + + if self.flag_use_occlusion_map and (occlusion_map is not None): + out = out * occlusion_map + + ret_dct = { + 'occlusion_map': occlusion_map, + 'deformation': deformation, + 'out': out, + } + + return ret_dct diff --git a/src/utils/__init__.py b/src/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/utils/camera.py b/src/utils/camera.py new file mode 100644 index 0000000000000000000000000000000000000000..a3dd942697e1f00a96dc3efc75b883d98b52e525 --- /dev/null +++ b/src/utils/camera.py @@ -0,0 +1,73 @@ +# coding: utf-8 + +""" +functions for processing and transforming 3D facial keypoints +""" + +import numpy as np +import torch +import torch.nn.functional as F + +PI = np.pi + + +def headpose_pred_to_degree(pred): + """ + pred: (bs, 66) or (bs, 1) or others + """ + if pred.ndim > 1 and pred.shape[1] == 66: + # NOTE: note that the average is modified to 97.5 + device = pred.device + idx_tensor = [idx for idx in range(0, 66)] + idx_tensor = torch.FloatTensor(idx_tensor).to(device) + pred = F.softmax(pred, dim=1) + degree = torch.sum(pred*idx_tensor, axis=1) * 3 - 97.5 + + return degree + + return pred + + +def get_rotation_matrix(pitch_, yaw_, roll_): + """ the input is in degree + """ + # transform to radian + pitch = pitch_ / 180 * PI + yaw = yaw_ / 180 * PI + roll = roll_ / 180 * PI + + device = pitch.device + + if pitch.ndim == 1: + pitch = pitch.unsqueeze(1) + if yaw.ndim == 1: + yaw = yaw.unsqueeze(1) + if roll.ndim == 1: + roll = roll.unsqueeze(1) + + # calculate the euler matrix + bs = pitch.shape[0] + ones = torch.ones([bs, 1]).to(device) + zeros = torch.zeros([bs, 1]).to(device) + x, y, z = pitch, yaw, roll + + rot_x = torch.cat([ + ones, zeros, zeros, + zeros, torch.cos(x), -torch.sin(x), + zeros, torch.sin(x), torch.cos(x) + ], dim=1).reshape([bs, 3, 3]) + + rot_y = torch.cat([ + torch.cos(y), zeros, torch.sin(y), + zeros, ones, zeros, + -torch.sin(y), zeros, torch.cos(y) + ], dim=1).reshape([bs, 3, 3]) + + rot_z = torch.cat([ + torch.cos(z), -torch.sin(z), zeros, + torch.sin(z), torch.cos(z), zeros, + zeros, zeros, ones + ], dim=1).reshape([bs, 3, 3]) + + rot = rot_z @ rot_y @ rot_x + return rot.permute(0, 2, 1) # transpose diff --git a/src/utils/crop.py b/src/utils/crop.py new file mode 100644 index 0000000000000000000000000000000000000000..065b9f0f9f25be8444b7c9bfca45652f80f5685b --- /dev/null +++ b/src/utils/crop.py @@ -0,0 +1,398 @@ +# coding: utf-8 + +""" +cropping function and the related preprocess functions for cropping +""" + +import numpy as np +import os.path as osp +from math import sin, cos, acos, degrees +import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False) # NOTE: enforce single thread +from .rprint import rprint as print + +DTYPE = np.float32 +CV2_INTERP = cv2.INTER_LINEAR + +def make_abs_path(fn): + return osp.join(osp.dirname(osp.realpath(__file__)), fn) + +def _transform_img(img, M, dsize, flags=CV2_INTERP, borderMode=None): + """ conduct similarity or affine transformation to the image, do not do border operation! + img: + M: 2x3 matrix or 3x3 matrix + dsize: target shape (width, height) + """ + if isinstance(dsize, tuple) or isinstance(dsize, list): + _dsize = tuple(dsize) + else: + _dsize = (dsize, dsize) + + if borderMode is not None: + return cv2.warpAffine(img, M[:2, :], dsize=_dsize, flags=flags, borderMode=borderMode, borderValue=(0, 0, 0)) + else: + return cv2.warpAffine(img, M[:2, :], dsize=_dsize, flags=flags) + + +def _transform_pts(pts, M): + """ conduct similarity or affine transformation to the pts + pts: Nx2 ndarray + M: 2x3 matrix or 3x3 matrix + return: Nx2 + """ + return pts @ M[:2, :2].T + M[:2, 2] + + +def parse_pt2_from_pt101(pt101, use_lip=True): + """ + parsing the 2 points according to the 101 points, which cancels the roll + """ + # the former version use the eye center, but it is not robust, now use interpolation + pt_left_eye = np.mean(pt101[[39, 42, 45, 48]], axis=0) # left eye center + pt_right_eye = np.mean(pt101[[51, 54, 57, 60]], axis=0) # right eye center + + if use_lip: + # use lip + pt_center_eye = (pt_left_eye + pt_right_eye) / 2 + pt_center_lip = (pt101[75] + pt101[81]) / 2 + pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0) + else: + pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0) + return pt2 + + +def parse_pt2_from_pt106(pt106, use_lip=True): + """ + parsing the 2 points according to the 106 points, which cancels the roll + """ + pt_left_eye = np.mean(pt106[[33, 35, 40, 39]], axis=0) # left eye center + pt_right_eye = np.mean(pt106[[87, 89, 94, 93]], axis=0) # right eye center + + if use_lip: + # use lip + pt_center_eye = (pt_left_eye + pt_right_eye) / 2 + pt_center_lip = (pt106[52] + pt106[61]) / 2 + pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0) + else: + pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0) + return pt2 + + +def parse_pt2_from_pt203(pt203, use_lip=True): + """ + parsing the 2 points according to the 203 points, which cancels the roll + """ + pt_left_eye = np.mean(pt203[[0, 6, 12, 18]], axis=0) # left eye center + pt_right_eye = np.mean(pt203[[24, 30, 36, 42]], axis=0) # right eye center + if use_lip: + # use lip + pt_center_eye = (pt_left_eye + pt_right_eye) / 2 + pt_center_lip = (pt203[48] + pt203[66]) / 2 + pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0) + else: + pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0) + return pt2 + + +def parse_pt2_from_pt68(pt68, use_lip=True): + """ + parsing the 2 points according to the 68 points, which cancels the roll + """ + lm_idx = np.array([31, 37, 40, 43, 46, 49, 55], dtype=np.int32) - 1 + if use_lip: + pt5 = np.stack([ + np.mean(pt68[lm_idx[[1, 2]], :], 0), # left eye + np.mean(pt68[lm_idx[[3, 4]], :], 0), # right eye + pt68[lm_idx[0], :], # nose + pt68[lm_idx[5], :], # lip + pt68[lm_idx[6], :] # lip + ], axis=0) + + pt2 = np.stack([ + (pt5[0] + pt5[1]) / 2, + (pt5[3] + pt5[4]) / 2 + ], axis=0) + else: + pt2 = np.stack([ + np.mean(pt68[lm_idx[[1, 2]], :], 0), # left eye + np.mean(pt68[lm_idx[[3, 4]], :], 0), # right eye + ], axis=0) + + return pt2 + + +def parse_pt2_from_pt5(pt5, use_lip=True): + """ + parsing the 2 points according to the 5 points, which cancels the roll + """ + if use_lip: + pt2 = np.stack([ + (pt5[0] + pt5[1]) / 2, + (pt5[3] + pt5[4]) / 2 + ], axis=0) + else: + pt2 = np.stack([ + pt5[0], + pt5[1] + ], axis=0) + return pt2 + + +def parse_pt2_from_pt_x(pts, use_lip=True): + if pts.shape[0] == 101: + pt2 = parse_pt2_from_pt101(pts, use_lip=use_lip) + elif pts.shape[0] == 106: + pt2 = parse_pt2_from_pt106(pts, use_lip=use_lip) + elif pts.shape[0] == 68: + pt2 = parse_pt2_from_pt68(pts, use_lip=use_lip) + elif pts.shape[0] == 5: + pt2 = parse_pt2_from_pt5(pts, use_lip=use_lip) + elif pts.shape[0] == 203: + pt2 = parse_pt2_from_pt203(pts, use_lip=use_lip) + elif pts.shape[0] > 101: + # take the first 101 points + pt2 = parse_pt2_from_pt101(pts[:101], use_lip=use_lip) + else: + raise Exception(f'Unknow shape: {pts.shape}') + + if not use_lip: + # NOTE: to compile with the latter code, need to rotate the pt2 90 degrees clockwise manually + v = pt2[1] - pt2[0] + pt2[1, 0] = pt2[0, 0] - v[1] + pt2[1, 1] = pt2[0, 1] + v[0] + + return pt2 + + +def parse_rect_from_landmark( + pts, + scale=1.5, + need_square=True, + vx_ratio=0, + vy_ratio=0, + use_deg_flag=False, + **kwargs +): + """parsing center, size, angle from 101/68/5/x landmarks + vx_ratio: the offset ratio along the pupil axis x-axis, multiplied by size + vy_ratio: the offset ratio along the pupil axis y-axis, multiplied by size, which is used to contain more forehead area + + judge with pts.shape + """ + pt2 = parse_pt2_from_pt_x(pts, use_lip=kwargs.get('use_lip', True)) + + uy = pt2[1] - pt2[0] + l = np.linalg.norm(uy) + if l <= 1e-3: + uy = np.array([0, 1], dtype=DTYPE) + else: + uy /= l + ux = np.array((uy[1], -uy[0]), dtype=DTYPE) + + # the rotation degree of the x-axis, the clockwise is positive, the counterclockwise is negative (image coordinate system) + # print(uy) + # print(ux) + angle = acos(ux[0]) + if ux[1] < 0: + angle = -angle + + # rotation matrix + M = np.array([ux, uy]) + + # calculate the size which contains the angle degree of the bbox, and the center + center0 = np.mean(pts, axis=0) + rpts = (pts - center0) @ M.T # (M @ P.T).T = P @ M.T + lt_pt = np.min(rpts, axis=0) + rb_pt = np.max(rpts, axis=0) + center1 = (lt_pt + rb_pt) / 2 + + size = rb_pt - lt_pt + if need_square: + m = max(size[0], size[1]) + size[0] = m + size[1] = m + + size *= scale # scale size + center = center0 + ux * center1[0] + uy * center1[1] # counterclockwise rotation, equivalent to M.T @ center1.T + center = center + ux * (vx_ratio * size) + uy * \ + (vy_ratio * size) # considering the offset in vx and vy direction + + if use_deg_flag: + angle = degrees(angle) + + return center, size, angle + + +def parse_bbox_from_landmark(pts, **kwargs): + center, size, angle = parse_rect_from_landmark(pts, **kwargs) + cx, cy = center + w, h = size + + # calculate the vertex positions before rotation + bbox = np.array([ + [cx-w/2, cy-h/2], # left, top + [cx+w/2, cy-h/2], + [cx+w/2, cy+h/2], # right, bottom + [cx-w/2, cy+h/2] + ], dtype=DTYPE) + + # construct rotation matrix + bbox_rot = bbox.copy() + R = np.array([ + [np.cos(angle), -np.sin(angle)], + [np.sin(angle), np.cos(angle)] + ], dtype=DTYPE) + + # calculate the relative position of each vertex from the rotation center, then rotate these positions, and finally add the coordinates of the rotation center + bbox_rot = (bbox_rot - center) @ R.T + center + + return { + 'center': center, # 2x1 + 'size': size, # scalar + 'angle': angle, # rad, counterclockwise + 'bbox': bbox, # 4x2 + 'bbox_rot': bbox_rot, # 4x2 + } + + +def crop_image_by_bbox(img, bbox, lmk=None, dsize=512, angle=None, flag_rot=False, **kwargs): + left, top, right, bot = bbox + if int(right - left) != int(bot - top): + print(f'right-left {right-left} != bot-top {bot-top}') + size = right - left + + src_center = np.array([(left + right) / 2, (top + bot) / 2], dtype=DTYPE) + tgt_center = np.array([dsize / 2, dsize / 2], dtype=DTYPE) + + s = dsize / size # scale + if flag_rot and angle is not None: + costheta, sintheta = cos(angle), sin(angle) + cx, cy = src_center[0], src_center[1] # ori center + tcx, tcy = tgt_center[0], tgt_center[1] # target center + # need to infer + M_o2c = np.array( + [[s * costheta, s * sintheta, tcx - s * (costheta * cx + sintheta * cy)], + [-s * sintheta, s * costheta, tcy - s * (-sintheta * cx + costheta * cy)]], + dtype=DTYPE + ) + else: + M_o2c = np.array( + [[s, 0, tgt_center[0] - s * src_center[0]], + [0, s, tgt_center[1] - s * src_center[1]]], + dtype=DTYPE + ) + + # if flag_rot and angle is None: + # print('angle is None, but flag_rotate is True', style="bold yellow") + + img_crop = _transform_img(img, M_o2c, dsize=dsize, borderMode=kwargs.get('borderMode', None)) + lmk_crop = _transform_pts(lmk, M_o2c) if lmk is not None else None + + M_o2c = np.vstack([M_o2c, np.array([0, 0, 1], dtype=DTYPE)]) + M_c2o = np.linalg.inv(M_o2c) + + # cv2.imwrite('crop.jpg', img_crop) + + return { + 'img_crop': img_crop, + 'lmk_crop': lmk_crop, + 'M_o2c': M_o2c, + 'M_c2o': M_c2o, + } + + +def _estimate_similar_transform_from_pts( + pts, + dsize, + scale=1.5, + vx_ratio=0, + vy_ratio=-0.1, + flag_do_rot=True, + **kwargs +): + """ calculate the affine matrix of the cropped image from sparse points, the original image to the cropped image, the inverse is the cropped image to the original image + pts: landmark, 101 or 68 points or other points, Nx2 + scale: the larger scale factor, the smaller face ratio + vx_ratio: x shift + vy_ratio: y shift, the smaller the y shift, the lower the face region + rot_flag: if it is true, conduct correction + """ + center, size, angle = parse_rect_from_landmark( + pts, scale=scale, vx_ratio=vx_ratio, vy_ratio=vy_ratio, + use_lip=kwargs.get('use_lip', True) + ) + + s = dsize / size[0] # scale + tgt_center = np.array([dsize / 2, dsize / 2], dtype=DTYPE) # center of dsize + + if flag_do_rot: + costheta, sintheta = cos(angle), sin(angle) + cx, cy = center[0], center[1] # ori center + tcx, tcy = tgt_center[0], tgt_center[1] # target center + # need to infer + M_INV = np.array( + [[s * costheta, s * sintheta, tcx - s * (costheta * cx + sintheta * cy)], + [-s * sintheta, s * costheta, tcy - s * (-sintheta * cx + costheta * cy)]], + dtype=DTYPE + ) + else: + M_INV = np.array( + [[s, 0, tgt_center[0] - s * center[0]], + [0, s, tgt_center[1] - s * center[1]]], + dtype=DTYPE + ) + + M_INV_H = np.vstack([M_INV, np.array([0, 0, 1])]) + M = np.linalg.inv(M_INV_H) + + # M_INV is from the original image to the cropped image, M is from the cropped image to the original image + return M_INV, M[:2, ...] + + +def crop_image(img, pts: np.ndarray, **kwargs): + dsize = kwargs.get('dsize', 224) + scale = kwargs.get('scale', 1.5) # 1.5 | 1.6 + vy_ratio = kwargs.get('vy_ratio', -0.1) # -0.0625 | -0.1 + + M_INV, _ = _estimate_similar_transform_from_pts( + pts, + dsize=dsize, + scale=scale, + vy_ratio=vy_ratio, + flag_do_rot=kwargs.get('flag_do_rot', True), + ) + + img_crop = _transform_img(img, M_INV, dsize) # origin to crop + pt_crop = _transform_pts(pts, M_INV) + + M_o2c = np.vstack([M_INV, np.array([0, 0, 1], dtype=DTYPE)]) + M_c2o = np.linalg.inv(M_o2c) + + ret_dct = { + 'M_o2c': M_o2c, # from the original image to the cropped image 3x3 + 'M_c2o': M_c2o, # from the cropped image to the original image 3x3 + 'img_crop': img_crop, # the cropped image + 'pt_crop': pt_crop, # the landmarks of the cropped image + } + + return ret_dct + +def average_bbox_lst(bbox_lst): + if len(bbox_lst) == 0: + return None + bbox_arr = np.array(bbox_lst) + return np.mean(bbox_arr, axis=0).tolist() + +def prepare_paste_back(mask_crop, crop_M_c2o, dsize): + """prepare mask for later image paste back + """ + mask_ori = _transform_img(mask_crop, crop_M_c2o, dsize) + mask_ori = mask_ori.astype(np.float32) / 255. + return mask_ori + +def paste_back(img_crop, M_c2o, img_ori, mask_ori): + """paste back the image + """ + dsize = (img_ori.shape[1], img_ori.shape[0]) + result = _transform_img(img_crop, M_c2o, dsize=dsize) + result = np.clip(mask_ori * result + (1 - mask_ori) * img_ori, 0, 255).astype(np.uint8) + return result diff --git a/src/utils/cropper.py b/src/utils/cropper.py new file mode 100644 index 0000000000000000000000000000000000000000..916d33b42106b26d3d47691d8c3484f8f295db85 --- /dev/null +++ b/src/utils/cropper.py @@ -0,0 +1,196 @@ +# coding: utf-8 + +import os.path as osp +from dataclasses import dataclass, field +from typing import List, Tuple, Union + +import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False) +import numpy as np + +from ..config.crop_config import CropConfig +from .crop import ( + average_bbox_lst, + crop_image, + crop_image_by_bbox, + parse_bbox_from_landmark, +) +from .io import contiguous +from .rprint import rlog as log +from .face_analysis_diy import FaceAnalysisDIY +from .landmark_runner import LandmarkRunner + + +def make_abs_path(fn): + return osp.join(osp.dirname(osp.realpath(__file__)), fn) + + +@dataclass +class Trajectory: + start: int = -1 # start frame + end: int = -1 # end frame + lmk_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # lmk list + bbox_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # bbox list + + frame_rgb_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # frame list + lmk_crop_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # lmk list + frame_rgb_crop_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # frame crop list + + +class Cropper(object): + def __init__(self, **kwargs) -> None: + self.crop_cfg: CropConfig = kwargs.get("crop_cfg", None) + device_id = kwargs.get("device_id", 0) + flag_force_cpu = kwargs.get("flag_force_cpu", False) + if flag_force_cpu: + device = "cpu" + face_analysis_wrapper_provicer = ["CPUExecutionProvider"] + else: + device = "cuda" + face_analysis_wrapper_provicer = ["CUDAExecutionProvider"] + self.landmark_runner = LandmarkRunner( + ckpt_path=make_abs_path(self.crop_cfg.landmark_ckpt_path), + onnx_provider=device, + device_id=device_id, + ) + self.landmark_runner.warmup() + + self.face_analysis_wrapper = FaceAnalysisDIY( + name="buffalo_l", + root=make_abs_path(self.crop_cfg.insightface_root), + providers=face_analysis_wrapper_provicer, + ) + self.face_analysis_wrapper.prepare(ctx_id=device_id, det_size=(512, 512)) + self.face_analysis_wrapper.warmup() + + def update_config(self, user_args): + for k, v in user_args.items(): + if hasattr(self.crop_cfg, k): + setattr(self.crop_cfg, k, v) + + def crop_source_image(self, img_rgb_: np.ndarray, crop_cfg: CropConfig): + # crop a source image and get neccessary information + img_rgb = img_rgb_.copy() # copy it + + img_bgr = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR) + src_face = self.face_analysis_wrapper.get( + img_bgr, + flag_do_landmark_2d_106=True, + direction=crop_cfg.direction, + max_face_num=crop_cfg.max_face_num, + ) + + if len(src_face) == 0: + log("No face detected in the source image.") + return None + elif len(src_face) > 1: + log(f"More than one face detected in the image, only pick one face by rule {crop_cfg.direction}.") + + # NOTE: temporarily only pick the first face, to support multiple face in the future + src_face = src_face[0] + lmk = src_face.landmark_2d_106 # this is the 106 landmarks from insightface + + # crop the face + ret_dct = crop_image( + img_rgb, # ndarray + lmk, # 106x2 or Nx2 + dsize=crop_cfg.dsize, + scale=crop_cfg.scale, + vx_ratio=crop_cfg.vx_ratio, + vy_ratio=crop_cfg.vy_ratio, + ) + + lmk = self.landmark_runner.run(img_rgb, lmk) + ret_dct["lmk_crop"] = lmk + + # update a 256x256 version for network input + ret_dct["img_crop_256x256"] = cv2.resize(ret_dct["img_crop"], (256, 256), interpolation=cv2.INTER_AREA) + ret_dct["lmk_crop_256x256"] = ret_dct["lmk_crop"] * 256 / crop_cfg.dsize + + return ret_dct + + def crop_driving_video(self, driving_rgb_lst, **kwargs): + """Tracking based landmarks/alignment and cropping""" + trajectory = Trajectory() + direction = kwargs.get("direction", "large-small") + for idx, frame_rgb in enumerate(driving_rgb_lst): + if idx == 0 or trajectory.start == -1: + src_face = self.face_analysis_wrapper.get( + contiguous(frame_rgb[..., ::-1]), + flag_do_landmark_2d_106=True, + direction=direction, + ) + if len(src_face) == 0: + log(f"No face detected in the frame #{idx}") + continue + elif len(src_face) > 1: + log(f"More than one face detected in the driving frame_{idx}, only pick one face by rule {direction}.") + src_face = src_face[0] + lmk = src_face.landmark_2d_106 + lmk = self.landmark_runner.run(frame_rgb, lmk) + trajectory.start, trajectory.end = idx, idx + else: + lmk = self.landmark_runner.run(frame_rgb, trajectory.lmk_lst[-1]) + trajectory.end = idx + + trajectory.lmk_lst.append(lmk) + ret_bbox = parse_bbox_from_landmark( + lmk, + scale=self.crop_cfg.scale_crop_video, + vx_ratio_crop_video=self.crop_cfg.vx_ratio_crop_video, + vy_ratio=self.crop_cfg.vy_ratio_crop_video, + )["bbox"] + bbox = [ + ret_bbox[0, 0], + ret_bbox[0, 1], + ret_bbox[2, 0], + ret_bbox[2, 1], + ] # 4, + trajectory.bbox_lst.append(bbox) # bbox + trajectory.frame_rgb_lst.append(frame_rgb) + + global_bbox = average_bbox_lst(trajectory.bbox_lst) + + for idx, (frame_rgb, lmk) in enumerate(zip(trajectory.frame_rgb_lst, trajectory.lmk_lst)): + ret_dct = crop_image_by_bbox( + frame_rgb, + global_bbox, + lmk=lmk, + dsize=kwargs.get("dsize", 512), + flag_rot=False, + borderValue=(0, 0, 0), + ) + trajectory.frame_rgb_crop_lst.append(ret_dct["img_crop"]) + trajectory.lmk_crop_lst.append(ret_dct["lmk_crop"]) + + return { + "frame_crop_lst": trajectory.frame_rgb_crop_lst, + "lmk_crop_lst": trajectory.lmk_crop_lst, + } + + def calc_lmks_from_cropped_video(self, driving_rgb_crop_lst, **kwargs): + """Tracking based landmarks/alignment""" + trajectory = Trajectory() + direction = kwargs.get("direction", "large-small") + + for idx, frame_rgb_crop in enumerate(driving_rgb_crop_lst): + if idx == 0 or trajectory.start == -1: + src_face = self.face_analysis_wrapper.get( + contiguous(frame_rgb_crop[..., ::-1]), # convert to BGR + flag_do_landmark_2d_106=True, + direction=direction, + ) + if len(src_face) == 0: + log(f"No face detected in the frame #{idx}") + raise Exception(f"No face detected in the frame #{idx}") + elif len(src_face) > 1: + log(f"More than one face detected in the driving frame_{idx}, only pick one face by rule {direction}.") + src_face = src_face[0] + lmk = src_face.landmark_2d_106 + lmk = self.landmark_runner.run(frame_rgb_crop, lmk) + trajectory.start, trajectory.end = idx, idx + else: + lmk = self.landmark_runner.run(frame_rgb_crop, trajectory.lmk_lst[-1]) + trajectory.end = idx + + trajectory.lmk_lst.append(lmk) + return trajectory.lmk_lst diff --git a/src/utils/dependencies/insightface/__init__.py b/src/utils/dependencies/insightface/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..1680083da47850b31da10803c7d255e67dda619a --- /dev/null +++ b/src/utils/dependencies/insightface/__init__.py @@ -0,0 +1,20 @@ +# coding: utf-8 +# pylint: disable=wrong-import-position +"""InsightFace: A Face Analysis Toolkit.""" +from __future__ import absolute_import + +try: + #import mxnet as mx + import onnxruntime +except ImportError: + raise ImportError( + "Unable to import dependency onnxruntime. " + ) + +__version__ = '0.7.3' + +from . import model_zoo +from . import utils +from . import app +from . import data + diff --git a/src/utils/dependencies/insightface/app/__init__.py b/src/utils/dependencies/insightface/app/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..cc574616885290489798bac5c682e7aaa65a5dad --- /dev/null +++ b/src/utils/dependencies/insightface/app/__init__.py @@ -0,0 +1 @@ +from .face_analysis import * diff --git a/src/utils/dependencies/insightface/app/common.py b/src/utils/dependencies/insightface/app/common.py new file mode 100644 index 0000000000000000000000000000000000000000..82ca987aeede35510b3aef72b4edf2390ad84e65 --- /dev/null +++ b/src/utils/dependencies/insightface/app/common.py @@ -0,0 +1,49 @@ +import numpy as np +from numpy.linalg import norm as l2norm +#from easydict import EasyDict + +class Face(dict): + + def __init__(self, d=None, **kwargs): + if d is None: + d = {} + if kwargs: + d.update(**kwargs) + for k, v in d.items(): + setattr(self, k, v) + # Class attributes + #for k in self.__class__.__dict__.keys(): + # if not (k.startswith('__') and k.endswith('__')) and not k in ('update', 'pop'): + # setattr(self, k, getattr(self, k)) + + def __setattr__(self, name, value): + if isinstance(value, (list, tuple)): + value = [self.__class__(x) + if isinstance(x, dict) else x for x in value] + elif isinstance(value, dict) and not isinstance(value, self.__class__): + value = self.__class__(value) + super(Face, self).__setattr__(name, value) + super(Face, self).__setitem__(name, value) + + __setitem__ = __setattr__ + + def __getattr__(self, name): + return None + + @property + def embedding_norm(self): + if self.embedding is None: + return None + return l2norm(self.embedding) + + @property + def normed_embedding(self): + if self.embedding is None: + return None + return self.embedding / self.embedding_norm + + @property + def sex(self): + if self.gender is None: + return None + return 'M' if self.gender==1 else 'F' diff --git a/src/utils/dependencies/insightface/app/face_analysis.py b/src/utils/dependencies/insightface/app/face_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..aa5128b3f5e02c2c19e7df195cc1c1e7fcf36c4d --- /dev/null +++ b/src/utils/dependencies/insightface/app/face_analysis.py @@ -0,0 +1,110 @@ +# -*- coding: utf-8 -*- +# @Organization : insightface.ai +# @Author : Jia Guo +# @Time : 2021-05-04 +# @Function : + + +from __future__ import division + +import glob +import os.path as osp + +import numpy as np +import onnxruntime +from numpy.linalg import norm + +from ..model_zoo import model_zoo +from ..utils import ensure_available +from .common import Face + + +DEFAULT_MP_NAME = 'buffalo_l' +__all__ = ['FaceAnalysis'] + +class FaceAnalysis: + def __init__(self, name=DEFAULT_MP_NAME, root='~/.insightface', allowed_modules=None, **kwargs): + onnxruntime.set_default_logger_severity(3) + self.models = {} + self.model_dir = ensure_available('models', name, root=root) + onnx_files = glob.glob(osp.join(self.model_dir, '*.onnx')) + onnx_files = sorted(onnx_files) + for onnx_file in onnx_files: + model = model_zoo.get_model(onnx_file, **kwargs) + if model is None: + print('model not recognized:', onnx_file) + elif allowed_modules is not None and model.taskname not in allowed_modules: + print('model ignore:', onnx_file, model.taskname) + del model + elif model.taskname not in self.models and (allowed_modules is None or model.taskname in allowed_modules): + # print('find model:', onnx_file, model.taskname, model.input_shape, model.input_mean, model.input_std) + self.models[model.taskname] = model + else: + print('duplicated model task type, ignore:', onnx_file, model.taskname) + del model + assert 'detection' in self.models + self.det_model = self.models['detection'] + + + def prepare(self, ctx_id, det_thresh=0.5, det_size=(640, 640)): + self.det_thresh = det_thresh + assert det_size is not None + # print('set det-size:', det_size) + self.det_size = det_size + for taskname, model in self.models.items(): + if taskname=='detection': + model.prepare(ctx_id, input_size=det_size, det_thresh=det_thresh) + else: + model.prepare(ctx_id) + + def get(self, img, max_num=0): + bboxes, kpss = self.det_model.detect(img, + max_num=max_num, + metric='default') + if bboxes.shape[0] == 0: + return [] + ret = [] + for i in range(bboxes.shape[0]): + bbox = bboxes[i, 0:4] + det_score = bboxes[i, 4] + kps = None + if kpss is not None: + kps = kpss[i] + face = Face(bbox=bbox, kps=kps, det_score=det_score) + for taskname, model in self.models.items(): + if taskname=='detection': + continue + model.get(img, face) + ret.append(face) + return ret + + def draw_on(self, img, faces): + import cv2 + dimg = img.copy() + for i in range(len(faces)): + face = faces[i] + box = face.bbox.astype(np.int) + color = (0, 0, 255) + cv2.rectangle(dimg, (box[0], box[1]), (box[2], box[3]), color, 2) + if face.kps is not None: + kps = face.kps.astype(np.int) + #print(landmark.shape) + for l in range(kps.shape[0]): + color = (0, 0, 255) + if l == 0 or l == 3: + color = (0, 255, 0) + cv2.circle(dimg, (kps[l][0], kps[l][1]), 1, color, + 2) + if face.gender is not None and face.age is not None: + cv2.putText(dimg,'%s,%d'%(face.sex,face.age), (box[0]-1, box[1]-4),cv2.FONT_HERSHEY_COMPLEX,0.7,(0,255,0),1) + + #for key, value in face.items(): + # if key.startswith('landmark_3d'): + # print(key, value.shape) + # print(value[0:10,:]) + # lmk = np.round(value).astype(np.int) + # for l in range(lmk.shape[0]): + # color = (255, 0, 0) + # cv2.circle(dimg, (lmk[l][0], lmk[l][1]), 1, color, + # 2) + return dimg diff --git a/src/utils/dependencies/insightface/data/__init__.py b/src/utils/dependencies/insightface/data/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..665c59ec99b6ebf12822015e0350969c7903e243 --- /dev/null +++ b/src/utils/dependencies/insightface/data/__init__.py @@ -0,0 +1,2 @@ +from .image import get_image +from .pickle_object import get_object diff --git a/src/utils/dependencies/insightface/data/image.py b/src/utils/dependencies/insightface/data/image.py new file mode 100644 index 0000000000000000000000000000000000000000..6d32c4bcb1b13d33bcb0d840cf7b8c08d183b3ea --- /dev/null +++ b/src/utils/dependencies/insightface/data/image.py @@ -0,0 +1,27 @@ +import cv2 +import os +import os.path as osp +from pathlib import Path + +class ImageCache: + data = {} + +def get_image(name, to_rgb=False): + key = (name, to_rgb) + if key in ImageCache.data: + return ImageCache.data[key] + images_dir = osp.join(Path(__file__).parent.absolute(), 'images') + ext_names = ['.jpg', '.png', '.jpeg'] + image_file = None + for ext_name in ext_names: + _image_file = osp.join(images_dir, "%s%s"%(name, ext_name)) + if osp.exists(_image_file): + image_file = _image_file + break + assert image_file is not None, '%s not found'%name + img = cv2.imread(image_file) + if to_rgb: + img = img[:,:,::-1] + ImageCache.data[key] = img + return img + diff --git a/src/utils/dependencies/insightface/data/images/Tom_Hanks_54745.png b/src/utils/dependencies/insightface/data/images/Tom_Hanks_54745.png new file mode 100644 index 0000000000000000000000000000000000000000..906315d13fa29bb3a5ded3e162592f2c7f041b23 Binary files /dev/null and b/src/utils/dependencies/insightface/data/images/Tom_Hanks_54745.png differ diff --git a/src/utils/dependencies/insightface/data/images/mask_black.jpg b/src/utils/dependencies/insightface/data/images/mask_black.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0eab0df555c23f1e033537fe39f3c0c8303dd369 Binary files /dev/null and b/src/utils/dependencies/insightface/data/images/mask_black.jpg differ diff --git a/src/utils/dependencies/insightface/data/images/mask_blue.jpg b/src/utils/dependencies/insightface/data/images/mask_blue.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f71336b9a0d3038ebd84e6995ebfbe54946fcbb4 Binary files /dev/null and b/src/utils/dependencies/insightface/data/images/mask_blue.jpg differ diff --git a/src/utils/dependencies/insightface/data/images/mask_green.jpg b/src/utils/dependencies/insightface/data/images/mask_green.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ac2ad55f4fc580c915dfa4c157ca3bfc84e453f4 Binary files /dev/null and b/src/utils/dependencies/insightface/data/images/mask_green.jpg differ diff --git a/src/utils/dependencies/insightface/data/images/mask_white.jpg b/src/utils/dependencies/insightface/data/images/mask_white.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2148ab2d09fdee6e3f59315470e98ecfc54339e4 Binary files /dev/null and b/src/utils/dependencies/insightface/data/images/mask_white.jpg differ diff --git a/src/utils/dependencies/insightface/data/images/t1.jpg b/src/utils/dependencies/insightface/data/images/t1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8fd6427a177bd01650c0150e9d02457c3a5dcddd --- /dev/null +++ b/src/utils/dependencies/insightface/data/images/t1.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:47f682e945b659f93a9e490b9c9c4a2a864abe64dace9e1a2893845ddfd69489 +size 128824 diff --git a/src/utils/dependencies/insightface/data/objects/meanshape_68.pkl b/src/utils/dependencies/insightface/data/objects/meanshape_68.pkl new file mode 100644 index 0000000000000000000000000000000000000000..d5297e9e8ea5574298ddd287b058252e03aa18c1 --- /dev/null +++ b/src/utils/dependencies/insightface/data/objects/meanshape_68.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:39ffecf84ba73f0d0d7e49380833ba88713c9fcdec51df4f7ac45a48b8f4cc51 +size 974 diff --git a/src/utils/dependencies/insightface/data/pickle_object.py b/src/utils/dependencies/insightface/data/pickle_object.py new file mode 100644 index 0000000000000000000000000000000000000000..fbd87030ea15e1d01af1cd4cff1be2bc54cc82dd --- /dev/null +++ b/src/utils/dependencies/insightface/data/pickle_object.py @@ -0,0 +1,17 @@ +import cv2 +import os +import os.path as osp +from pathlib import Path +import pickle + +def get_object(name): + objects_dir = osp.join(Path(__file__).parent.absolute(), 'objects') + if not name.endswith('.pkl'): + name = name+".pkl" + filepath = osp.join(objects_dir, name) + if not osp.exists(filepath): + return None + with open(filepath, 'rb') as f: + obj = pickle.load(f) + return obj + diff --git a/src/utils/dependencies/insightface/data/rec_builder.py b/src/utils/dependencies/insightface/data/rec_builder.py new file mode 100644 index 0000000000000000000000000000000000000000..e02abc969da2f882639326f5bad3c7e8d08c1fde --- /dev/null +++ b/src/utils/dependencies/insightface/data/rec_builder.py @@ -0,0 +1,71 @@ +import pickle +import numpy as np +import os +import os.path as osp +import sys +import mxnet as mx + + +class RecBuilder(): + def __init__(self, path, image_size=(112, 112)): + self.path = path + self.image_size = image_size + self.widx = 0 + self.wlabel = 0 + self.max_label = -1 + assert not osp.exists(path), '%s exists' % path + os.makedirs(path) + self.writer = mx.recordio.MXIndexedRecordIO(os.path.join(path, 'train.idx'), + os.path.join(path, 'train.rec'), + 'w') + self.meta = [] + + def add(self, imgs): + #!!! img should be BGR!!!! + #assert label >= 0 + #assert label > self.last_label + assert len(imgs) > 0 + label = self.wlabel + for img in imgs: + idx = self.widx + image_meta = {'image_index': idx, 'image_classes': [label]} + header = mx.recordio.IRHeader(0, label, idx, 0) + if isinstance(img, np.ndarray): + s = mx.recordio.pack_img(header,img,quality=95,img_fmt='.jpg') + else: + s = mx.recordio.pack(header, img) + self.writer.write_idx(idx, s) + self.meta.append(image_meta) + self.widx += 1 + self.max_label = label + self.wlabel += 1 + + + def add_image(self, img, label): + #!!! img should be BGR!!!! + #assert label >= 0 + #assert label > self.last_label + idx = self.widx + header = mx.recordio.IRHeader(0, label, idx, 0) + if isinstance(label, list): + idlabel = label[0] + else: + idlabel = label + image_meta = {'image_index': idx, 'image_classes': [idlabel]} + if isinstance(img, np.ndarray): + s = mx.recordio.pack_img(header,img,quality=95,img_fmt='.jpg') + else: + s = mx.recordio.pack(header, img) + self.writer.write_idx(idx, s) + self.meta.append(image_meta) + self.widx += 1 + self.max_label = max(self.max_label, idlabel) + + def close(self): + with open(osp.join(self.path, 'train.meta'), 'wb') as pfile: + pickle.dump(self.meta, pfile, protocol=pickle.HIGHEST_PROTOCOL) + print('stat:', self.widx, self.wlabel) + with open(os.path.join(self.path, 'property'), 'w') as f: + f.write("%d,%d,%d\n" % (self.max_label+1, self.image_size[0], self.image_size[1])) + f.write("%d\n" % (self.widx)) + diff --git a/src/utils/dependencies/insightface/model_zoo/__init__.py b/src/utils/dependencies/insightface/model_zoo/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..225623d6142c968b4040f391039bfab88bdd1b2a --- /dev/null +++ b/src/utils/dependencies/insightface/model_zoo/__init__.py @@ -0,0 +1,6 @@ +from .model_zoo import get_model +from .arcface_onnx import ArcFaceONNX +from .retinaface import RetinaFace +from .scrfd import SCRFD +from .landmark import Landmark +from .attribute import Attribute diff --git a/src/utils/dependencies/insightface/model_zoo/arcface_onnx.py b/src/utils/dependencies/insightface/model_zoo/arcface_onnx.py new file mode 100644 index 0000000000000000000000000000000000000000..b537ce2ee15d4a1834d54e185f34e336aab30a77 --- /dev/null +++ b/src/utils/dependencies/insightface/model_zoo/arcface_onnx.py @@ -0,0 +1,92 @@ +# -*- coding: utf-8 -*- +# @Organization : insightface.ai +# @Author : Jia Guo +# @Time : 2021-05-04 +# @Function : + +from __future__ import division +import numpy as np +import cv2 +import onnx +import onnxruntime +from ..utils import face_align + +__all__ = [ + 'ArcFaceONNX', +] + + +class ArcFaceONNX: + def __init__(self, model_file=None, session=None): + assert model_file is not None + self.model_file = model_file + self.session = session + self.taskname = 'recognition' + find_sub = False + find_mul = False + model = onnx.load(self.model_file) + graph = model.graph + for nid, node in enumerate(graph.node[:8]): + #print(nid, node.name) + if node.name.startswith('Sub') or node.name.startswith('_minus'): + find_sub = True + if node.name.startswith('Mul') or node.name.startswith('_mul'): + find_mul = True + if find_sub and find_mul: + #mxnet arcface model + input_mean = 0.0 + input_std = 1.0 + else: + input_mean = 127.5 + input_std = 127.5 + self.input_mean = input_mean + self.input_std = input_std + #print('input mean and std:', self.input_mean, self.input_std) + if self.session is None: + self.session = onnxruntime.InferenceSession(self.model_file, None) + input_cfg = self.session.get_inputs()[0] + input_shape = input_cfg.shape + input_name = input_cfg.name + self.input_size = tuple(input_shape[2:4][::-1]) + self.input_shape = input_shape + outputs = self.session.get_outputs() + output_names = [] + for out in outputs: + output_names.append(out.name) + self.input_name = input_name + self.output_names = output_names + assert len(self.output_names)==1 + self.output_shape = outputs[0].shape + + def prepare(self, ctx_id, **kwargs): + if ctx_id<0: + self.session.set_providers(['CPUExecutionProvider']) + + def get(self, img, face): + aimg = face_align.norm_crop(img, landmark=face.kps, image_size=self.input_size[0]) + face.embedding = self.get_feat(aimg).flatten() + return face.embedding + + def compute_sim(self, feat1, feat2): + from numpy.linalg import norm + feat1 = feat1.ravel() + feat2 = feat2.ravel() + sim = np.dot(feat1, feat2) / (norm(feat1) * norm(feat2)) + return sim + + def get_feat(self, imgs): + if not isinstance(imgs, list): + imgs = [imgs] + input_size = self.input_size + + blob = cv2.dnn.blobFromImages(imgs, 1.0 / self.input_std, input_size, + (self.input_mean, self.input_mean, self.input_mean), swapRB=True) + net_out = self.session.run(self.output_names, {self.input_name: blob})[0] + return net_out + + def forward(self, batch_data): + blob = (batch_data - self.input_mean) / self.input_std + net_out = self.session.run(self.output_names, {self.input_name: blob})[0] + return net_out + + diff --git a/src/utils/dependencies/insightface/model_zoo/attribute.py b/src/utils/dependencies/insightface/model_zoo/attribute.py new file mode 100644 index 0000000000000000000000000000000000000000..40c34de3f0995499448cf5779004cc1e5f3564fb --- /dev/null +++ b/src/utils/dependencies/insightface/model_zoo/attribute.py @@ -0,0 +1,94 @@ +# -*- coding: utf-8 -*- +# @Organization : insightface.ai +# @Author : Jia Guo +# @Time : 2021-06-19 +# @Function : + +from __future__ import division +import numpy as np +import cv2 +import onnx +import onnxruntime +from ..utils import face_align + +__all__ = [ + 'Attribute', +] + + +class Attribute: + def __init__(self, model_file=None, session=None): + assert model_file is not None + self.model_file = model_file + self.session = session + find_sub = False + find_mul = False + model = onnx.load(self.model_file) + graph = model.graph + for nid, node in enumerate(graph.node[:8]): + #print(nid, node.name) + if node.name.startswith('Sub') or node.name.startswith('_minus'): + find_sub = True + if node.name.startswith('Mul') or node.name.startswith('_mul'): + find_mul = True + if nid<3 and node.name=='bn_data': + find_sub = True + find_mul = True + if find_sub and find_mul: + #mxnet arcface model + input_mean = 0.0 + input_std = 1.0 + else: + input_mean = 127.5 + input_std = 128.0 + self.input_mean = input_mean + self.input_std = input_std + #print('input mean and std:', model_file, self.input_mean, self.input_std) + if self.session is None: + self.session = onnxruntime.InferenceSession(self.model_file, None) + input_cfg = self.session.get_inputs()[0] + input_shape = input_cfg.shape + input_name = input_cfg.name + self.input_size = tuple(input_shape[2:4][::-1]) + self.input_shape = input_shape + outputs = self.session.get_outputs() + output_names = [] + for out in outputs: + output_names.append(out.name) + self.input_name = input_name + self.output_names = output_names + assert len(self.output_names)==1 + output_shape = outputs[0].shape + #print('init output_shape:', output_shape) + if output_shape[1]==3: + self.taskname = 'genderage' + else: + self.taskname = 'attribute_%d'%output_shape[1] + + def prepare(self, ctx_id, **kwargs): + if ctx_id<0: + self.session.set_providers(['CPUExecutionProvider']) + + def get(self, img, face): + bbox = face.bbox + w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1]) + center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2 + rotate = 0 + _scale = self.input_size[0] / (max(w, h)*1.5) + #print('param:', img.shape, bbox, center, self.input_size, _scale, rotate) + aimg, M = face_align.transform(img, center, self.input_size[0], _scale, rotate) + input_size = tuple(aimg.shape[0:2][::-1]) + #assert input_size==self.input_size + blob = cv2.dnn.blobFromImage(aimg, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True) + pred = self.session.run(self.output_names, {self.input_name : blob})[0][0] + if self.taskname=='genderage': + assert len(pred)==3 + gender = np.argmax(pred[:2]) + age = int(np.round(pred[2]*100)) + face['gender'] = gender + face['age'] = age + return gender, age + else: + return pred + + diff --git a/src/utils/dependencies/insightface/model_zoo/inswapper.py b/src/utils/dependencies/insightface/model_zoo/inswapper.py new file mode 100644 index 0000000000000000000000000000000000000000..f321c627ee66cceddcab98b561b997441dd4f768 --- /dev/null +++ b/src/utils/dependencies/insightface/model_zoo/inswapper.py @@ -0,0 +1,114 @@ +import time +import numpy as np +import onnxruntime +import cv2 +import onnx +from onnx import numpy_helper +from ..utils import face_align + + + + +class INSwapper(): + def __init__(self, model_file=None, session=None): + self.model_file = model_file + self.session = session + model = onnx.load(self.model_file) + graph = model.graph + self.emap = numpy_helper.to_array(graph.initializer[-1]) + self.input_mean = 0.0 + self.input_std = 255.0 + #print('input mean and std:', model_file, self.input_mean, self.input_std) + if self.session is None: + self.session = onnxruntime.InferenceSession(self.model_file, None) + inputs = self.session.get_inputs() + self.input_names = [] + for inp in inputs: + self.input_names.append(inp.name) + outputs = self.session.get_outputs() + output_names = [] + for out in outputs: + output_names.append(out.name) + self.output_names = output_names + assert len(self.output_names)==1 + output_shape = outputs[0].shape + input_cfg = inputs[0] + input_shape = input_cfg.shape + self.input_shape = input_shape + # print('inswapper-shape:', self.input_shape) + self.input_size = tuple(input_shape[2:4][::-1]) + + def forward(self, img, latent): + img = (img - self.input_mean) / self.input_std + pred = self.session.run(self.output_names, {self.input_names[0]: img, self.input_names[1]: latent})[0] + return pred + + def get(self, img, target_face, source_face, paste_back=True): + face_mask = np.zeros((img.shape[0], img.shape[1]), np.uint8) + cv2.fillPoly(face_mask, np.array([target_face.landmark_2d_106[[1,9,10,11,12,13,14,15,16,2,3,4,5,6,7,8,0,24,23,22,21,20,19,18,32,31,30,29,28,27,26,25,17,101,105,104,103,51,49,48,43]].astype('int64')]), 1) + aimg, M = face_align.norm_crop2(img, target_face.kps, self.input_size[0]) + blob = cv2.dnn.blobFromImage(aimg, 1.0 / self.input_std, self.input_size, + (self.input_mean, self.input_mean, self.input_mean), swapRB=True) + latent = source_face.normed_embedding.reshape((1,-1)) + latent = np.dot(latent, self.emap) + latent /= np.linalg.norm(latent) + pred = self.session.run(self.output_names, {self.input_names[0]: blob, self.input_names[1]: latent})[0] + #print(latent.shape, latent.dtype, pred.shape) + img_fake = pred.transpose((0,2,3,1))[0] + bgr_fake = np.clip(255 * img_fake, 0, 255).astype(np.uint8)[:,:,::-1] + if not paste_back: + return bgr_fake, M + else: + target_img = img + fake_diff = bgr_fake.astype(np.float32) - aimg.astype(np.float32) + fake_diff = np.abs(fake_diff).mean(axis=2) + fake_diff[:2,:] = 0 + fake_diff[-2:,:] = 0 + fake_diff[:,:2] = 0 + fake_diff[:,-2:] = 0 + IM = cv2.invertAffineTransform(M) + img_white = np.full((aimg.shape[0],aimg.shape[1]), 255, dtype=np.float32) + bgr_fake = cv2.warpAffine(bgr_fake, IM, (target_img.shape[1], target_img.shape[0]), borderValue=0.0) + img_white = cv2.warpAffine(img_white, IM, (target_img.shape[1], target_img.shape[0]), borderValue=0.0) + fake_diff = cv2.warpAffine(fake_diff, IM, (target_img.shape[1], target_img.shape[0]), borderValue=0.0) + img_white[img_white>20] = 255 + fthresh = 10 + fake_diff[fake_diff=fthresh] = 255 + img_mask = img_white + mask_h_inds, mask_w_inds = np.where(img_mask==255) + mask_h = np.max(mask_h_inds) - np.min(mask_h_inds) + mask_w = np.max(mask_w_inds) - np.min(mask_w_inds) + mask_size = int(np.sqrt(mask_h*mask_w)) + k = max(mask_size//10, 10) + #k = max(mask_size//20, 6) + #k = 6 + kernel = np.ones((k,k),np.uint8) + img_mask = cv2.erode(img_mask,kernel,iterations = 1) + kernel = np.ones((2,2),np.uint8) + fake_diff = cv2.dilate(fake_diff,kernel,iterations = 1) + + face_mask = cv2.erode(face_mask,np.ones((11,11),np.uint8),iterations = 1) + fake_diff[face_mask==1] = 255 + + k = max(mask_size//20, 5) + #k = 3 + #k = 3 + kernel_size = (k, k) + blur_size = tuple(2*i+1 for i in kernel_size) + img_mask = cv2.GaussianBlur(img_mask, blur_size, 0) + k = 5 + kernel_size = (k, k) + blur_size = tuple(2*i+1 for i in kernel_size) + fake_diff = cv2.blur(fake_diff, (11,11), 0) + ##fake_diff = cv2.GaussianBlur(fake_diff, blur_size, 0) + # print('blur_size: ', blur_size) + # fake_diff = cv2.blur(fake_diff, (21, 21), 0) # blur_size + img_mask /= 255 + fake_diff /= 255 + # img_mask = fake_diff + img_mask = img_mask*fake_diff + img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1]) + fake_merged = img_mask * bgr_fake + (1-img_mask) * target_img.astype(np.float32) + fake_merged = fake_merged.astype(np.uint8) + return fake_merged diff --git a/src/utils/dependencies/insightface/model_zoo/landmark.py b/src/utils/dependencies/insightface/model_zoo/landmark.py new file mode 100644 index 0000000000000000000000000000000000000000..598b4b29a2d0674d8bb25b681f921c61460d101c --- /dev/null +++ b/src/utils/dependencies/insightface/model_zoo/landmark.py @@ -0,0 +1,114 @@ +# -*- coding: utf-8 -*- +# @Organization : insightface.ai +# @Author : Jia Guo +# @Time : 2021-05-04 +# @Function : + +from __future__ import division +import numpy as np +import cv2 +import onnx +import onnxruntime +from ..utils import face_align +from ..utils import transform +from ..data import get_object + +__all__ = [ + 'Landmark', +] + + +class Landmark: + def __init__(self, model_file=None, session=None): + assert model_file is not None + self.model_file = model_file + self.session = session + find_sub = False + find_mul = False + model = onnx.load(self.model_file) + graph = model.graph + for nid, node in enumerate(graph.node[:8]): + #print(nid, node.name) + if node.name.startswith('Sub') or node.name.startswith('_minus'): + find_sub = True + if node.name.startswith('Mul') or node.name.startswith('_mul'): + find_mul = True + if nid<3 and node.name=='bn_data': + find_sub = True + find_mul = True + if find_sub and find_mul: + #mxnet arcface model + input_mean = 0.0 + input_std = 1.0 + else: + input_mean = 127.5 + input_std = 128.0 + self.input_mean = input_mean + self.input_std = input_std + #print('input mean and std:', model_file, self.input_mean, self.input_std) + if self.session is None: + self.session = onnxruntime.InferenceSession(self.model_file, None) + input_cfg = self.session.get_inputs()[0] + input_shape = input_cfg.shape + input_name = input_cfg.name + self.input_size = tuple(input_shape[2:4][::-1]) + self.input_shape = input_shape + outputs = self.session.get_outputs() + output_names = [] + for out in outputs: + output_names.append(out.name) + self.input_name = input_name + self.output_names = output_names + assert len(self.output_names)==1 + output_shape = outputs[0].shape + self.require_pose = False + #print('init output_shape:', output_shape) + if output_shape[1]==3309: + self.lmk_dim = 3 + self.lmk_num = 68 + self.mean_lmk = get_object('meanshape_68.pkl') + self.require_pose = True + else: + self.lmk_dim = 2 + self.lmk_num = output_shape[1]//self.lmk_dim + self.taskname = 'landmark_%dd_%d'%(self.lmk_dim, self.lmk_num) + + def prepare(self, ctx_id, **kwargs): + if ctx_id<0: + self.session.set_providers(['CPUExecutionProvider']) + + def get(self, img, face): + bbox = face.bbox + w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1]) + center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2 + rotate = 0 + _scale = self.input_size[0] / (max(w, h)*1.5) + #print('param:', img.shape, bbox, center, self.input_size, _scale, rotate) + aimg, M = face_align.transform(img, center, self.input_size[0], _scale, rotate) + input_size = tuple(aimg.shape[0:2][::-1]) + #assert input_size==self.input_size + blob = cv2.dnn.blobFromImage(aimg, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True) + pred = self.session.run(self.output_names, {self.input_name : blob})[0][0] + if pred.shape[0] >= 3000: + pred = pred.reshape((-1, 3)) + else: + pred = pred.reshape((-1, 2)) + if self.lmk_num < pred.shape[0]: + pred = pred[self.lmk_num*-1:,:] + pred[:, 0:2] += 1 + pred[:, 0:2] *= (self.input_size[0] // 2) + if pred.shape[1] == 3: + pred[:, 2] *= (self.input_size[0] // 2) + + IM = cv2.invertAffineTransform(M) + pred = face_align.trans_points(pred, IM) + face[self.taskname] = pred + if self.require_pose: + P = transform.estimate_affine_matrix_3d23d(self.mean_lmk, pred) + s, R, t = transform.P2sRt(P) + rx, ry, rz = transform.matrix2angle(R) + pose = np.array( [rx, ry, rz], dtype=np.float32 ) + face['pose'] = pose #pitch, yaw, roll + return pred + + diff --git a/src/utils/dependencies/insightface/model_zoo/model_store.py b/src/utils/dependencies/insightface/model_zoo/model_store.py new file mode 100644 index 0000000000000000000000000000000000000000..50bb85d314f5b7a0ea8211d2cd21186e32791592 --- /dev/null +++ b/src/utils/dependencies/insightface/model_zoo/model_store.py @@ -0,0 +1,103 @@ +""" +This code file mainly comes from https://github.com/dmlc/gluon-cv/blob/master/gluoncv/model_zoo/model_store.py +""" +from __future__ import print_function + +__all__ = ['get_model_file'] +import os +import zipfile +import glob + +from ..utils import download, check_sha1 + +_model_sha1 = { + name: checksum + for checksum, name in [ + ('95be21b58e29e9c1237f229dae534bd854009ce0', 'arcface_r100_v1'), + ('', 'arcface_mfn_v1'), + ('39fd1e087a2a2ed70a154ac01fecaa86c315d01b', 'retinaface_r50_v1'), + ('2c9de8116d1f448fd1d4661f90308faae34c990a', 'retinaface_mnet025_v1'), + ('0db1d07921d005e6c9a5b38e059452fc5645e5a4', 'retinaface_mnet025_v2'), + ('7dd8111652b7aac2490c5dcddeb268e53ac643e6', 'genderage_v1'), + ] +} + +base_repo_url = 'https://insightface.ai/files/' +_url_format = '{repo_url}models/{file_name}.zip' + + +def short_hash(name): + if name not in _model_sha1: + raise ValueError( + 'Pretrained model for {name} is not available.'.format(name=name)) + return _model_sha1[name][:8] + + +def find_params_file(dir_path): + if not os.path.exists(dir_path): + return None + paths = glob.glob("%s/*.params" % dir_path) + if len(paths) == 0: + return None + paths = sorted(paths) + return paths[-1] + + +def get_model_file(name, root=os.path.join('~', '.insightface', 'models')): + r"""Return location for the pretrained on local file system. + + This function will download from online model zoo when model cannot be found or has mismatch. + The root directory will be created if it doesn't exist. + + Parameters + ---------- + name : str + Name of the model. + root : str, default '~/.mxnet/models' + Location for keeping the model parameters. + + Returns + ------- + file_path + Path to the requested pretrained model file. + """ + + file_name = name + root = os.path.expanduser(root) + dir_path = os.path.join(root, name) + file_path = find_params_file(dir_path) + #file_path = os.path.join(root, file_name + '.params') + sha1_hash = _model_sha1[name] + if file_path is not None: + if check_sha1(file_path, sha1_hash): + return file_path + else: + print( + 'Mismatch in the content of model file detected. Downloading again.' + ) + else: + print('Model file is not found. Downloading.') + + if not os.path.exists(root): + os.makedirs(root) + if not os.path.exists(dir_path): + os.makedirs(dir_path) + + zip_file_path = os.path.join(root, file_name + '.zip') + repo_url = base_repo_url + if repo_url[-1] != '/': + repo_url = repo_url + '/' + download(_url_format.format(repo_url=repo_url, file_name=file_name), + path=zip_file_path, + overwrite=True) + with zipfile.ZipFile(zip_file_path) as zf: + zf.extractall(dir_path) + os.remove(zip_file_path) + file_path = find_params_file(dir_path) + + if check_sha1(file_path, sha1_hash): + return file_path + else: + raise ValueError( + 'Downloaded file has different hash. Please try again.') + diff --git a/src/utils/dependencies/insightface/model_zoo/model_zoo.py b/src/utils/dependencies/insightface/model_zoo/model_zoo.py new file mode 100644 index 0000000000000000000000000000000000000000..d8366e2a5461d5d6688f23e102a40944330084a4 --- /dev/null +++ b/src/utils/dependencies/insightface/model_zoo/model_zoo.py @@ -0,0 +1,97 @@ +# -*- coding: utf-8 -*- +# @Organization : insightface.ai +# @Author : Jia Guo +# @Time : 2021-05-04 +# @Function : + +import os +import os.path as osp +import glob +import onnxruntime +from .arcface_onnx import * +from .retinaface import * +#from .scrfd import * +from .landmark import * +from .attribute import Attribute +from .inswapper import INSwapper +from ..utils import download_onnx + +__all__ = ['get_model'] + + +class PickableInferenceSession(onnxruntime.InferenceSession): + # This is a wrapper to make the current InferenceSession class pickable. + def __init__(self, model_path, **kwargs): + super().__init__(model_path, **kwargs) + self.model_path = model_path + + def __getstate__(self): + return {'model_path': self.model_path} + + def __setstate__(self, values): + model_path = values['model_path'] + self.__init__(model_path) + +class ModelRouter: + def __init__(self, onnx_file): + self.onnx_file = onnx_file + + def get_model(self, **kwargs): + session = PickableInferenceSession(self.onnx_file, **kwargs) + # print(f'Applied providers: {session._providers}, with options: {session._provider_options}') + inputs = session.get_inputs() + input_cfg = inputs[0] + input_shape = input_cfg.shape + outputs = session.get_outputs() + + if len(outputs)>=5: + return RetinaFace(model_file=self.onnx_file, session=session) + elif input_shape[2]==192 and input_shape[3]==192: + return Landmark(model_file=self.onnx_file, session=session) + elif input_shape[2]==96 and input_shape[3]==96: + return Attribute(model_file=self.onnx_file, session=session) + elif len(inputs)==2 and input_shape[2]==128 and input_shape[3]==128: + return INSwapper(model_file=self.onnx_file, session=session) + elif input_shape[2]==input_shape[3] and input_shape[2]>=112 and input_shape[2]%16==0: + return ArcFaceONNX(model_file=self.onnx_file, session=session) + else: + #raise RuntimeError('error on model routing') + return None + +def find_onnx_file(dir_path): + if not os.path.exists(dir_path): + return None + paths = glob.glob("%s/*.onnx" % dir_path) + if len(paths) == 0: + return None + paths = sorted(paths) + return paths[-1] + +def get_default_providers(): + return ['CUDAExecutionProvider', 'CPUExecutionProvider'] + +def get_default_provider_options(): + return None + +def get_model(name, **kwargs): + root = kwargs.get('root', '~/.insightface') + root = os.path.expanduser(root) + model_root = osp.join(root, 'models') + allow_download = kwargs.get('download', False) + download_zip = kwargs.get('download_zip', False) + if not name.endswith('.onnx'): + model_dir = os.path.join(model_root, name) + model_file = find_onnx_file(model_dir) + if model_file is None: + return None + else: + model_file = name + if not osp.exists(model_file) and allow_download: + model_file = download_onnx('models', model_file, root=root, download_zip=download_zip) + assert osp.exists(model_file), 'model_file %s should exist'%model_file + assert osp.isfile(model_file), 'model_file %s should be a file'%model_file + router = ModelRouter(model_file) + providers = kwargs.get('providers', get_default_providers()) + provider_options = kwargs.get('provider_options', get_default_provider_options()) + model = router.get_model(providers=providers, provider_options=provider_options) + return model diff --git a/src/utils/dependencies/insightface/model_zoo/retinaface.py b/src/utils/dependencies/insightface/model_zoo/retinaface.py new file mode 100644 index 0000000000000000000000000000000000000000..fc4ad91ed70688b38503127137e928dc7e5433e1 --- /dev/null +++ b/src/utils/dependencies/insightface/model_zoo/retinaface.py @@ -0,0 +1,301 @@ +# -*- coding: utf-8 -*- +# @Organization : insightface.ai +# @Author : Jia Guo +# @Time : 2021-09-18 +# @Function : + +from __future__ import division +import datetime +import numpy as np +import onnx +import onnxruntime +import os +import os.path as osp +import cv2 +import sys + +def softmax(z): + assert len(z.shape) == 2 + s = np.max(z, axis=1) + s = s[:, np.newaxis] # necessary step to do broadcasting + e_x = np.exp(z - s) + div = np.sum(e_x, axis=1) + div = div[:, np.newaxis] # dito + return e_x / div + +def distance2bbox(points, distance, max_shape=None): + """Decode distance prediction to bounding box. + + Args: + points (Tensor): Shape (n, 2), [x, y]. + distance (Tensor): Distance from the given point to 4 + boundaries (left, top, right, bottom). + max_shape (tuple): Shape of the image. + + Returns: + Tensor: Decoded bboxes. + """ + x1 = points[:, 0] - distance[:, 0] + y1 = points[:, 1] - distance[:, 1] + x2 = points[:, 0] + distance[:, 2] + y2 = points[:, 1] + distance[:, 3] + if max_shape is not None: + x1 = x1.clamp(min=0, max=max_shape[1]) + y1 = y1.clamp(min=0, max=max_shape[0]) + x2 = x2.clamp(min=0, max=max_shape[1]) + y2 = y2.clamp(min=0, max=max_shape[0]) + return np.stack([x1, y1, x2, y2], axis=-1) + +def distance2kps(points, distance, max_shape=None): + """Decode distance prediction to bounding box. + + Args: + points (Tensor): Shape (n, 2), [x, y]. + distance (Tensor): Distance from the given point to 4 + boundaries (left, top, right, bottom). + max_shape (tuple): Shape of the image. + + Returns: + Tensor: Decoded bboxes. + """ + preds = [] + for i in range(0, distance.shape[1], 2): + px = points[:, i%2] + distance[:, i] + py = points[:, i%2+1] + distance[:, i+1] + if max_shape is not None: + px = px.clamp(min=0, max=max_shape[1]) + py = py.clamp(min=0, max=max_shape[0]) + preds.append(px) + preds.append(py) + return np.stack(preds, axis=-1) + +class RetinaFace: + def __init__(self, model_file=None, session=None): + import onnxruntime + self.model_file = model_file + self.session = session + self.taskname = 'detection' + if self.session is None: + assert self.model_file is not None + assert osp.exists(self.model_file) + self.session = onnxruntime.InferenceSession(self.model_file, None) + self.center_cache = {} + self.nms_thresh = 0.4 + self.det_thresh = 0.5 + self._init_vars() + + def _init_vars(self): + input_cfg = self.session.get_inputs()[0] + input_shape = input_cfg.shape + #print(input_shape) + if isinstance(input_shape[2], str): + self.input_size = None + else: + self.input_size = tuple(input_shape[2:4][::-1]) + #print('image_size:', self.image_size) + input_name = input_cfg.name + self.input_shape = input_shape + outputs = self.session.get_outputs() + output_names = [] + for o in outputs: + output_names.append(o.name) + self.input_name = input_name + self.output_names = output_names + self.input_mean = 127.5 + self.input_std = 128.0 + #print(self.output_names) + #assert len(outputs)==10 or len(outputs)==15 + self.use_kps = False + self._anchor_ratio = 1.0 + self._num_anchors = 1 + if len(outputs)==6: + self.fmc = 3 + self._feat_stride_fpn = [8, 16, 32] + self._num_anchors = 2 + elif len(outputs)==9: + self.fmc = 3 + self._feat_stride_fpn = [8, 16, 32] + self._num_anchors = 2 + self.use_kps = True + elif len(outputs)==10: + self.fmc = 5 + self._feat_stride_fpn = [8, 16, 32, 64, 128] + self._num_anchors = 1 + elif len(outputs)==15: + self.fmc = 5 + self._feat_stride_fpn = [8, 16, 32, 64, 128] + self._num_anchors = 1 + self.use_kps = True + + def prepare(self, ctx_id, **kwargs): + if ctx_id<0: + self.session.set_providers(['CPUExecutionProvider']) + nms_thresh = kwargs.get('nms_thresh', None) + if nms_thresh is not None: + self.nms_thresh = nms_thresh + det_thresh = kwargs.get('det_thresh', None) + if det_thresh is not None: + self.det_thresh = det_thresh + input_size = kwargs.get('input_size', None) + if input_size is not None: + if self.input_size is not None: + print('warning: det_size is already set in detection model, ignore') + else: + self.input_size = input_size + + def forward(self, img, threshold): + scores_list = [] + bboxes_list = [] + kpss_list = [] + input_size = tuple(img.shape[0:2][::-1]) + blob = cv2.dnn.blobFromImage(img, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True) + net_outs = self.session.run(self.output_names, {self.input_name : blob}) + + input_height = blob.shape[2] + input_width = blob.shape[3] + fmc = self.fmc + for idx, stride in enumerate(self._feat_stride_fpn): + scores = net_outs[idx] + bbox_preds = net_outs[idx+fmc] + bbox_preds = bbox_preds * stride + if self.use_kps: + kps_preds = net_outs[idx+fmc*2] * stride + height = input_height // stride + width = input_width // stride + K = height * width + key = (height, width, stride) + if key in self.center_cache: + anchor_centers = self.center_cache[key] + else: + #solution-1, c style: + #anchor_centers = np.zeros( (height, width, 2), dtype=np.float32 ) + #for i in range(height): + # anchor_centers[i, :, 1] = i + #for i in range(width): + # anchor_centers[:, i, 0] = i + + #solution-2: + #ax = np.arange(width, dtype=np.float32) + #ay = np.arange(height, dtype=np.float32) + #xv, yv = np.meshgrid(np.arange(width), np.arange(height)) + #anchor_centers = np.stack([xv, yv], axis=-1).astype(np.float32) + + #solution-3: + anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32) + #print(anchor_centers.shape) + + anchor_centers = (anchor_centers * stride).reshape( (-1, 2) ) + if self._num_anchors>1: + anchor_centers = np.stack([anchor_centers]*self._num_anchors, axis=1).reshape( (-1,2) ) + if len(self.center_cache)<100: + self.center_cache[key] = anchor_centers + + pos_inds = np.where(scores>=threshold)[0] + bboxes = distance2bbox(anchor_centers, bbox_preds) + pos_scores = scores[pos_inds] + pos_bboxes = bboxes[pos_inds] + scores_list.append(pos_scores) + bboxes_list.append(pos_bboxes) + if self.use_kps: + kpss = distance2kps(anchor_centers, kps_preds) + #kpss = kps_preds + kpss = kpss.reshape( (kpss.shape[0], -1, 2) ) + pos_kpss = kpss[pos_inds] + kpss_list.append(pos_kpss) + return scores_list, bboxes_list, kpss_list + + def detect(self, img, input_size = None, max_num=0, metric='default'): + assert input_size is not None or self.input_size is not None + input_size = self.input_size if input_size is None else input_size + + im_ratio = float(img.shape[0]) / img.shape[1] + model_ratio = float(input_size[1]) / input_size[0] + if im_ratio>model_ratio: + new_height = input_size[1] + new_width = int(new_height / im_ratio) + else: + new_width = input_size[0] + new_height = int(new_width * im_ratio) + det_scale = float(new_height) / img.shape[0] + resized_img = cv2.resize(img, (new_width, new_height)) + det_img = np.zeros( (input_size[1], input_size[0], 3), dtype=np.uint8 ) + det_img[:new_height, :new_width, :] = resized_img + + scores_list, bboxes_list, kpss_list = self.forward(det_img, self.det_thresh) + + scores = np.vstack(scores_list) + scores_ravel = scores.ravel() + order = scores_ravel.argsort()[::-1] + bboxes = np.vstack(bboxes_list) / det_scale + if self.use_kps: + kpss = np.vstack(kpss_list) / det_scale + pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False) + pre_det = pre_det[order, :] + keep = self.nms(pre_det) + det = pre_det[keep, :] + if self.use_kps: + kpss = kpss[order,:,:] + kpss = kpss[keep,:,:] + else: + kpss = None + if max_num > 0 and det.shape[0] > max_num: + area = (det[:, 2] - det[:, 0]) * (det[:, 3] - + det[:, 1]) + img_center = img.shape[0] // 2, img.shape[1] // 2 + offsets = np.vstack([ + (det[:, 0] + det[:, 2]) / 2 - img_center[1], + (det[:, 1] + det[:, 3]) / 2 - img_center[0] + ]) + offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) + if metric=='max': + values = area + else: + values = area - offset_dist_squared * 2.0 # some extra weight on the centering + bindex = np.argsort( + values)[::-1] # some extra weight on the centering + bindex = bindex[0:max_num] + det = det[bindex, :] + if kpss is not None: + kpss = kpss[bindex, :] + return det, kpss + + def nms(self, dets): + thresh = self.nms_thresh + x1 = dets[:, 0] + y1 = dets[:, 1] + x2 = dets[:, 2] + y2 = dets[:, 3] + scores = dets[:, 4] + + areas = (x2 - x1 + 1) * (y2 - y1 + 1) + order = scores.argsort()[::-1] + + keep = [] + while order.size > 0: + i = order[0] + keep.append(i) + xx1 = np.maximum(x1[i], x1[order[1:]]) + yy1 = np.maximum(y1[i], y1[order[1:]]) + xx2 = np.minimum(x2[i], x2[order[1:]]) + yy2 = np.minimum(y2[i], y2[order[1:]]) + + w = np.maximum(0.0, xx2 - xx1 + 1) + h = np.maximum(0.0, yy2 - yy1 + 1) + inter = w * h + ovr = inter / (areas[i] + areas[order[1:]] - inter) + + inds = np.where(ovr <= thresh)[0] + order = order[inds + 1] + + return keep + +def get_retinaface(name, download=False, root='~/.insightface/models', **kwargs): + if not download: + assert os.path.exists(name) + return RetinaFace(name) + else: + from .model_store import get_model_file + _file = get_model_file("retinaface_%s" % name, root=root) + return retinaface(_file) + + diff --git a/src/utils/dependencies/insightface/model_zoo/scrfd.py b/src/utils/dependencies/insightface/model_zoo/scrfd.py new file mode 100644 index 0000000000000000000000000000000000000000..674db4bba761157592dfb95c5d1638da1099f89c --- /dev/null +++ b/src/utils/dependencies/insightface/model_zoo/scrfd.py @@ -0,0 +1,348 @@ +# -*- coding: utf-8 -*- +# @Organization : insightface.ai +# @Author : Jia Guo +# @Time : 2021-05-04 +# @Function : + +from __future__ import division +import datetime +import numpy as np +import onnx +import onnxruntime +import os +import os.path as osp +import cv2 +import sys + +def softmax(z): + assert len(z.shape) == 2 + s = np.max(z, axis=1) + s = s[:, np.newaxis] # necessary step to do broadcasting + e_x = np.exp(z - s) + div = np.sum(e_x, axis=1) + div = div[:, np.newaxis] # dito + return e_x / div + +def distance2bbox(points, distance, max_shape=None): + """Decode distance prediction to bounding box. + + Args: + points (Tensor): Shape (n, 2), [x, y]. + distance (Tensor): Distance from the given point to 4 + boundaries (left, top, right, bottom). + max_shape (tuple): Shape of the image. + + Returns: + Tensor: Decoded bboxes. + """ + x1 = points[:, 0] - distance[:, 0] + y1 = points[:, 1] - distance[:, 1] + x2 = points[:, 0] + distance[:, 2] + y2 = points[:, 1] + distance[:, 3] + if max_shape is not None: + x1 = x1.clamp(min=0, max=max_shape[1]) + y1 = y1.clamp(min=0, max=max_shape[0]) + x2 = x2.clamp(min=0, max=max_shape[1]) + y2 = y2.clamp(min=0, max=max_shape[0]) + return np.stack([x1, y1, x2, y2], axis=-1) + +def distance2kps(points, distance, max_shape=None): + """Decode distance prediction to bounding box. + + Args: + points (Tensor): Shape (n, 2), [x, y]. + distance (Tensor): Distance from the given point to 4 + boundaries (left, top, right, bottom). + max_shape (tuple): Shape of the image. + + Returns: + Tensor: Decoded bboxes. + """ + preds = [] + for i in range(0, distance.shape[1], 2): + px = points[:, i%2] + distance[:, i] + py = points[:, i%2+1] + distance[:, i+1] + if max_shape is not None: + px = px.clamp(min=0, max=max_shape[1]) + py = py.clamp(min=0, max=max_shape[0]) + preds.append(px) + preds.append(py) + return np.stack(preds, axis=-1) + +class SCRFD: + def __init__(self, model_file=None, session=None): + import onnxruntime + self.model_file = model_file + self.session = session + self.taskname = 'detection' + self.batched = False + if self.session is None: + assert self.model_file is not None + assert osp.exists(self.model_file) + self.session = onnxruntime.InferenceSession(self.model_file, None) + self.center_cache = {} + self.nms_thresh = 0.4 + self.det_thresh = 0.5 + self._init_vars() + + def _init_vars(self): + input_cfg = self.session.get_inputs()[0] + input_shape = input_cfg.shape + #print(input_shape) + if isinstance(input_shape[2], str): + self.input_size = None + else: + self.input_size = tuple(input_shape[2:4][::-1]) + #print('image_size:', self.image_size) + input_name = input_cfg.name + self.input_shape = input_shape + outputs = self.session.get_outputs() + if len(outputs[0].shape) == 3: + self.batched = True + output_names = [] + for o in outputs: + output_names.append(o.name) + self.input_name = input_name + self.output_names = output_names + self.input_mean = 127.5 + self.input_std = 128.0 + #print(self.output_names) + #assert len(outputs)==10 or len(outputs)==15 + self.use_kps = False + self._anchor_ratio = 1.0 + self._num_anchors = 1 + if len(outputs)==6: + self.fmc = 3 + self._feat_stride_fpn = [8, 16, 32] + self._num_anchors = 2 + elif len(outputs)==9: + self.fmc = 3 + self._feat_stride_fpn = [8, 16, 32] + self._num_anchors = 2 + self.use_kps = True + elif len(outputs)==10: + self.fmc = 5 + self._feat_stride_fpn = [8, 16, 32, 64, 128] + self._num_anchors = 1 + elif len(outputs)==15: + self.fmc = 5 + self._feat_stride_fpn = [8, 16, 32, 64, 128] + self._num_anchors = 1 + self.use_kps = True + + def prepare(self, ctx_id, **kwargs): + if ctx_id<0: + self.session.set_providers(['CPUExecutionProvider']) + nms_thresh = kwargs.get('nms_thresh', None) + if nms_thresh is not None: + self.nms_thresh = nms_thresh + det_thresh = kwargs.get('det_thresh', None) + if det_thresh is not None: + self.det_thresh = det_thresh + input_size = kwargs.get('input_size', None) + if input_size is not None: + if self.input_size is not None: + print('warning: det_size is already set in scrfd model, ignore') + else: + self.input_size = input_size + + def forward(self, img, threshold): + scores_list = [] + bboxes_list = [] + kpss_list = [] + input_size = tuple(img.shape[0:2][::-1]) + blob = cv2.dnn.blobFromImage(img, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True) + net_outs = self.session.run(self.output_names, {self.input_name : blob}) + + input_height = blob.shape[2] + input_width = blob.shape[3] + fmc = self.fmc + for idx, stride in enumerate(self._feat_stride_fpn): + # If model support batch dim, take first output + if self.batched: + scores = net_outs[idx][0] + bbox_preds = net_outs[idx + fmc][0] + bbox_preds = bbox_preds * stride + if self.use_kps: + kps_preds = net_outs[idx + fmc * 2][0] * stride + # If model doesn't support batching take output as is + else: + scores = net_outs[idx] + bbox_preds = net_outs[idx + fmc] + bbox_preds = bbox_preds * stride + if self.use_kps: + kps_preds = net_outs[idx + fmc * 2] * stride + + height = input_height // stride + width = input_width // stride + K = height * width + key = (height, width, stride) + if key in self.center_cache: + anchor_centers = self.center_cache[key] + else: + #solution-1, c style: + #anchor_centers = np.zeros( (height, width, 2), dtype=np.float32 ) + #for i in range(height): + # anchor_centers[i, :, 1] = i + #for i in range(width): + # anchor_centers[:, i, 0] = i + + #solution-2: + #ax = np.arange(width, dtype=np.float32) + #ay = np.arange(height, dtype=np.float32) + #xv, yv = np.meshgrid(np.arange(width), np.arange(height)) + #anchor_centers = np.stack([xv, yv], axis=-1).astype(np.float32) + + #solution-3: + anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32) + #print(anchor_centers.shape) + + anchor_centers = (anchor_centers * stride).reshape( (-1, 2) ) + if self._num_anchors>1: + anchor_centers = np.stack([anchor_centers]*self._num_anchors, axis=1).reshape( (-1,2) ) + if len(self.center_cache)<100: + self.center_cache[key] = anchor_centers + + pos_inds = np.where(scores>=threshold)[0] + bboxes = distance2bbox(anchor_centers, bbox_preds) + pos_scores = scores[pos_inds] + pos_bboxes = bboxes[pos_inds] + scores_list.append(pos_scores) + bboxes_list.append(pos_bboxes) + if self.use_kps: + kpss = distance2kps(anchor_centers, kps_preds) + #kpss = kps_preds + kpss = kpss.reshape( (kpss.shape[0], -1, 2) ) + pos_kpss = kpss[pos_inds] + kpss_list.append(pos_kpss) + return scores_list, bboxes_list, kpss_list + + def detect(self, img, input_size = None, max_num=0, metric='default'): + assert input_size is not None or self.input_size is not None + input_size = self.input_size if input_size is None else input_size + + im_ratio = float(img.shape[0]) / img.shape[1] + model_ratio = float(input_size[1]) / input_size[0] + if im_ratio>model_ratio: + new_height = input_size[1] + new_width = int(new_height / im_ratio) + else: + new_width = input_size[0] + new_height = int(new_width * im_ratio) + det_scale = float(new_height) / img.shape[0] + resized_img = cv2.resize(img, (new_width, new_height)) + det_img = np.zeros( (input_size[1], input_size[0], 3), dtype=np.uint8 ) + det_img[:new_height, :new_width, :] = resized_img + + scores_list, bboxes_list, kpss_list = self.forward(det_img, self.det_thresh) + + scores = np.vstack(scores_list) + scores_ravel = scores.ravel() + order = scores_ravel.argsort()[::-1] + bboxes = np.vstack(bboxes_list) / det_scale + if self.use_kps: + kpss = np.vstack(kpss_list) / det_scale + pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False) + pre_det = pre_det[order, :] + keep = self.nms(pre_det) + det = pre_det[keep, :] + if self.use_kps: + kpss = kpss[order,:,:] + kpss = kpss[keep,:,:] + else: + kpss = None + if max_num > 0 and det.shape[0] > max_num: + area = (det[:, 2] - det[:, 0]) * (det[:, 3] - + det[:, 1]) + img_center = img.shape[0] // 2, img.shape[1] // 2 + offsets = np.vstack([ + (det[:, 0] + det[:, 2]) / 2 - img_center[1], + (det[:, 1] + det[:, 3]) / 2 - img_center[0] + ]) + offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) + if metric=='max': + values = area + else: + values = area - offset_dist_squared * 2.0 # some extra weight on the centering + bindex = np.argsort( + values)[::-1] # some extra weight on the centering + bindex = bindex[0:max_num] + det = det[bindex, :] + if kpss is not None: + kpss = kpss[bindex, :] + return det, kpss + + def nms(self, dets): + thresh = self.nms_thresh + x1 = dets[:, 0] + y1 = dets[:, 1] + x2 = dets[:, 2] + y2 = dets[:, 3] + scores = dets[:, 4] + + areas = (x2 - x1 + 1) * (y2 - y1 + 1) + order = scores.argsort()[::-1] + + keep = [] + while order.size > 0: + i = order[0] + keep.append(i) + xx1 = np.maximum(x1[i], x1[order[1:]]) + yy1 = np.maximum(y1[i], y1[order[1:]]) + xx2 = np.minimum(x2[i], x2[order[1:]]) + yy2 = np.minimum(y2[i], y2[order[1:]]) + + w = np.maximum(0.0, xx2 - xx1 + 1) + h = np.maximum(0.0, yy2 - yy1 + 1) + inter = w * h + ovr = inter / (areas[i] + areas[order[1:]] - inter) + + inds = np.where(ovr <= thresh)[0] + order = order[inds + 1] + + return keep + +def get_scrfd(name, download=False, root='~/.insightface/models', **kwargs): + if not download: + assert os.path.exists(name) + return SCRFD(name) + else: + from .model_store import get_model_file + _file = get_model_file("scrfd_%s" % name, root=root) + return SCRFD(_file) + + +def scrfd_2p5gkps(**kwargs): + return get_scrfd("2p5gkps", download=True, **kwargs) + + +if __name__ == '__main__': + import glob + detector = SCRFD(model_file='./det.onnx') + detector.prepare(-1) + img_paths = ['tests/data/t1.jpg'] + for img_path in img_paths: + img = cv2.imread(img_path) + + for _ in range(1): + ta = datetime.datetime.now() + #bboxes, kpss = detector.detect(img, 0.5, input_size = (640, 640)) + bboxes, kpss = detector.detect(img, 0.5) + tb = datetime.datetime.now() + print('all cost:', (tb-ta).total_seconds()*1000) + print(img_path, bboxes.shape) + if kpss is not None: + print(kpss.shape) + for i in range(bboxes.shape[0]): + bbox = bboxes[i] + x1,y1,x2,y2,score = bbox.astype(np.int) + cv2.rectangle(img, (x1,y1) , (x2,y2) , (255,0,0) , 2) + if kpss is not None: + kps = kpss[i] + for kp in kps: + kp = kp.astype(np.int) + cv2.circle(img, tuple(kp) , 1, (0,0,255) , 2) + filename = img_path.split('/')[-1] + print('output:', filename) + cv2.imwrite('./outputs/%s'%filename, img) + diff --git a/src/utils/dependencies/insightface/utils/__init__.py b/src/utils/dependencies/insightface/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..6960431b1bd6db38890e391c4c94dd2182f2e1fd --- /dev/null +++ b/src/utils/dependencies/insightface/utils/__init__.py @@ -0,0 +1,6 @@ +from __future__ import absolute_import + +from .storage import download, ensure_available, download_onnx +from .filesystem import get_model_dir +from .filesystem import makedirs, try_import_dali +from .constant import * diff --git a/src/utils/dependencies/insightface/utils/constant.py b/src/utils/dependencies/insightface/utils/constant.py new file mode 100644 index 0000000000000000000000000000000000000000..8860ff077ae7227235591edfc84c0cdc227a6432 --- /dev/null +++ b/src/utils/dependencies/insightface/utils/constant.py @@ -0,0 +1,3 @@ + +DEFAULT_MP_NAME = 'buffalo_l' + diff --git a/src/utils/dependencies/insightface/utils/download.py b/src/utils/dependencies/insightface/utils/download.py new file mode 100644 index 0000000000000000000000000000000000000000..5cda84dede45b81dcd99161d87792b6c409fa279 --- /dev/null +++ b/src/utils/dependencies/insightface/utils/download.py @@ -0,0 +1,95 @@ +""" +This code file mainly comes from https://github.com/dmlc/gluon-cv/blob/master/gluoncv/utils/download.py +""" +import os +import hashlib +import requests +from tqdm import tqdm + + +def check_sha1(filename, sha1_hash): + """Check whether the sha1 hash of the file content matches the expected hash. + Parameters + ---------- + filename : str + Path to the file. + sha1_hash : str + Expected sha1 hash in hexadecimal digits. + Returns + ------- + bool + Whether the file content matches the expected hash. + """ + sha1 = hashlib.sha1() + with open(filename, 'rb') as f: + while True: + data = f.read(1048576) + if not data: + break + sha1.update(data) + + sha1_file = sha1.hexdigest() + l = min(len(sha1_file), len(sha1_hash)) + return sha1.hexdigest()[0:l] == sha1_hash[0:l] + + +def download_file(url, path=None, overwrite=False, sha1_hash=None): + """Download an given URL + Parameters + ---------- + url : str + URL to download + path : str, optional + Destination path to store downloaded file. By default stores to the + current directory with same name as in url. + overwrite : bool, optional + Whether to overwrite destination file if already exists. + sha1_hash : str, optional + Expected sha1 hash in hexadecimal digits. Will ignore existing file when hash is specified + but doesn't match. + Returns + ------- + str + The file path of the downloaded file. + """ + if path is None: + fname = url.split('/')[-1] + else: + path = os.path.expanduser(path) + if os.path.isdir(path): + fname = os.path.join(path, url.split('/')[-1]) + else: + fname = path + + if overwrite or not os.path.exists(fname) or ( + sha1_hash and not check_sha1(fname, sha1_hash)): + dirname = os.path.dirname(os.path.abspath(os.path.expanduser(fname))) + if not os.path.exists(dirname): + os.makedirs(dirname) + + print('Downloading %s from %s...' % (fname, url)) + r = requests.get(url, stream=True) + if r.status_code != 200: + raise RuntimeError("Failed downloading url %s" % url) + total_length = r.headers.get('content-length') + with open(fname, 'wb') as f: + if total_length is None: # no content length header + for chunk in r.iter_content(chunk_size=1024): + if chunk: # filter out keep-alive new chunks + f.write(chunk) + else: + total_length = int(total_length) + for chunk in tqdm(r.iter_content(chunk_size=1024), + total=int(total_length / 1024. + 0.5), + unit='KB', + unit_scale=False, + dynamic_ncols=True): + f.write(chunk) + + if sha1_hash and not check_sha1(fname, sha1_hash): + raise UserWarning('File {} is downloaded but the content hash does not match. ' \ + 'The repo may be outdated or download may be incomplete. ' \ + 'If the "repo_url" is overridden, consider switching to ' \ + 'the default repo.'.format(fname)) + + return fname diff --git a/src/utils/dependencies/insightface/utils/face_align.py b/src/utils/dependencies/insightface/utils/face_align.py new file mode 100644 index 0000000000000000000000000000000000000000..226628b39cf743947df230feffbb97bf5c585e1d --- /dev/null +++ b/src/utils/dependencies/insightface/utils/face_align.py @@ -0,0 +1,103 @@ +import cv2 +import numpy as np +from skimage import transform as trans + + +arcface_dst = np.array( + [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], + [41.5493, 92.3655], [70.7299, 92.2041]], + dtype=np.float32) + +def estimate_norm(lmk, image_size=112,mode='arcface'): + assert lmk.shape == (5, 2) + assert image_size%112==0 or image_size%128==0 + if image_size%112==0: + ratio = float(image_size)/112.0 + diff_x = 0 + else: + ratio = float(image_size)/128.0 + diff_x = 8.0*ratio + dst = arcface_dst * ratio + dst[:,0] += diff_x + tform = trans.SimilarityTransform() + tform.estimate(lmk, dst) + M = tform.params[0:2, :] + return M + +def norm_crop(img, landmark, image_size=112, mode='arcface'): + M = estimate_norm(landmark, image_size, mode) + warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) + return warped + +def norm_crop2(img, landmark, image_size=112, mode='arcface'): + M = estimate_norm(landmark, image_size, mode) + warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) + return warped, M + +def square_crop(im, S): + if im.shape[0] > im.shape[1]: + height = S + width = int(float(im.shape[1]) / im.shape[0] * S) + scale = float(S) / im.shape[0] + else: + width = S + height = int(float(im.shape[0]) / im.shape[1] * S) + scale = float(S) / im.shape[1] + resized_im = cv2.resize(im, (width, height)) + det_im = np.zeros((S, S, 3), dtype=np.uint8) + det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im + return det_im, scale + + +def transform(data, center, output_size, scale, rotation): + scale_ratio = scale + rot = float(rotation) * np.pi / 180.0 + #translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio) + t1 = trans.SimilarityTransform(scale=scale_ratio) + cx = center[0] * scale_ratio + cy = center[1] * scale_ratio + t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy)) + t3 = trans.SimilarityTransform(rotation=rot) + t4 = trans.SimilarityTransform(translation=(output_size / 2, + output_size / 2)) + t = t1 + t2 + t3 + t4 + M = t.params[0:2] + cropped = cv2.warpAffine(data, + M, (output_size, output_size), + borderValue=0.0) + return cropped, M + + +def trans_points2d(pts, M): + new_pts = np.zeros(shape=pts.shape, dtype=np.float32) + for i in range(pts.shape[0]): + pt = pts[i] + new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) + new_pt = np.dot(M, new_pt) + #print('new_pt', new_pt.shape, new_pt) + new_pts[i] = new_pt[0:2] + + return new_pts + + +def trans_points3d(pts, M): + scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1]) + #print(scale) + new_pts = np.zeros(shape=pts.shape, dtype=np.float32) + for i in range(pts.shape[0]): + pt = pts[i] + new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) + new_pt = np.dot(M, new_pt) + #print('new_pt', new_pt.shape, new_pt) + new_pts[i][0:2] = new_pt[0:2] + new_pts[i][2] = pts[i][2] * scale + + return new_pts + + +def trans_points(pts, M): + if pts.shape[1] == 2: + return trans_points2d(pts, M) + else: + return trans_points3d(pts, M) + diff --git a/src/utils/dependencies/insightface/utils/filesystem.py b/src/utils/dependencies/insightface/utils/filesystem.py new file mode 100644 index 0000000000000000000000000000000000000000..01e3851975bdcbbf7f5eeb7e68e70a36dc040535 --- /dev/null +++ b/src/utils/dependencies/insightface/utils/filesystem.py @@ -0,0 +1,157 @@ +""" +This code file mainly comes from https://github.com/dmlc/gluon-cv/blob/master/gluoncv/utils/filesystem.py +""" +import os +import os.path as osp +import errno + + +def get_model_dir(name, root='~/.insightface'): + root = os.path.expanduser(root) + model_dir = osp.join(root, 'models', name) + return model_dir + +def makedirs(path): + """Create directory recursively if not exists. + Similar to `makedir -p`, you can skip checking existence before this function. + + Parameters + ---------- + path : str + Path of the desired dir + """ + try: + os.makedirs(path) + except OSError as exc: + if exc.errno != errno.EEXIST: + raise + + +def try_import(package, message=None): + """Try import specified package, with custom message support. + + Parameters + ---------- + package : str + The name of the targeting package. + message : str, default is None + If not None, this function will raise customized error message when import error is found. + + + Returns + ------- + module if found, raise ImportError otherwise + + """ + try: + return __import__(package) + except ImportError as e: + if not message: + raise e + raise ImportError(message) + + +def try_import_cv2(): + """Try import cv2 at runtime. + + Returns + ------- + cv2 module if found. Raise ImportError otherwise + + """ + msg = "cv2 is required, you can install by package manager, e.g. 'apt-get', \ + or `pip install opencv-python --user` (note that this is unofficial PYPI package)." + + return try_import('cv2', msg) + + +def try_import_mmcv(): + """Try import mmcv at runtime. + + Returns + ------- + mmcv module if found. Raise ImportError otherwise + + """ + msg = "mmcv is required, you can install by first `pip install Cython --user` \ + and then `pip install mmcv --user` (note that this is unofficial PYPI package)." + + return try_import('mmcv', msg) + + +def try_import_rarfile(): + """Try import rarfile at runtime. + + Returns + ------- + rarfile module if found. Raise ImportError otherwise + + """ + msg = "rarfile is required, you can install by first `sudo apt-get install unrar` \ + and then `pip install rarfile --user` (note that this is unofficial PYPI package)." + + return try_import('rarfile', msg) + + +def import_try_install(package, extern_url=None): + """Try import the specified package. + If the package not installed, try use pip to install and import if success. + + Parameters + ---------- + package : str + The name of the package trying to import. + extern_url : str or None, optional + The external url if package is not hosted on PyPI. + For example, you can install a package using: + "pip install git+http://github.com/user/repo/tarball/master/egginfo=xxx". + In this case, you can pass the url to the extern_url. + + Returns + ------- + + The imported python module. + + """ + try: + return __import__(package) + except ImportError: + try: + from pip import main as pipmain + except ImportError: + from pip._internal import main as pipmain + + # trying to install package + url = package if extern_url is None else extern_url + pipmain(['install', '--user', + url]) # will raise SystemExit Error if fails + + # trying to load again + try: + return __import__(package) + except ImportError: + import sys + import site + user_site = site.getusersitepackages() + if user_site not in sys.path: + sys.path.append(user_site) + return __import__(package) + return __import__(package) + + +def try_import_dali(): + """Try import NVIDIA DALI at runtime. + """ + try: + dali = __import__('nvidia.dali', fromlist=['pipeline', 'ops', 'types']) + dali.Pipeline = dali.pipeline.Pipeline + except ImportError: + + class dali: + class Pipeline: + def __init__(self): + raise NotImplementedError( + "DALI not found, please check if you installed it correctly." + ) + + return dali diff --git a/src/utils/dependencies/insightface/utils/storage.py b/src/utils/dependencies/insightface/utils/storage.py new file mode 100644 index 0000000000000000000000000000000000000000..5bf37e2d17b28dee2a8839484778815f87fc4a9c --- /dev/null +++ b/src/utils/dependencies/insightface/utils/storage.py @@ -0,0 +1,52 @@ + +import os +import os.path as osp +import zipfile +from .download import download_file + +BASE_REPO_URL = 'https://github.com/deepinsight/insightface/releases/download/v0.7' + +def download(sub_dir, name, force=False, root='~/.insightface'): + _root = os.path.expanduser(root) + dir_path = os.path.join(_root, sub_dir, name) + if osp.exists(dir_path) and not force: + return dir_path + print('download_path:', dir_path) + zip_file_path = os.path.join(_root, sub_dir, name + '.zip') + model_url = "%s/%s.zip"%(BASE_REPO_URL, name) + download_file(model_url, + path=zip_file_path, + overwrite=True) + if not os.path.exists(dir_path): + os.makedirs(dir_path) + with zipfile.ZipFile(zip_file_path) as zf: + zf.extractall(dir_path) + #os.remove(zip_file_path) + return dir_path + +def ensure_available(sub_dir, name, root='~/.insightface'): + return download(sub_dir, name, force=False, root=root) + +def download_onnx(sub_dir, model_file, force=False, root='~/.insightface', download_zip=False): + _root = os.path.expanduser(root) + model_root = osp.join(_root, sub_dir) + new_model_file = osp.join(model_root, model_file) + if osp.exists(new_model_file) and not force: + return new_model_file + if not osp.exists(model_root): + os.makedirs(model_root) + print('download_path:', new_model_file) + if not download_zip: + model_url = "%s/%s"%(BASE_REPO_URL, model_file) + download_file(model_url, + path=new_model_file, + overwrite=True) + else: + model_url = "%s/%s.zip"%(BASE_REPO_URL, model_file) + zip_file_path = new_model_file+".zip" + download_file(model_url, + path=zip_file_path, + overwrite=True) + with zipfile.ZipFile(zip_file_path) as zf: + zf.extractall(model_root) + return new_model_file diff --git a/src/utils/dependencies/insightface/utils/transform.py b/src/utils/dependencies/insightface/utils/transform.py new file mode 100644 index 0000000000000000000000000000000000000000..06531d257b694211a0b9a09c9d741b9b2ff53bfe --- /dev/null +++ b/src/utils/dependencies/insightface/utils/transform.py @@ -0,0 +1,116 @@ +import cv2 +import math +import numpy as np +from skimage import transform as trans + + +def transform(data, center, output_size, scale, rotation): + scale_ratio = scale + rot = float(rotation) * np.pi / 180.0 + #translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio) + t1 = trans.SimilarityTransform(scale=scale_ratio) + cx = center[0] * scale_ratio + cy = center[1] * scale_ratio + t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy)) + t3 = trans.SimilarityTransform(rotation=rot) + t4 = trans.SimilarityTransform(translation=(output_size / 2, + output_size / 2)) + t = t1 + t2 + t3 + t4 + M = t.params[0:2] + cropped = cv2.warpAffine(data, + M, (output_size, output_size), + borderValue=0.0) + return cropped, M + + +def trans_points2d(pts, M): + new_pts = np.zeros(shape=pts.shape, dtype=np.float32) + for i in range(pts.shape[0]): + pt = pts[i] + new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) + new_pt = np.dot(M, new_pt) + #print('new_pt', new_pt.shape, new_pt) + new_pts[i] = new_pt[0:2] + + return new_pts + + +def trans_points3d(pts, M): + scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1]) + #print(scale) + new_pts = np.zeros(shape=pts.shape, dtype=np.float32) + for i in range(pts.shape[0]): + pt = pts[i] + new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) + new_pt = np.dot(M, new_pt) + #print('new_pt', new_pt.shape, new_pt) + new_pts[i][0:2] = new_pt[0:2] + new_pts[i][2] = pts[i][2] * scale + + return new_pts + + +def trans_points(pts, M): + if pts.shape[1] == 2: + return trans_points2d(pts, M) + else: + return trans_points3d(pts, M) + +def estimate_affine_matrix_3d23d(X, Y): + ''' Using least-squares solution + Args: + X: [n, 3]. 3d points(fixed) + Y: [n, 3]. corresponding 3d points(moving). Y = PX + Returns: + P_Affine: (3, 4). Affine camera matrix (the third row is [0, 0, 0, 1]). + ''' + X_homo = np.hstack((X, np.ones([X.shape[0],1]))) #n x 4 + P = np.linalg.lstsq(X_homo, Y)[0].T # Affine matrix. 3 x 4 + return P + +def P2sRt(P): + ''' decompositing camera matrix P + Args: + P: (3, 4). Affine Camera Matrix. + Returns: + s: scale factor. + R: (3, 3). rotation matrix. + t: (3,). translation. + ''' + t = P[:, 3] + R1 = P[0:1, :3] + R2 = P[1:2, :3] + s = (np.linalg.norm(R1) + np.linalg.norm(R2))/2.0 + r1 = R1/np.linalg.norm(R1) + r2 = R2/np.linalg.norm(R2) + r3 = np.cross(r1, r2) + + R = np.concatenate((r1, r2, r3), 0) + return s, R, t + +def matrix2angle(R): + ''' get three Euler angles from Rotation Matrix + Args: + R: (3,3). rotation matrix + Returns: + x: pitch + y: yaw + z: roll + ''' + sy = math.sqrt(R[0,0] * R[0,0] + R[1,0] * R[1,0]) + + singular = sy < 1e-6 + + if not singular : + x = math.atan2(R[2,1] , R[2,2]) + y = math.atan2(-R[2,0], sy) + z = math.atan2(R[1,0], R[0,0]) + else : + x = math.atan2(-R[1,2], R[1,1]) + y = math.atan2(-R[2,0], sy) + z = 0 + + # rx, ry, rz = np.rad2deg(x), np.rad2deg(y), np.rad2deg(z) + rx, ry, rz = x*180/np.pi, y*180/np.pi, z*180/np.pi + return rx, ry, rz + diff --git a/src/utils/face_analysis_diy.py b/src/utils/face_analysis_diy.py new file mode 100644 index 0000000000000000000000000000000000000000..f13a659134216958da3c7273aabf3b0f96fb320d --- /dev/null +++ b/src/utils/face_analysis_diy.py @@ -0,0 +1,79 @@ +# coding: utf-8 + +""" +face detectoin and alignment using InsightFace +""" + +import numpy as np +from .rprint import rlog as log +from .dependencies.insightface.app import FaceAnalysis +from .dependencies.insightface.app.common import Face +from .timer import Timer + + +def sort_by_direction(faces, direction: str = 'large-small', face_center=None): + if len(faces) <= 0: + return faces + + if direction == 'left-right': + return sorted(faces, key=lambda face: face['bbox'][0]) + if direction == 'right-left': + return sorted(faces, key=lambda face: face['bbox'][0], reverse=True) + if direction == 'top-bottom': + return sorted(faces, key=lambda face: face['bbox'][1]) + if direction == 'bottom-top': + return sorted(faces, key=lambda face: face['bbox'][1], reverse=True) + if direction == 'small-large': + return sorted(faces, key=lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1])) + if direction == 'large-small': + return sorted(faces, key=lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1]), reverse=True) + if direction == 'distance-from-retarget-face': + return sorted(faces, key=lambda face: (((face['bbox'][2]+face['bbox'][0])/2-face_center[0])**2+((face['bbox'][3]+face['bbox'][1])/2-face_center[1])**2)**0.5) + return faces + + +class FaceAnalysisDIY(FaceAnalysis): + def __init__(self, name='buffalo_l', root='~/.insightface', allowed_modules=None, **kwargs): + super().__init__(name=name, root=root, allowed_modules=allowed_modules, **kwargs) + + self.timer = Timer() + + def get(self, img_bgr, **kwargs): + max_num = kwargs.get('max_face_num', 0) # the number of the detected faces, 0 means no limit + flag_do_landmark_2d_106 = kwargs.get('flag_do_landmark_2d_106', True) # whether to do 106-point detection + direction = kwargs.get('direction', 'large-small') # sorting direction + face_center = None + + bboxes, kpss = self.det_model.detect(img_bgr, max_num=max_num, metric='default') + if bboxes.shape[0] == 0: + return [] + ret = [] + for i in range(bboxes.shape[0]): + bbox = bboxes[i, 0:4] + det_score = bboxes[i, 4] + kps = None + if kpss is not None: + kps = kpss[i] + face = Face(bbox=bbox, kps=kps, det_score=det_score) + for taskname, model in self.models.items(): + if taskname == 'detection': + continue + + if (not flag_do_landmark_2d_106) and taskname == 'landmark_2d_106': + continue + + # print(f'taskname: {taskname}') + model.get(img_bgr, face) + ret.append(face) + + ret = sort_by_direction(ret, direction, face_center) + return ret + + def warmup(self): + self.timer.tic() + + img_bgr = np.zeros((512, 512, 3), dtype=np.uint8) + self.get(img_bgr) + + elapse = self.timer.toc() + log(f'FaceAnalysisDIY warmup time: {elapse:.3f}s') diff --git a/src/utils/helper.py b/src/utils/helper.py new file mode 100644 index 0000000000000000000000000000000000000000..0e2af94e137b6447c88ec4df3c7c2c1b1bd94b8a --- /dev/null +++ b/src/utils/helper.py @@ -0,0 +1,145 @@ +# coding: utf-8 + +""" +utility functions and classes to handle feature extraction and model loading +""" + +import os +import os.path as osp +import torch +from collections import OrderedDict + +from ..modules.spade_generator import SPADEDecoder +from ..modules.warping_network import WarpingNetwork +from ..modules.motion_extractor import MotionExtractor +from ..modules.appearance_feature_extractor import AppearanceFeatureExtractor +from ..modules.stitching_retargeting_network import StitchingRetargetingNetwork + + +def suffix(filename): + """a.jpg -> jpg""" + pos = filename.rfind(".") + if pos == -1: + return "" + return filename[pos + 1:] + + +def prefix(filename): + """a.jpg -> a""" + pos = filename.rfind(".") + if pos == -1: + return filename + return filename[:pos] + + +def basename(filename): + """a/b/c.jpg -> c""" + return prefix(osp.basename(filename)) + + +def remove_suffix(filepath): + """a/b/c.jpg -> a/b/c""" + return osp.join(osp.dirname(filepath), basename(filepath)) + + +def is_video(file_path): + if file_path.lower().endswith((".mp4", ".mov", ".avi", ".webm")) or osp.isdir(file_path): + return True + return False + + +def is_template(file_path): + if file_path.endswith(".pkl"): + return True + return False + + +def mkdir(d, log=False): + # return self-assined `d`, for one line code + if not osp.exists(d): + os.makedirs(d, exist_ok=True) + if log: + print(f"Make dir: {d}") + return d + + +def squeeze_tensor_to_numpy(tensor): + out = tensor.data.squeeze(0).cpu().numpy() + return out + + +def dct2device(dct: dict, device): + for key in dct: + dct[key] = torch.tensor(dct[key]).to(device) + return dct + + +def concat_feat(kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: + """ + kp_source: (bs, k, 3) + kp_driving: (bs, k, 3) + Return: (bs, 2k*3) + """ + bs_src = kp_source.shape[0] + bs_dri = kp_driving.shape[0] + assert bs_src == bs_dri, 'batch size must be equal' + + feat = torch.cat([kp_source.view(bs_src, -1), kp_driving.view(bs_dri, -1)], dim=1) + return feat + + +def remove_ddp_dumplicate_key(state_dict): + state_dict_new = OrderedDict() + for key in state_dict.keys(): + state_dict_new[key.replace('module.', '')] = state_dict[key] + return state_dict_new + + +def load_model(ckpt_path, model_config, device, model_type): + model_params = model_config['model_params'][f'{model_type}_params'] + + if model_type == 'appearance_feature_extractor': + model = AppearanceFeatureExtractor(**model_params).to(device) + elif model_type == 'motion_extractor': + model = MotionExtractor(**model_params).to(device) + elif model_type == 'warping_module': + model = WarpingNetwork(**model_params).to(device) + elif model_type == 'spade_generator': + model = SPADEDecoder(**model_params).to(device) + elif model_type == 'stitching_retargeting_module': + # Special handling for stitching and retargeting module + config = model_config['model_params']['stitching_retargeting_module_params'] + checkpoint = torch.load(ckpt_path, map_location=lambda storage, loc: storage) + + stitcher = StitchingRetargetingNetwork(**config.get('stitching')) + stitcher.load_state_dict(remove_ddp_dumplicate_key(checkpoint['retarget_shoulder'])) + stitcher = stitcher.to(device) + stitcher.eval() + + retargetor_lip = StitchingRetargetingNetwork(**config.get('lip')) + retargetor_lip.load_state_dict(remove_ddp_dumplicate_key(checkpoint['retarget_mouth'])) + retargetor_lip = retargetor_lip.to(device) + retargetor_lip.eval() + + retargetor_eye = StitchingRetargetingNetwork(**config.get('eye')) + retargetor_eye.load_state_dict(remove_ddp_dumplicate_key(checkpoint['retarget_eye'])) + retargetor_eye = retargetor_eye.to(device) + retargetor_eye.eval() + + return { + 'stitching': stitcher, + 'lip': retargetor_lip, + 'eye': retargetor_eye + } + else: + raise ValueError(f"Unknown model type: {model_type}") + + model.load_state_dict(torch.load(ckpt_path, map_location=lambda storage, loc: storage)) + model.eval() + return model + + +def load_description(fp): + with open(fp, 'r', encoding='utf-8') as f: + content = f.read() + return content diff --git a/src/utils/hparams.py b/src/utils/hparams.py new file mode 100644 index 0000000000000000000000000000000000000000..743c5c7d5a5a9e686f1ccd6fb3c2fb5cb382d62b --- /dev/null +++ b/src/utils/hparams.py @@ -0,0 +1,160 @@ +from glob import glob +import os + +class HParams: + def __init__(self, **kwargs): + self.data = {} + + for key, value in kwargs.items(): + self.data[key] = value + + def __getattr__(self, key): + if key not in self.data: + raise AttributeError("'HParams' object has no attribute %s" % key) + return self.data[key] + + def set_hparam(self, key, value): + self.data[key] = value + + +# Default hyperparameters +hparams = HParams( + num_mels=80, # Number of mel-spectrogram channels and local conditioning dimensionality + # network + rescale=True, # Whether to rescale audio prior to preprocessing + rescaling_max=0.9, # Rescaling value + + # Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction + # It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder + # Does not work if n_ffit is not multiple of hop_size!! + use_lws=False, + + n_fft=800, # Extra window size is filled with 0 paddings to match this parameter + hop_size=200, # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate) + win_size=800, # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate) + sample_rate=16000, # 16000Hz (corresponding to librispeech) (sox --i ) + + frame_shift_ms=None, # Can replace hop_size parameter. (Recommended: 12.5) + + # Mel and Linear spectrograms normalization/scaling and clipping + signal_normalization=True, + # Whether to normalize mel spectrograms to some predefined range (following below parameters) + allow_clipping_in_normalization=True, # Only relevant if mel_normalization = True + symmetric_mels=True, + # Whether to scale the data to be symmetric around 0. (Also multiplies the output range by 2, + # faster and cleaner convergence) + max_abs_value=4., + # max absolute value of data. If symmetric, data will be [-max, max] else [0, max] (Must not + # be too big to avoid gradient explosion, + # not too small for fast convergence) + # Contribution by @begeekmyfriend + # Spectrogram Pre-Emphasis (Lfilter: Reduce spectrogram noise and helps model certitude + # levels. Also allows for better G&L phase reconstruction) + preemphasize=True, # whether to apply filter + preemphasis=0.97, # filter coefficient. + + # Limits + min_level_db=-100, + ref_level_db=20, + fmin=55, + # Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To + # test depending on dataset. Pitch info: male~[65, 260], female~[100, 525]) + fmax=7600, # To be increased/reduced depending on data. + + ###################### Our training parameters ################################# + img_size=96, + fps=25, + + batch_size=16, + initial_learning_rate=1e-4, + nepochs=300000, ### ctrl + c, stop whenever eval loss is consistently greater than train loss for ~10 epochs + num_workers=20, + checkpoint_interval=3000, + eval_interval=3000, + writer_interval=300, + save_optimizer_state=True, + + syncnet_wt=0.0, # is initially zero, will be set automatically to 0.03 later. Leads to faster convergence. + syncnet_batch_size=64, + syncnet_lr=1e-4, + syncnet_eval_interval=1000, + syncnet_checkpoint_interval=10000, + + disc_wt=0.07, + disc_initial_learning_rate=1e-4, +) + + + +# Default hyperparameters +hparamsdebug = HParams( + num_mels=80, # Number of mel-spectrogram channels and local conditioning dimensionality + # network + rescale=True, # Whether to rescale audio prior to preprocessing + rescaling_max=0.9, # Rescaling value + + # Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction + # It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder + # Does not work if n_ffit is not multiple of hop_size!! + use_lws=False, + + n_fft=800, # Extra window size is filled with 0 paddings to match this parameter + hop_size=200, # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate) + win_size=800, # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate) + sample_rate=16000, # 16000Hz (corresponding to librispeech) (sox --i ) + + frame_shift_ms=None, # Can replace hop_size parameter. (Recommended: 12.5) + + # Mel and Linear spectrograms normalization/scaling and clipping + signal_normalization=True, + # Whether to normalize mel spectrograms to some predefined range (following below parameters) + allow_clipping_in_normalization=True, # Only relevant if mel_normalization = True + symmetric_mels=True, + # Whether to scale the data to be symmetric around 0. (Also multiplies the output range by 2, + # faster and cleaner convergence) + max_abs_value=4., + # max absolute value of data. If symmetric, data will be [-max, max] else [0, max] (Must not + # be too big to avoid gradient explosion, + # not too small for fast convergence) + # Contribution by @begeekmyfriend + # Spectrogram Pre-Emphasis (Lfilter: Reduce spectrogram noise and helps model certitude + # levels. Also allows for better G&L phase reconstruction) + preemphasize=True, # whether to apply filter + preemphasis=0.97, # filter coefficient. + + # Limits + min_level_db=-100, + ref_level_db=20, + fmin=55, + # Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To + # test depending on dataset. Pitch info: male~[65, 260], female~[100, 525]) + fmax=7600, # To be increased/reduced depending on data. + + ###################### Our training parameters ################################# + img_size=96, + fps=25, + + batch_size=2, + initial_learning_rate=1e-3, + nepochs=100000, ### ctrl + c, stop whenever eval loss is consistently greater than train loss for ~10 epochs + num_workers=0, + checkpoint_interval=10000, + eval_interval=10, + writer_interval=5, + save_optimizer_state=True, + + syncnet_wt=0.0, # is initially zero, will be set automatically to 0.03 later. Leads to faster convergence. + syncnet_batch_size=64, + syncnet_lr=1e-4, + syncnet_eval_interval=10000, + syncnet_checkpoint_interval=10000, + + disc_wt=0.07, + disc_initial_learning_rate=1e-4, +) + + +def hparams_debug_string(): + values = hparams.values() + hp = [" %s: %s" % (name, values[name]) for name in sorted(values) if name != "sentences"] + return "Hyperparameters:\n" + "\n".join(hp) diff --git a/src/utils/io.py b/src/utils/io.py new file mode 100644 index 0000000000000000000000000000000000000000..28c2d99f09421fc9eb1f6475419cb1c6e6dcd028 --- /dev/null +++ b/src/utils/io.py @@ -0,0 +1,125 @@ +# coding: utf-8 + +import os +from glob import glob +import os.path as osp +import imageio +import numpy as np +import pickle +import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False) + +from .helper import mkdir, suffix + + +def load_image_rgb(image_path: str): + if not osp.exists(image_path): + raise FileNotFoundError(f"Image not found: {image_path}") + img = cv2.imread(image_path, cv2.IMREAD_COLOR) + return cv2.cvtColor(img, cv2.COLOR_BGR2RGB) + + +def load_driving_info(driving_info): + driving_video_ori = [] + + def load_images_from_directory(directory): + image_paths = sorted(glob(osp.join(directory, '*.png')) + glob(osp.join(directory, '*.jpg'))) + return [load_image_rgb(im_path) for im_path in image_paths] + + def load_images_from_video(file_path): + reader = imageio.get_reader(file_path, "ffmpeg") + return [image for _, image in enumerate(reader)] + + if osp.isdir(driving_info): + driving_video_ori = load_images_from_directory(driving_info) + elif osp.isfile(driving_info): + driving_video_ori = load_images_from_video(driving_info) + + return driving_video_ori + + +def contiguous(obj): + if not obj.flags.c_contiguous: + obj = obj.copy(order="C") + return obj + + +def resize_to_limit(img: np.ndarray, max_dim=1920, division=2): + """ + ajust the size of the image so that the maximum dimension does not exceed max_dim, and the width and the height of the image are multiples of n. + :param img: the image to be processed. + :param max_dim: the maximum dimension constraint. + :param n: the number that needs to be multiples of. + :return: the adjusted image. + """ + h, w = img.shape[:2] + + # ajust the size of the image according to the maximum dimension + if max_dim > 0 and max(h, w) > max_dim: + if h > w: + new_h = max_dim + new_w = int(w * (max_dim / h)) + else: + new_w = max_dim + new_h = int(h * (max_dim / w)) + img = cv2.resize(img, (new_w, new_h)) + + # ensure that the image dimensions are multiples of n + division = max(division, 1) + new_h = img.shape[0] - (img.shape[0] % division) + new_w = img.shape[1] - (img.shape[1] % division) + + if new_h == 0 or new_w == 0: + # when the width or height is less than n, no need to process + return img + + if new_h != img.shape[0] or new_w != img.shape[1]: + img = img[:new_h, :new_w] + + return img + + +def load_img_online(obj, mode="bgr", **kwargs): + max_dim = kwargs.get("max_dim", 1920) + n = kwargs.get("n", 2) + if isinstance(obj, str): + if mode.lower() == "gray": + img = cv2.imread(obj, cv2.IMREAD_GRAYSCALE) + else: + img = cv2.imread(obj, cv2.IMREAD_COLOR) + else: + img = obj + + # Resize image to satisfy constraints + img = resize_to_limit(img, max_dim=max_dim, division=n) + + if mode.lower() == "bgr": + return contiguous(img) + elif mode.lower() == "rgb": + return contiguous(img[..., ::-1]) + else: + raise Exception(f"Unknown mode {mode}") + + +def load(fp): + suffix_ = suffix(fp) + + if suffix_ == "npy": + return np.load(fp) + elif suffix_ == "pkl": + return pickle.load(open(fp, "rb")) + else: + raise Exception(f"Unknown type: {suffix}") + + +def dump(wfp, obj): + wd = osp.split(wfp)[0] + if wd != "" and not osp.exists(wd): + mkdir(wd) + + _suffix = suffix(wfp) + if _suffix == "npy": + np.save(wfp, obj) + elif _suffix == "pkl": + pickle.dump(obj, open(wfp, "wb")) + else: + raise Exception("Unknown type: {}".format(_suffix)) diff --git a/src/utils/landmark_runner.py b/src/utils/landmark_runner.py new file mode 100644 index 0000000000000000000000000000000000000000..7680a2c4a65ebe7f4dadbafc4a35603ab9f90be6 --- /dev/null +++ b/src/utils/landmark_runner.py @@ -0,0 +1,89 @@ +# coding: utf-8 + +import os.path as osp +import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False) +import torch +import numpy as np +import onnxruntime +from .timer import Timer +from .rprint import rlog +from .crop import crop_image, _transform_pts + + +def make_abs_path(fn): + return osp.join(osp.dirname(osp.realpath(__file__)), fn) + + +def to_ndarray(obj): + if isinstance(obj, torch.Tensor): + return obj.cpu().numpy() + elif isinstance(obj, np.ndarray): + return obj + else: + return np.array(obj) + + +class LandmarkRunner(object): + """landmark runner""" + + def __init__(self, **kwargs): + ckpt_path = kwargs.get('ckpt_path') + onnx_provider = kwargs.get('onnx_provider', 'cuda') # 默认用cuda + device_id = kwargs.get('device_id', 0) + self.dsize = kwargs.get('dsize', 224) + self.timer = Timer() + + if onnx_provider.lower() == 'cuda': + self.session = onnxruntime.InferenceSession( + ckpt_path, providers=[ + ('CUDAExecutionProvider', {'device_id': device_id}) + ] + ) + else: + opts = onnxruntime.SessionOptions() + opts.intra_op_num_threads = 4 # 默认线程数为 4 + self.session = onnxruntime.InferenceSession( + ckpt_path, providers=['CPUExecutionProvider'], + sess_options=opts + ) + + def _run(self, inp): + out = self.session.run(None, {'input': inp}) + return out + + def run(self, img_rgb: np.ndarray, lmk=None): + if lmk is not None: + crop_dct = crop_image(img_rgb, lmk, dsize=self.dsize, scale=1.5, vy_ratio=-0.1) + img_crop_rgb = crop_dct['img_crop'] + else: + # NOTE: force resize to 224x224, NOT RECOMMEND! + img_crop_rgb = cv2.resize(img_rgb, (self.dsize, self.dsize)) + scale = max(img_rgb.shape[:2]) / self.dsize + crop_dct = { + 'M_c2o': np.array([ + [scale, 0., 0.], + [0., scale, 0.], + [0., 0., 1.], + ], dtype=np.float32), + } + + inp = (img_crop_rgb.astype(np.float32) / 255.).transpose(2, 0, 1)[None, ...] # HxWx3 (BGR) -> 1x3xHxW (RGB!) + + out_lst = self._run(inp) + out_pts = out_lst[2] + + # 2d landmarks 203 points + lmk = to_ndarray(out_pts[0]).reshape(-1, 2) * self.dsize # scale to 0-224 + lmk = _transform_pts(lmk, M=crop_dct['M_c2o']) + + return lmk + + def warmup(self): + self.timer.tic() + + dummy_image = np.zeros((1, 3, self.dsize, self.dsize), dtype=np.float32) + + _ = self._run(dummy_image) + + elapse = self.timer.toc() + rlog(f'LandmarkRunner warmup time: {elapse:.3f}s') diff --git a/src/utils/resources/mask_template.png b/src/utils/resources/mask_template.png new file mode 100644 index 0000000000000000000000000000000000000000..bca6ca5977ba820d0d2c05b3793c6231cc82e715 Binary files /dev/null and b/src/utils/resources/mask_template.png differ diff --git a/src/utils/retargeting_utils.py b/src/utils/retargeting_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..ae2e5f52effe8107503586c9f5a24f39dfdbbbcf --- /dev/null +++ b/src/utils/retargeting_utils.py @@ -0,0 +1,24 @@ + +""" +Functions to compute distance ratios between specific pairs of facial landmarks +""" + +import numpy as np + + +def calculate_distance_ratio(lmk: np.ndarray, idx1: int, idx2: int, idx3: int, idx4: int, eps: float = 1e-6) -> np.ndarray: + return (np.linalg.norm(lmk[:, idx1] - lmk[:, idx2], axis=1, keepdims=True) / + (np.linalg.norm(lmk[:, idx3] - lmk[:, idx4], axis=1, keepdims=True) + eps)) + + +def calc_eye_close_ratio(lmk: np.ndarray, target_eye_ratio: np.ndarray = None) -> np.ndarray: + lefteye_close_ratio = calculate_distance_ratio(lmk, 6, 18, 0, 12) + righteye_close_ratio = calculate_distance_ratio(lmk, 30, 42, 24, 36) + if target_eye_ratio is not None: + return np.concatenate([lefteye_close_ratio, righteye_close_ratio, target_eye_ratio], axis=1) + else: + return np.concatenate([lefteye_close_ratio, righteye_close_ratio], axis=1) + + +def calc_lip_close_ratio(lmk: np.ndarray) -> np.ndarray: + return calculate_distance_ratio(lmk, 90, 102, 48, 66) diff --git a/src/utils/rprint.py b/src/utils/rprint.py new file mode 100644 index 0000000000000000000000000000000000000000..c43a42f9855bbb019725e6c2b6c6c50e6fa4d0c5 --- /dev/null +++ b/src/utils/rprint.py @@ -0,0 +1,16 @@ +# coding: utf-8 + +""" +custom print and log functions +""" + +__all__ = ['rprint', 'rlog'] + +try: + from rich.console import Console + console = Console() + rprint = console.print + rlog = console.log +except: + rprint = print + rlog = print diff --git a/src/utils/timer.py b/src/utils/timer.py new file mode 100644 index 0000000000000000000000000000000000000000..3570fa45d3ff36376471b82a5b3c02efe46eed98 --- /dev/null +++ b/src/utils/timer.py @@ -0,0 +1,29 @@ +# coding: utf-8 + +""" +tools to measure elapsed time +""" + +import time + +class Timer(object): + """A simple timer.""" + + def __init__(self): + self.total_time = 0. + self.calls = 0 + self.start_time = 0. + self.diff = 0. + + def tic(self): + # using time.time instead of time.clock because time time.clock + # does not normalize for multithreading + self.start_time = time.time() + + def toc(self, average=True): + self.diff = time.time() - self.start_time + return self.diff + + def clear(self): + self.start_time = 0. + self.diff = 0. diff --git a/src/utils/video.py b/src/utils/video.py new file mode 100644 index 0000000000000000000000000000000000000000..c62729049e0349c02fb92bdd3149ac21dade294b --- /dev/null +++ b/src/utils/video.py @@ -0,0 +1,211 @@ +# coding: utf-8 + +""" +Functions for processing video + +ATTENTION: you need to install ffmpeg and ffprobe in your env! +""" + +import os.path as osp +import numpy as np +import subprocess +import imageio +import cv2 +from rich.progress import track + +from .rprint import rlog as log +from .rprint import rprint as print +from .helper import prefix + + +def exec_cmd(cmd): + return subprocess.run(cmd, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) + + +def images2video(images, wfp, **kwargs): + fps = kwargs.get('fps', 25) + video_format = kwargs.get('format', 'mp4') # default is mp4 format + codec = kwargs.get('codec', 'libx264') # default is libx264 encoding + quality = kwargs.get('quality') # video quality + pixelformat = kwargs.get('pixelformat', 'yuv420p') # video pixel format + image_mode = kwargs.get('image_mode', 'rgb') + macro_block_size = kwargs.get('macro_block_size', 2) + ffmpeg_params = ['-crf', str(kwargs.get('crf', 18))] + + writer = imageio.get_writer( + wfp, fps=fps, format=video_format, + codec=codec, quality=quality, ffmpeg_params=ffmpeg_params, pixelformat=pixelformat, macro_block_size=macro_block_size + ) + + n = len(images) + for i in track(range(n), description='Writing', transient=True): + if image_mode.lower() == 'bgr': + writer.append_data(images[i][..., ::-1]) + else: + writer.append_data(images[i]) + + writer.close() + + +def video2gif(video_fp, fps=30, size=256): + if osp.exists(video_fp): + d = osp.split(video_fp)[0] + fn = prefix(osp.basename(video_fp)) + palette_wfp = osp.join(d, 'palette.png') + gif_wfp = osp.join(d, f'{fn}.gif') + # generate the palette + cmd = f'ffmpeg -i "{video_fp}" -vf "fps={fps},scale={size}:-1:flags=lanczos,palettegen" "{palette_wfp}" -y' + exec_cmd(cmd) + # use the palette to generate the gif + cmd = f'ffmpeg -i "{video_fp}" -i "{palette_wfp}" -filter_complex "fps={fps},scale={size}:-1:flags=lanczos[x];[x][1:v]paletteuse" "{gif_wfp}" -y' + exec_cmd(cmd) + else: + print(f'video_fp: {video_fp} not exists!') + + +def merge_audio_video(video_fp, audio_fp, wfp): + if osp.exists(video_fp) and osp.exists(audio_fp): + cmd = f'ffmpeg -i "{video_fp}" -i "{audio_fp}" -c:v copy -c:a aac "{wfp}" -y' + exec_cmd(cmd) + print(f'merge {video_fp} and {audio_fp} to {wfp}') + else: + print(f'video_fp: {video_fp} or audio_fp: {audio_fp} not exists!') + + +def blend(img: np.ndarray, mask: np.ndarray, background_color=(255, 255, 255)): + mask_float = mask.astype(np.float32) / 255. + background_color = np.array(background_color).reshape([1, 1, 3]) + bg = np.ones_like(img) * background_color + img = np.clip(mask_float * img + (1 - mask_float) * bg, 0, 255).astype(np.uint8) + return img + + +def concat_frames(driving_image_lst, source_image, I_p_lst): + # TODO: add more concat style, e.g., left-down corner driving + out_lst = [] + h, w, _ = I_p_lst[0].shape + + for idx, _ in track(enumerate(I_p_lst), total=len(I_p_lst), description='Concatenating result...'): + I_p = I_p_lst[idx] + source_image_resized = cv2.resize(source_image, (w, h)) + + if driving_image_lst is None: + out = np.hstack((source_image_resized, I_p)) + else: + driving_image = driving_image_lst[idx] + driving_image_resized = cv2.resize(driving_image, (w, h)) + out = np.hstack((driving_image_resized, source_image_resized, I_p)) + + out_lst.append(out) + return out_lst + + +class VideoWriter: + def __init__(self, **kwargs): + self.fps = kwargs.get('fps', 30) + self.wfp = kwargs.get('wfp', 'video.mp4') + self.video_format = kwargs.get('format', 'mp4') + self.codec = kwargs.get('codec', 'libx264') + self.quality = kwargs.get('quality') + self.pixelformat = kwargs.get('pixelformat', 'yuv420p') + self.image_mode = kwargs.get('image_mode', 'rgb') + self.ffmpeg_params = kwargs.get('ffmpeg_params') + + self.writer = imageio.get_writer( + self.wfp, fps=self.fps, format=self.video_format, + codec=self.codec, quality=self.quality, + ffmpeg_params=self.ffmpeg_params, pixelformat=self.pixelformat + ) + + def write(self, image): + if self.image_mode.lower() == 'bgr': + self.writer.append_data(image[..., ::-1]) + else: + self.writer.append_data(image) + + def close(self): + if self.writer is not None: + self.writer.close() + + +def change_video_fps(input_file, output_file, fps=20, codec='libx264', crf=12): + cmd = f'ffmpeg -i "{input_file}" -c:v {codec} -crf {crf} -r {fps} "{output_file}" -y' + exec_cmd(cmd) + + +def get_fps(filepath, default_fps=25): + try: + fps = cv2.VideoCapture(filepath).get(cv2.CAP_PROP_FPS) + + if fps in (0, None): + fps = default_fps + except Exception as e: + log(e) + fps = default_fps + + return fps + + +def has_audio_stream(video_path: str) -> bool: + """ + Check if the video file contains an audio stream. + + :param video_path: Path to the video file + :return: True if the video contains an audio stream, False otherwise + """ + if osp.isdir(video_path): + return False + + cmd = [ + 'ffprobe', + '-v', 'error', + '-select_streams', 'a', + '-show_entries', 'stream=codec_type', + '-of', 'default=noprint_wrappers=1:nokey=1', + f'"{video_path}"' + ] + + try: + # result = subprocess.run(cmd, capture_output=True, text=True) + result = exec_cmd(' '.join(cmd)) + if result.returncode != 0: + log(f"Error occurred while probing video: {result.stderr}") + return False + + # Check if there is any output from ffprobe command + return bool(result.stdout.strip()) + except Exception as e: + log(f"Error occurred while probing video: {video_path}, you may need to install ffprobe! Now set audio to false!", style="bold red") + return False + + +def add_audio_to_video(silent_video_path: str, audio_video_path: str, output_video_path: str): + cmd = [ + 'ffmpeg', + '-y', + '-i', f'"{silent_video_path}"', + '-i', f'"{audio_video_path}"', + '-map', '0:v', + '-map', '1:a', + '-c:v', 'copy', + '-shortest', + f'"{output_video_path}"' + ] + + try: + exec_cmd(' '.join(cmd)) + log(f"Video with audio generated successfully: {output_video_path}") + except subprocess.CalledProcessError as e: + log(f"Error occurred: {e}") + + +def bb_intersection_over_union(boxA, boxB): + xA = max(boxA[0], boxB[0]) + yA = max(boxA[1], boxB[1]) + xB = min(boxA[2], boxB[2]) + yB = min(boxA[3], boxB[3]) + interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1) + boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1) + boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1) + iou = interArea / float(boxAArea + boxBArea - interArea) + return iou diff --git a/src/utils/viz.py b/src/utils/viz.py new file mode 100644 index 0000000000000000000000000000000000000000..59443cbf207f3395bee241f63c7acb95b9402530 --- /dev/null +++ b/src/utils/viz.py @@ -0,0 +1,19 @@ +# coding: utf-8 + +import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False) + + +def viz_lmk(img_, vps, **kwargs): + """可视化点""" + lineType = kwargs.get("lineType", cv2.LINE_8) # cv2.LINE_AA + img_for_viz = img_.copy() + for pt in vps: + cv2.circle( + img_for_viz, + (int(pt[0]), int(pt[1])), + radius=kwargs.get("radius", 1), + color=(0, 255, 0), + thickness=kwargs.get("thickness", 1), + lineType=lineType, + ) + return img_for_viz