diff --git a/.gitattributes b/.gitattributes
index a6344aac8c09253b3b630fb776ae94478aa0275b..2fff30bd39acafec860467a322b02527e853e457 100644
--- a/.gitattributes
+++ b/.gitattributes
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
+example/audio_driven/WDA_BenCardin1_000.wav filter=lfs diff=lfs merge=lfs -text
+example/audio_driven/WRA_MarkwayneMullin_000.wav filter=lfs diff=lfs merge=lfs -text
+example/audio_driven/WRA_MikeJohanns1_000.wav filter=lfs diff=lfs merge=lfs -text
+src/utils/dependencies/insightface/data/images/t1.jpg filter=lfs diff=lfs merge=lfs -text
diff --git a/ORIGINAL_README.md b/ORIGINAL_README.md
new file mode 100644
index 0000000000000000000000000000000000000000..3b2b445b980fc48b2470c19b376bde43250d8403
--- /dev/null
+++ b/ORIGINAL_README.md
@@ -0,0 +1,118 @@
+
+
+# Unlock Pose Diversity: Accurate and Efficient Implicit Keypoint-based Spatiotemporal Diffusion for Audio-driven Talking Portrait
+[](https://arxiv.org/abs/2503.12963)
+[](https://creativecommons.org/licenses/by-nc/4.0/)
+[](https://github.com/chaolongy/KDTalker)
+
+
+
+
+
+ 1 University of Liverpool 2 Ant Group 3 Xi’an Jiaotong-Liverpool University
+ 4 Duke Kunshan University 5 Ricoh Software Research Center
+
+
+
+
+
+# Comparative videos
+https://github.com/user-attachments/assets/08ebc6e0-41c5-4bf4-8ee8-2f7d317d92cd
+
+
+# Demo
+Gradio Demo [`KDTalker`](https://kdtalker.com/). The model was trained using only 4,282 video clips from [`VoxCeleb`](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/).
+
+
+
+# To Do List
+- [ ] Train a community version using more datasets
+- [ ] Release training code
+
+
+# Environment
+Our KDTalker could be conducted on one RTX4090 or RTX3090.
+
+### 1. Clone the code and prepare the environment
+
+**Note:** Make sure your system has [`git`](https://git-scm.com/), [`conda`](https://anaconda.org/anaconda/conda), and [`FFmpeg`](https://ffmpeg.org/download.html) installed.
+
+```
+git clone https://github.com/chaolongy/KDTalker
+cd KDTalker
+
+# create env using conda
+conda create -n KDTalker python=3.9
+conda activate KDTalker
+
+conda install pytorch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 pytorch-cuda=11.8 -c pytorch -c nvidia
+
+pip install -r requirements.txt
+```
+
+### 2. Download pretrained weights
+
+First, you can download all LiverPorait pretrained weights from [Google Drive](https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib). Unzip and place them in `./pretrained_weights`.
+Ensuring the directory structure is as follows:
+```text
+pretrained_weights
+├── insightface
+│ └── models
+│ └── buffalo_l
+│ ├── 2d106det.onnx
+│ └── det_10g.onnx
+└── liveportrait
+ ├── base_models
+ │ ├── appearance_feature_extractor.pth
+ │ ├── motion_extractor.pth
+ │ ├── spade_generator.pth
+ │ └── warping_module.pth
+ ├── landmark.onnx
+ └── retargeting_models
+ └── stitching_retargeting_module.pth
+```
+You can download the weights for the face detector, audio extractor and KDTalker from [Google Drive](https://drive.google.com/drive/folders/1OkfiFArUCsnkF_0tI2SCEAwVCBLSjzd6?hl=zh-CN). Put them in `./ckpts`.
+
+OR, you can download above all weights in [Huggingface](https://huggingface.co/ChaolongYang/KDTalker/tree/main).
+
+
+
+# Inference
+```
+python inference.py -source_image ./example/source_image/WDA_BenCardin1_000.png -driven_audio ./example/driven_audio/WDA_BenCardin1_000.wav -output ./results/output.mp4
+```
+
+
+# Contact
+Our code is under the CC-BY-NC 4.0 license and intended solely for research purposes. If you have any questions or wish to use it for commercial purposes, please contact us at chaolong.yang@liverpool.ac.uk
+
+
+# Citation
+If you find this code helpful for your research, please cite:
+```
+@misc{yang2025kdtalker,
+ title={Unlock Pose Diversity: Accurate and Efficient Implicit Keypoint-based Spatiotemporal Diffusion for Audio-driven Talking Portrait},
+ author={Chaolong Yang and Kai Yao and Yuyao Yan and Chenru Jiang and Weiguang Zhao and Jie Sun and Guangliang Cheng and Yifei Zhang and Bin Dong and Kaizhu Huang},
+ year={2025},
+ eprint={2503.12963},
+ archivePrefix={arXiv},
+ primaryClass={cs.CV},
+ url={https://arxiv.org/abs/2503.12963},
+}
+```
+
+
+# Acknowledge
+We acknowledge these works for their public code and selfless help: [SadTalker](https://github.com/OpenTalker/SadTalker), [LivePortrait](https://github.com/KwaiVGI/LivePortrait), [Wav2Lip](https://github.com/Rudrabha/Wav2Lip), [Face-vid2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis) etc.
+
diff --git a/dataset_process/audio.py b/dataset_process/audio.py
new file mode 100644
index 0000000000000000000000000000000000000000..653cdd88738ccd95a89039650f1342df17564dec
--- /dev/null
+++ b/dataset_process/audio.py
@@ -0,0 +1,156 @@
+import librosa
+import librosa.filters
+import numpy as np
+# import tensorflow as tf
+from scipy import signal
+from scipy.io import wavfile
+from src.utils.hparams import hparams as hp
+
+
+def load_wav(path, sr):
+ return librosa.core.load(path, sr=sr)[0]
+
+
+def save_wav(wav, path, sr):
+ wav *= 32767 / max(0.01, np.max(np.abs(wav)))
+ # proposed by @dsmiller
+ wavfile.write(path, sr, wav.astype(np.int16))
+
+
+def save_wavenet_wav(wav, path, sr):
+ librosa.output.write_wav(path, wav, sr=sr)
+
+
+def preemphasis(wav, k, preemphasize=True):
+ if preemphasize:
+ return signal.lfilter([1, -k], [1], wav)
+ return wav
+
+
+def inv_preemphasis(wav, k, inv_preemphasize=True):
+ if inv_preemphasize:
+ return signal.lfilter([1], [1, -k], wav)
+ return wav
+
+
+def get_hop_size():
+ hop_size = hp.hop_size
+ if hop_size is None:
+ assert hp.frame_shift_ms is not None
+ hop_size = int(hp.frame_shift_ms / 1000 * hp.sample_rate)
+ return hop_size
+
+
+def linearspectrogram(wav):
+ D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
+ S = _amp_to_db(np.abs(D)) - hp.ref_level_db
+
+ if hp.signal_normalization:
+ return _normalize(S)
+ return S
+
+
+def melspectrogram(wav):
+ D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
+ S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp.ref_level_db
+
+ if hp.signal_normalization:
+ return _normalize(S)
+ return S
+
+
+def _lws_processor():
+ import lws
+ return lws.lws(hp.n_fft, get_hop_size(), fftsize=hp.win_size, mode="speech")
+
+
+def _stft(y):
+ if hp.use_lws:
+ return _lws_processor(hp).stft(y).T
+ else:
+ return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=get_hop_size(), win_length=hp.win_size)
+
+
+##########################################################
+# Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
+def num_frames(length, fsize, fshift):
+ """Compute number of time frames of spectrogram
+ """
+ pad = (fsize - fshift)
+ if length % fshift == 0:
+ M = (length + pad * 2 - fsize) // fshift + 1
+ else:
+ M = (length + pad * 2 - fsize) // fshift + 2
+ return M
+
+
+def pad_lr(x, fsize, fshift):
+ """Compute left and right padding
+ """
+ M = num_frames(len(x), fsize, fshift)
+ pad = (fsize - fshift)
+ T = len(x) + 2 * pad
+ r = (M - 1) * fshift + fsize - T
+ return pad, pad + r
+
+
+##########################################################
+# Librosa correct padding
+def librosa_pad_lr(x, fsize, fshift):
+ return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
+
+
+# Conversions
+_mel_basis = None
+
+
+def _linear_to_mel(spectogram):
+ global _mel_basis
+ if _mel_basis is None:
+ _mel_basis = _build_mel_basis()
+ return np.dot(_mel_basis, spectogram)
+
+
+def _build_mel_basis():
+ assert hp.fmax <= hp.sample_rate // 2
+ return librosa.filters.mel(sr=hp.sample_rate, n_fft=hp.n_fft, n_mels=hp.num_mels,
+ fmin=hp.fmin, fmax=hp.fmax)
+
+
+def _amp_to_db(x):
+ min_level = np.exp(hp.min_level_db / 20 * np.log(10))
+ return 20 * np.log10(np.maximum(min_level, x))
+
+
+def _db_to_amp(x):
+ return np.power(10.0, (x) * 0.05)
+
+
+def _normalize(S):
+ if hp.allow_clipping_in_normalization:
+ if hp.symmetric_mels:
+ return np.clip((2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value,
+ -hp.max_abs_value, hp.max_abs_value)
+ else:
+ return np.clip(hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)), 0, hp.max_abs_value)
+
+ assert S.max() <= 0 and S.min() - hp.min_level_db >= 0
+ if hp.symmetric_mels:
+ return (2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value
+ else:
+ return hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db))
+
+
+def _denormalize(D):
+ if hp.allow_clipping_in_normalization:
+ if hp.symmetric_mels:
+ return (((np.clip(D, -hp.max_abs_value,
+ hp.max_abs_value) + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value))
+ + hp.min_level_db)
+ else:
+ return ((np.clip(D, 0, hp.max_abs_value) * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
+
+ if hp.symmetric_mels:
+ return (((D + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + hp.min_level_db)
+ else:
+ return ((D * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
diff --git a/dataset_process/croper.py b/dataset_process/croper.py
new file mode 100644
index 0000000000000000000000000000000000000000..639ec5206960b8a3940bbb882e4ab6ec97770684
--- /dev/null
+++ b/dataset_process/croper.py
@@ -0,0 +1,154 @@
+import cv2
+
+"""
+brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset)
+author: lzhbrian (https://lzhbrian.me)
+date: 2020.1.5
+note: code is heavily borrowed from
+ https://github.com/NVlabs/ffhq-dataset
+ http://dlib.net/face_landmark_detection.py.html
+requirements:
+ apt install cmake
+ conda install Pillow numpy scipy
+ pip install dlib
+ # download face landmark model from:
+ # http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
+"""
+
+import numpy as np
+from PIL import Image
+import dlib
+
+
+class Croper:
+ def __init__(self, path_of_lm):
+ # download model from: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
+ self.predictor = dlib.shape_predictor(path_of_lm)
+
+ def get_landmark(self, img_np):
+ """get landmark with dlib
+ :return: np.array shape=(68, 2)
+ """
+ detector = dlib.get_frontal_face_detector()
+ dets = detector(img_np, 1)
+ # print("Number of faces detected: {}".format(len(dets)))
+ # for k, d in enumerate(dets):
+ if len(dets) == 0:
+ return None
+ d = dets[0]
+ # Get the landmarks/parts for the face in box d.
+ shape = self.predictor(img_np, d)
+ # print("Part 0: {}, Part 1: {} ...".format(shape.part(0), shape.part(1)))
+ t = list(shape.parts())
+ a = []
+ for tt in t:
+ a.append([tt.x, tt.y])
+ lm = np.array(a)
+ # lm is a shape=(68,2) np.array
+ return lm
+
+ def align_face(self, img, lm, output_size=1024):
+ """
+ :param filepath: str
+ :return: PIL Image
+ """
+ lm_chin = lm[0: 17] # left-right
+ lm_eyebrow_left = lm[17: 22] # left-right
+ lm_eyebrow_right = lm[22: 27] # left-right
+ lm_nose = lm[27: 31] # top-down
+ lm_nostrils = lm[31: 36] # top-down
+ lm_eye_left = lm[36: 42] # left-clockwise
+ lm_eye_right = lm[42: 48] # left-clockwise
+ lm_mouth_outer = lm[48: 60] # left-clockwise
+ lm_mouth_inner = lm[60: 68] # left-clockwise
+
+ # Calculate auxiliary vectors.
+ eye_left = np.mean(lm_eye_left, axis=0)
+ eye_right = np.mean(lm_eye_right, axis=0)
+ eye_avg = (eye_left + eye_right) * 0.5
+ eye_to_eye = eye_right - eye_left
+ mouth_left = lm_mouth_outer[0]
+ mouth_right = lm_mouth_outer[6]
+ mouth_avg = (mouth_left + mouth_right) * 0.5
+ eye_to_mouth = mouth_avg - eye_avg
+
+ # Choose oriented crop rectangle.
+ x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] # Addition of binocular difference and double mouth difference
+ x /= np.hypot(*x)
+ x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
+ y = np.flipud(x) * [-1, 1]
+ c = eye_avg + eye_to_mouth * 0.1
+ quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
+ qsize = np.hypot(*x) * 2
+
+ # Shrink.
+ shrink = int(np.floor(qsize / output_size * 0.5))
+ if shrink > 1:
+ rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
+ img = img.resize(rsize, Image.ANTIALIAS)
+ quad /= shrink
+ qsize /= shrink
+ else:
+ rsize = (int(np.rint(float(img.size[0]))), int(np.rint(float(img.size[1]))))
+
+ # Crop.
+ border = max(int(np.rint(qsize * 0.1)), 3)
+ crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
+ int(np.ceil(max(quad[:, 1]))))
+ crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
+ min(crop[3] + border, img.size[1]))
+ if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
+ # img = img.crop(crop)
+ quad -= crop[0:2]
+
+ # Pad.
+ pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
+ int(np.ceil(max(quad[:, 1]))))
+ pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
+ max(pad[3] - img.size[1] + border, 0))
+ # if enable_padding and max(pad) > border - 4:
+ # pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
+ # img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
+ # h, w, _ = img.shape
+ # y, x, _ = np.ogrid[:h, :w, :1]
+ # mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
+ # 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
+ # blur = qsize * 0.02
+ # img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
+ # img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
+ # img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
+ # quad += pad[:2]
+
+ # Transform.
+ quad = (quad + 0.5).flatten()
+ lx = max(min(quad[0], quad[2]), 0)
+ ly = max(min(quad[1], quad[7]), 0)
+ rx = min(max(quad[4], quad[6]), img.size[0])
+ ry = min(max(quad[3], quad[5]), img.size[0])
+ # img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(),
+ # Image.BILINEAR)
+ # if output_size < transform_size:
+ # img = img.resize((output_size, output_size), Image.ANTIALIAS)
+
+ # Save aligned image.
+ return rsize, crop, [lx, ly, rx, ry]
+
+ def crop(self, img_np_list, still=False, xsize=512): # first frame for all video
+ img_np = img_np_list[0]
+ lm = self.get_landmark(img_np)
+ if lm is None:
+ raise 'can not detect the landmark from source image'
+ rsize, crop, quad = self.align_face(img=Image.fromarray(img_np), lm=lm, output_size=xsize)
+ clx, cly, crx, cry = crop
+ lx, ly, rx, ry = quad
+ lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry)
+ for _i in range(len(img_np_list)):
+ _inp = img_np_list[_i]
+ _inp = cv2.resize(_inp, (rsize[0], rsize[1]))
+ _inp = _inp[cly:cry, clx:crx]
+ # cv2.imwrite('test1.jpg', _inp)
+ if not still:
+ _inp = _inp[ly:ry, lx:rx]
+ # cv2.imwrite('test2.jpg', _inp)
+ img_np_list[_i] = _inp
+ return img_np_list, crop, quad
diff --git a/dataset_process/norm.npz b/dataset_process/norm.npz
new file mode 100644
index 0000000000000000000000000000000000000000..09d73394389ba43100ca7e4355130aac7fe4a4f4
--- /dev/null
+++ b/dataset_process/norm.npz
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9422e503e75df9d1bd455d8e0f9f5e2826b12956cdedbb5566097c0151bddafb
+size 5580
diff --git a/example/audio_driven/WDA_BenCardin1_000.wav b/example/audio_driven/WDA_BenCardin1_000.wav
new file mode 100644
index 0000000000000000000000000000000000000000..2fbd5be4cda05e7a52d69c89f656d82ae46e627a
--- /dev/null
+++ b/example/audio_driven/WDA_BenCardin1_000.wav
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:46cba9e5aa26d94ce13ff5eeef3e40e8086337e07f6c3d553497ea1b9f8a5e23
+size 512774
diff --git a/example/audio_driven/WRA_MarkwayneMullin_000.wav b/example/audio_driven/WRA_MarkwayneMullin_000.wav
new file mode 100644
index 0000000000000000000000000000000000000000..6ddf75087dc80fdebc113ad174788d941acc1c89
--- /dev/null
+++ b/example/audio_driven/WRA_MarkwayneMullin_000.wav
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:791104d8663ca5af3d11dde1c042cf3f42957c6356c044d6bd8b8ee311442fc5
+size 512774
diff --git a/example/audio_driven/WRA_MikeJohanns1_000.wav b/example/audio_driven/WRA_MikeJohanns1_000.wav
new file mode 100644
index 0000000000000000000000000000000000000000..ee2173db1fbedad055615ecde7ca287f6c8a9246
--- /dev/null
+++ b/example/audio_driven/WRA_MikeJohanns1_000.wav
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e9fc02acff776d4bd59bad02fbb773d1201948616e279ffc853b83753f4f4f2b
+size 512774
diff --git a/example/source_image/WDA_BenCardin1_000.png b/example/source_image/WDA_BenCardin1_000.png
new file mode 100644
index 0000000000000000000000000000000000000000..dcb91cbce53e5ef7bb97f505b9f774f7513b9d32
Binary files /dev/null and b/example/source_image/WDA_BenCardin1_000.png differ
diff --git a/example/source_image/WRA_MarkwayneMullin_000.png b/example/source_image/WRA_MarkwayneMullin_000.png
new file mode 100644
index 0000000000000000000000000000000000000000..803f2dfb687cb099c4c7993b8f9f0e5cfbfcfcf8
Binary files /dev/null and b/example/source_image/WRA_MarkwayneMullin_000.png differ
diff --git a/example/source_image/WRA_MikeJohanns1_000.png b/example/source_image/WRA_MikeJohanns1_000.png
new file mode 100644
index 0000000000000000000000000000000000000000..0970330745b3eee97ea8d8cce78e2da1261353fe
Binary files /dev/null and b/example/source_image/WRA_MikeJohanns1_000.png differ
diff --git a/inference.py b/inference.py
new file mode 100644
index 0000000000000000000000000000000000000000..b995b9889585147d44a57551f3cd9b506aa6592f
--- /dev/null
+++ b/inference.py
@@ -0,0 +1,383 @@
+# -*- coding: UTF-8 -*-
+import os
+os.environ['HYDRA_FULL_ERROR']='1'
+os.environ['CUDA_VISIBLE_DEVICES'] = '0'
+
+import argparse
+import shutil
+import uuid
+import os
+import numpy as np
+from tqdm import tqdm
+import cv2
+from rich.progress import track
+import tyro
+
+
+from PIL import Image
+import time
+import torch
+import torch.nn.functional as F
+from torch import nn
+import imageio
+from pydub import AudioSegment
+from pykalman import KalmanFilter
+
+
+from src.config.argument_config import ArgumentConfig
+from src.config.inference_config import InferenceConfig
+from src.config.crop_config import CropConfig
+from src.live_portrait_pipeline import LivePortraitPipeline
+from src.utils.camera import get_rotation_matrix
+from dataset_process import audio
+
+from dataset_process.croper import Croper
+
+
+def parse_audio_length(audio_length, sr, fps):
+ bit_per_frames = sr / fps
+ num_frames = int(audio_length / bit_per_frames)
+ audio_length = int(num_frames * bit_per_frames)
+ return audio_length, num_frames
+
+def crop_pad_audio(wav, audio_length):
+ if len(wav) > audio_length:
+ wav = wav[:audio_length]
+ elif len(wav) < audio_length:
+ wav = np.pad(wav, [0, audio_length - len(wav)], mode='constant', constant_values=0)
+ return wav
+
+class Conv2d(nn.Module):
+ def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, use_act=True, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ self.conv_block = nn.Sequential(
+ nn.Conv2d(cin, cout, kernel_size, stride, padding),
+ nn.BatchNorm2d(cout)
+ )
+ self.act = nn.ReLU()
+ self.residual = residual
+ self.use_act = use_act
+
+ def forward(self, x):
+ out = self.conv_block(x)
+ if self.residual:
+ out += x
+
+ if self.use_act:
+ return self.act(out)
+ else:
+ return out
+
+class AudioEncoder(nn.Module):
+ def __init__(self, wav2lip_checkpoint, device):
+ super(AudioEncoder, self).__init__()
+
+ self.audio_encoder = nn.Sequential(
+ Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
+ Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
+ Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
+
+ Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
+
+ Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
+
+ Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
+ Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
+
+ Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
+ Conv2d(512, 512, kernel_size=1, stride=1, padding=0),)
+
+ #### load the pre-trained audio_encoder
+ wav2lip_state_dict = torch.load(wav2lip_checkpoint, map_location=torch.device(device))['state_dict']
+ state_dict = self.audio_encoder.state_dict()
+
+ for k,v in wav2lip_state_dict.items():
+ if 'audio_encoder' in k:
+ state_dict[k.replace('module.audio_encoder.', '')] = v
+ self.audio_encoder.load_state_dict(state_dict)
+
+ def forward(self, audio_sequences):
+ B = audio_sequences.size(0)
+
+ audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
+
+ audio_embedding = self.audio_encoder(audio_sequences) # B, 512, 1, 1
+ dim = audio_embedding.shape[1]
+ audio_embedding = audio_embedding.reshape((B, -1, dim, 1, 1))
+
+ return audio_embedding.squeeze(-1).squeeze(-1) #B seq_len+1 512
+
+def partial_fields(target_class, kwargs):
+ return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)})
+
+def dct2device(dct: dict, device):
+ for key in dct:
+ dct[key] = torch.tensor(dct[key]).to(device)
+ return dct
+
+def save_video_with_watermark(video, audio, save_path):
+ temp_file = str(uuid.uuid4())+'.mp4'
+ cmd = r'ffmpeg -y -i "%s" -i "%s" -vcodec copy "%s"' % (video, audio, temp_file)
+ os.system(cmd)
+ shutil.move(temp_file, save_path)
+
+class Inferencer(object):
+ def __init__(self):
+ st=time.time()
+ print('#'*25+'Start initialization'+'#'*25)
+ self.device = 'cuda'
+
+ from model import get_model
+ self.point_diffusion = get_model()
+ ckpt = torch.load('KDTalker.pth')
+
+ self.point_diffusion.load_state_dict(ckpt['model'])
+ self.point_diffusion.eval()
+ self.point_diffusion.to(self.device)
+
+ lm_croper_checkpoint = 'ckpts/shape_predictor_68_face_landmarks.dat'
+ self.croper = Croper(lm_croper_checkpoint)
+
+ self.norm_info = dict(np.load('dataset_process/norm.npz'))
+
+ wav2lip_checkpoint = 'ckpts/wav2lip.pth'
+ self.wav2lip_model = AudioEncoder(wav2lip_checkpoint, 'cuda')
+ self.wav2lip_model.cuda()
+ self.wav2lip_model.eval()
+
+ # set tyro theme
+ tyro.extras.set_accent_color("bright_cyan")
+ args = tyro.cli(ArgumentConfig)
+
+ # specify configs for inference
+ self.inf_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig
+ self.crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig
+
+ self.live_portrait_pipeline = LivePortraitPipeline(inference_cfg=self.inf_cfg, crop_cfg=self.crop_cfg)
+
+ def _norm(self, data_dict):
+ for k in data_dict.keys():
+ if k in ['yaw', 'pitch', 'roll', 't', 'exp', 'scale', 'kp', ]:
+ v=data_dict[k]
+ data_dict[k] = (v - self.norm_info[k+'_mean'])/self.norm_info[k+'_std']
+ return data_dict
+
+ def _denorm(self, data_dict):
+ for k in data_dict.keys():
+ if k in ['yaw', 'pitch', 'roll', 't', 'exp', 'scale', 'kp']:
+ v=data_dict[k]
+ data_dict[k] = v * self.norm_info[k+'_std'] + self.norm_info[k+'_mean']
+ return data_dict
+
+ def output_to_dict(self, data):
+ output = {}
+ output['scale'] = data[:, 0]
+ output['yaw'] = data[:, 1, None]
+ output['pitch'] = data[:, 2, None]
+ output['roll'] = data[:, 3, None]
+ output['t'] = data[:, 4:7]
+ output['exp'] = data[:, 7:]
+ return output
+
+ def extract_mel_from_audio(self, audio_file_path):
+ syncnet_mel_step_size = 16
+ fps = 25
+ wav = audio.load_wav(audio_file_path, 16000)
+ wav_length, num_frames = parse_audio_length(len(wav), 16000, 25)
+ wav = crop_pad_audio(wav, wav_length)
+ orig_mel = audio.melspectrogram(wav).T
+ spec = orig_mel.copy()
+ indiv_mels = []
+
+ for i in tqdm(range(num_frames), 'mel:'):
+ start_frame_num = i - 2
+ start_idx = int(80. * (start_frame_num / float(fps)))
+ end_idx = start_idx + syncnet_mel_step_size
+ seq = list(range(start_idx, end_idx))
+ seq = [min(max(item, 0), orig_mel.shape[0] - 1) for item in seq]
+ m = spec[seq, :]
+ indiv_mels.append(m.T)
+ indiv_mels = np.asarray(indiv_mels) # T 80 16
+ return indiv_mels
+
+ def extract_wav2lip_from_audio(self, audio_file_path):
+ asd_mel = self.extract_mel_from_audio(audio_file_path)
+ asd_mel = torch.FloatTensor(asd_mel).cuda().unsqueeze(0).unsqueeze(2)
+ with torch.no_grad():
+ hidden = self.wav2lip_model(asd_mel)
+ return hidden[0].cpu().detach().numpy()
+
+ def headpose_pred_to_degree(self, pred):
+ device = pred.device
+ idx_tensor = [idx for idx in range(66)]
+ idx_tensor = torch.FloatTensor(idx_tensor).to(device)
+ pred = F.softmax(pred)
+ degree = torch.sum(pred * idx_tensor, 1) * 3 - 99
+ return degree
+
+ @torch.no_grad()
+ def generate_with_audio_img(self, image_path, audio_path, save_path):
+ image = np.array(Image.open(image_path).convert('RGB'))
+ cropped_image, crop, quad = self.croper.crop([image], still=False, xsize=512)
+ input_image = cv2.resize(cropped_image[0], (256, 256))
+
+ I_s = torch.FloatTensor(input_image.transpose((2, 0, 1))).unsqueeze(0).cuda() / 255
+
+ x_s_info = self.live_portrait_pipeline.live_portrait_wrapper.get_kp_info(I_s)
+ x_c_s = x_s_info['kp'].reshape(1, 21, -1)
+ R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
+ f_s = self.live_portrait_pipeline.live_portrait_wrapper.extract_feature_3d(I_s)
+ x_s = self.live_portrait_pipeline.live_portrait_wrapper.transform_keypoint(x_s_info)
+
+ ######## process driving info ########
+ kp_info = {}
+ for k in x_s_info.keys():
+ kp_info[k] = x_s_info[k].cpu().numpy()
+
+ kp_info = self._norm(kp_info)
+
+ ori_kp = torch.cat([torch.zeros([1, 7]), torch.Tensor(kp_info['kp'])], -1).cuda()
+
+ input_x = np.concatenate([kp_info[k] for k in ['scale', 'yaw', 'pitch', 'roll', 't', 'exp']], 1)
+ input_x = np.expand_dims(input_x, -1)
+ input_x = np.expand_dims(input_x, 0)
+ input_x = np.concatenate([input_x, input_x, input_x], -1)
+
+ aud_feat = self.extract_wav2lip_from_audio(audio_path)
+
+ sample_frame = 64
+ padding_size = (sample_frame - aud_feat.shape[0] % sample_frame) % sample_frame
+
+ if padding_size > 0:
+ aud_feat = np.concatenate((aud_feat, aud_feat[:padding_size, :]), axis=0)
+ else:
+ aud_feat = aud_feat
+
+ outputs = [input_x]
+
+ sample_frame = 64
+ for i in range(0, aud_feat.shape[0] - 1, sample_frame):
+ input_mel = torch.Tensor(aud_feat[i: i + sample_frame]).unsqueeze(0).cuda()
+ kp0 = torch.Tensor(outputs[-1])[:, -1].cuda()
+ pred_kp = self.point_diffusion.forward_sample(70, ref_kps=kp0, ori_kps=ori_kp, aud_feat=input_mel,
+ scheduler='ddim', num_inference_steps=50)
+ outputs.append(pred_kp.cpu().numpy())
+
+ outputs = np.mean(np.concatenate(outputs, 1)[0, 1:aud_feat.shape[0] - padding_size + 1], -1)
+ output_dict = self.output_to_dict(outputs)
+ output_dict = self._denorm(output_dict)
+
+ num_frame = output_dict['yaw'].shape[0]
+ x_d_info = {}
+ for key in output_dict:
+ x_d_info[key] = torch.tensor(output_dict[key]).cuda()
+
+ # smooth
+ def smooth(sequence, n_dim_state=1):
+ kf = KalmanFilter(initial_state_mean=sequence[0],
+ transition_covariance=0.05 * np.eye(n_dim_state),
+ observation_covariance=0.001 * np.eye(n_dim_state))
+ state_means, _ = kf.smooth(sequence)
+ return state_means
+
+ yaw_data = x_d_info['yaw'].cpu().numpy()
+ pitch_data = x_d_info['pitch'].cpu().numpy()
+ roll_data = x_d_info['roll'].cpu().numpy()
+ t_data = x_d_info['t'].cpu().numpy()
+ exp_data = x_d_info['exp'].cpu().numpy()
+
+ smoothed_pitch = smooth(pitch_data, n_dim_state=1)
+ smoothed_yaw = smooth(yaw_data, n_dim_state=1)
+ smoothed_roll = smooth(roll_data, n_dim_state=1)
+ smoothed_t = smooth(t_data, n_dim_state=3)
+ smoothed_exp = smooth(exp_data, n_dim_state=63)
+
+ x_d_info['pitch'] = torch.Tensor(smoothed_pitch).cuda()
+ x_d_info['yaw'] = torch.Tensor(smoothed_yaw).cuda()
+ x_d_info['roll'] = torch.Tensor(smoothed_roll).cuda()
+ x_d_info['t'] = torch.Tensor(smoothed_t).cuda()
+ x_d_info['exp'] = torch.Tensor(smoothed_exp).cuda()
+
+ template_dct = {'motion': [], 'c_d_eyes_lst': [], 'c_d_lip_lst': []}
+ for i in track(range(num_frame), description='Making motion templates...', total=num_frame):
+ x_d_i_info = x_d_info
+ R_d_i = get_rotation_matrix(x_d_i_info['pitch'][i], x_d_i_info['yaw'][i], x_d_i_info['roll'][i])
+
+ item_dct = {
+ 'scale': x_d_i_info['scale'][i].cpu().numpy().astype(np.float32),
+ 'R_d': R_d_i.cpu().numpy().astype(np.float32),
+ 'exp': x_d_i_info['exp'][i].reshape(1, 21, -1).cpu().numpy().astype(np.float32),
+ 't': x_d_i_info['t'][i].cpu().numpy().astype(np.float32),
+ }
+
+ template_dct['motion'].append(item_dct)
+
+ I_p_lst = []
+ R_d_0, x_d_0_info = None, None
+
+ for i in track(range(num_frame), description='🚀Animating...', total=num_frame):
+ x_d_i_info = template_dct['motion'][i]
+ for key in x_d_i_info:
+ x_d_i_info[key] = torch.tensor(x_d_i_info[key]).cuda()
+ R_d_i = x_d_i_info['R_d']
+
+ if i == 0:
+ R_d_0 = R_d_i
+ x_d_0_info = x_d_i_info
+
+ if self.inf_cfg.flag_relative_motion:
+ R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s
+ delta_new = x_s_info['exp'].reshape(1, 21, -1) + (x_d_i_info['exp'] - x_d_0_info['exp'])
+ scale_new = x_s_info['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
+ t_new = x_s_info['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
+ else:
+ R_new = R_d_i
+ delta_new = x_d_i_info['exp']
+ scale_new = x_s_info['scale']
+ t_new = x_d_i_info['t']
+
+ t_new[..., 2].fill_(0)
+ x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new
+
+ out = self.live_portrait_pipeline.live_portrait_wrapper.warp_decode(f_s, x_s, x_d_i_new)
+ I_p_i = self.live_portrait_pipeline.live_portrait_wrapper.parse_output(out['out'])[0]
+ I_p_lst.append(I_p_i)
+
+ video_name = save_path.split('/')[-1]
+ video_save_dir = os.path.dirname(save_path)
+ path = os.path.join(video_save_dir, 'temp_' + video_name)
+
+ imageio.mimsave(path, I_p_lst, fps=float(25))
+
+ audio_name = audio_path.split('/')[-1]
+ new_audio_path = os.path.join(video_save_dir, audio_name)
+ start_time = 0
+ sound = AudioSegment.from_file(audio_path)
+ end_time = start_time + num_frame * 1 / 25 * 1000
+ word1 = sound.set_frame_rate(16000)
+ word = word1[start_time:end_time]
+ word.export(new_audio_path, format="wav")
+
+ save_video_with_watermark(path, new_audio_path, save_path, watermark=False)
+ print(f'The generated video is named {video_save_dir}/{video_name}')
+
+ os.remove(path)
+ os.remove(new_audio_path)
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument("-source_image", type=str, default="example/source_image/WDA_BenCardin1_000.png",
+ help="source image")
+ parser.add_argument("-driven_audio", type=str, default="example/driven_audio/WDA_BenCardin1_000.wav",
+ help="driving audio")
+ parser.add_argument("-output", type=str, default="results/output.mp4", help="output video file name", )
+
+ args = parser.parse_args()
+
+ Infer = Inferencer()
+ Infer.generate_with_audio_img(args.source_image, args.driven_audio, args.output)
\ No newline at end of file
diff --git a/model/__init__.py b/model/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..a1775c3f81c2aa1c64e3664b4f05e19380c89975
--- /dev/null
+++ b/model/__init__.py
@@ -0,0 +1,6 @@
+from .model import ConditionalPointCloudDiffusionModel
+
+def get_model():
+ model = ConditionalPointCloudDiffusionModel()
+ return model
+
diff --git a/model/model.py b/model/model.py
new file mode 100644
index 0000000000000000000000000000000000000000..9be3352de0aada9056102dee8cba7901faf398f1
--- /dev/null
+++ b/model/model.py
@@ -0,0 +1,230 @@
+import inspect
+from typing import Optional
+from einops import rearrange
+import torch
+import torch.nn.functional as F
+from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
+from diffusers.schedulers.scheduling_ddim import DDIMScheduler
+from diffusers.schedulers.scheduling_pndm import PNDMScheduler
+
+from torch import Tensor
+from tqdm import tqdm
+from diffusers import ModelMixin
+from .model_utils import get_custom_betas
+from .point_model import PointModel
+import copy
+import torch.nn as nn
+
+class TemporalSmoothnessLoss(nn.Module):
+ def __init__(self):
+ super(TemporalSmoothnessLoss, self).__init__()
+
+ def forward(self, input):
+ # Calculate the difference between consecutive frames
+ diff = input[:, 1:, :] - input[:, :-1, :]
+
+ # Compute the L2 norm (squared) of the differences
+ smoothness_loss = torch.mean(torch.sum(diff ** 2, dim=2))
+
+ return smoothness_loss
+
+class ConditionalPointCloudDiffusionModel(ModelMixin):
+ def __init__(
+ self,
+ beta_start: float = 1e-5,
+ beta_end: float = 8e-3,
+ beta_schedule: str = 'linear',
+ point_cloud_model: str = 'simple',
+ point_cloud_model_embed_dim: int = 64,
+ ):
+ super().__init__()
+ self.in_channels = 70 # 3 for 3D point positions
+ self.out_channels = 70
+
+ # Checks
+ # Create diffusion model schedulers which define the sampling timesteps
+ scheduler_kwargs = {}
+ if beta_schedule == 'custom':
+ scheduler_kwargs.update(dict(trained_betas=get_custom_betas(beta_start=beta_start, beta_end=beta_end)))
+ else:
+ scheduler_kwargs.update(dict(beta_start=beta_start, beta_end=beta_end, beta_schedule=beta_schedule))
+ self.schedulers_map = {
+ 'ddpm': DDPMScheduler(**scheduler_kwargs, clip_sample=False),
+ 'ddim': DDIMScheduler(**scheduler_kwargs, clip_sample=False),
+ 'pndm': PNDMScheduler(**scheduler_kwargs),
+ }
+ self.scheduler = self.schedulers_map['ddim'] # this can be changed for inference
+
+ # Create point cloud model for processing point cloud at each diffusion step
+ self.point_model = PointModel(
+ model_type=point_cloud_model,
+ embed_dim=point_cloud_model_embed_dim,
+ in_channels=self.in_channels,
+ out_channels=self.out_channels,
+ )
+
+ def forward_train(
+ self,
+ pc: Optional[Tensor],
+ ref_kps: Optional[Tensor],
+ ori_kps: Optional[Tensor],
+ aud_feat: Optional[Tensor],
+ mode: str = 'train',
+ return_intermediate_steps: bool = False
+ ):
+
+ # Normalize colors and convert to tensor
+ x_0 = pc
+ B, Nf, Np, D = x_0.shape# batch, nums of frames, nums of points, 3
+
+
+ x_0=x_0[:,:,:,0]# batch, nums of frames, 70
+
+ # Sample random noise
+ noise = torch.randn_like(x_0)
+
+ # Sample random timesteps for each point_cloud
+ timestep = torch.randint(0, self.scheduler.num_train_timesteps, (B,),
+ device=self.device, dtype=torch.long)
+
+ # Add noise to points
+ x_t = self.scheduler.add_noise(x_0, noise, timestep)
+
+ # Conditioning
+ ref_kps = ref_kps[:, :, 0]
+
+ x_t_input = torch.cat([ori_kps.unsqueeze(1), ref_kps.unsqueeze(1), x_t], dim=1)
+
+ aud_feat = torch.cat([torch.zeros(B, 2, 512).cuda(), aud_feat], 1)
+
+ # Augmentation for audio feature
+ if mode in 'train':
+ if torch.rand(1) > 0.3:
+ mean = torch.mean(aud_feat)
+ std = torch.std(aud_feat)
+ sample = torch.normal(mean=torch.full(aud_feat.shape, mean), std=torch.full(aud_feat.shape, std)).cuda()
+ aud_feat = sample + aud_feat
+ else:
+ pass
+ else:
+ pass
+
+ # Forward
+ noise_pred = self.point_model(x_t_input, timestep, context=aud_feat) #torch.cat([mel_feat,style_embed],-1))
+ noise_pred = noise_pred[:, 2:]
+
+ # Check
+ if not noise_pred.shape == noise.shape:
+ raise ValueError(f'{noise_pred.shape=} and {noise.shape=}')
+
+ loss = F.mse_loss(noise_pred, noise)
+
+ loss_pose = F.mse_loss(noise_pred[:, :, 1:7], noise[:, :, 1:7])
+ loss_exp = F.mse_loss(noise_pred[:, :, 7:], noise[:, :, 7:])
+
+
+ # Whether to return intermediate steps
+ if return_intermediate_steps:
+ return loss, (x_0, x_t, noise, noise_pred)
+
+ return loss, loss_exp, loss_pose
+
+ @torch.no_grad()
+ def forward_sample(
+ self,
+ num_points: int,
+ ref_kps: Optional[Tensor],
+ ori_kps: Optional[Tensor],
+ aud_feat: Optional[Tensor],
+ # Optional overrides
+ scheduler: Optional[str] = 'ddpm',
+ # Inference parameters
+ num_inference_steps: Optional[int] = 50,
+ eta: Optional[float] = 0.0, # for DDIM
+ # Whether to return all the intermediate steps in generation
+ return_sample_every_n_steps: int = -1,
+ # Whether to disable tqdm
+ disable_tqdm: bool = False,
+ ):
+
+ # Get scheduler from mapping, or use self.scheduler if None
+ scheduler = self.scheduler if scheduler is None else self.schedulers_map[scheduler]
+
+ # Get the size of the noise
+ Np = num_points
+ Nf = aud_feat.size(1)
+ B = 1
+ D = 3
+ device = self.device
+
+ # Sample noise
+ x_t = torch.randn(B, Nf, Np, D, device=device)
+
+ x_t = x_t[:, :, :, 0]
+
+ ref_kps = ref_kps[:,:,0]
+
+ # Set timesteps
+ accepts_offset = "offset" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
+ extra_set_kwargs = {"offset": 1} if accepts_offset else {}
+ scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
+
+ accepts_eta = "eta" in set(inspect.signature(scheduler.step).parameters.keys())
+ extra_step_kwargs = {"eta": eta} if accepts_eta else {}
+
+ # Loop over timesteps
+ all_outputs = []
+ return_all_outputs = (return_sample_every_n_steps > 0)
+ progress_bar = tqdm(scheduler.timesteps.to(device), desc=f'Sampling ({x_t.shape})', disable=disable_tqdm)
+
+ aud_feat = torch.cat([torch.zeros(B, 2, 512).cuda(), aud_feat], 1)
+
+ for i, t in enumerate(progress_bar):
+ x_t_input = torch.cat([ori_kps.unsqueeze(1).detach(),ref_kps.unsqueeze(1).detach(), x_t], dim=1)
+
+ # Forward
+ noise_pred = self.point_model(x_t_input, t.reshape(1).expand(B), context=aud_feat)[:, 2:]
+
+ # Step
+ x_t = scheduler.step(noise_pred, t, x_t, **extra_step_kwargs).prev_sample
+
+ # Append to output list if desired
+ if (return_all_outputs and (i % return_sample_every_n_steps == 0 or i == len(scheduler.timesteps) - 1)):
+ all_outputs.append(x_t)
+
+ # Convert output back into a point cloud, undoing normalization and scaling
+ output = x_t
+ output = torch.stack([output,output,output],-1)
+ if return_all_outputs:
+ all_outputs = torch.stack(all_outputs, dim=1) # (B, sample_steps, N, D)
+ return (output, all_outputs) if return_all_outputs else output
+
+ def forward(self, batch: dict, mode: str = 'train', **kwargs):
+ """A wrapper around the forward method for training and inference"""
+
+ if mode == 'train':
+ return self.forward_train(
+ pc=batch['sequence_keypoints'],
+ ref_kps=batch['ref_keypoint'],
+ ori_kps=batch['ori_keypoint'],
+ aud_feat=batch['aud_feat'],
+ mode='train',
+ **kwargs)
+ elif mode == 'val':
+ return self.forward_train(
+ pc=batch['sequence_keypoints'],
+ ref_kps=batch['ref_keypoint'],
+ ori_kps=batch['ori_keypoint'],
+ aud_feat=batch['aud_feat'],
+ mode='val',
+ **kwargs)
+ elif mode == 'sample':
+ num_points = 70
+ return self.forward_sample(
+ num_points=num_points,
+ ref_kps=batch['ref_keypoint'],
+ ori_kps=batch['ori_keypoint'],
+ aud_feat=batch['aud_feat'],
+ **kwargs)
+ else:
+ raise NotImplementedError()
\ No newline at end of file
diff --git a/model/model_utils.py b/model/model_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..1e1e0c8ac665bc49f91c62ca2004243de6871a70
--- /dev/null
+++ b/model/model_utils.py
@@ -0,0 +1,33 @@
+import cv2
+import numpy as np
+import torch
+import torch.nn as nn
+
+def set_requires_grad(module: nn.Module, requires_grad: bool):
+ for p in module.parameters():
+ p.requires_grad_(requires_grad)
+
+
+def compute_distance_transform(mask: torch.Tensor):
+ image_size = mask.shape[-1]
+ distance_transform = torch.stack([
+ torch.from_numpy(cv2.distanceTransform(
+ (1 - m), distanceType=cv2.DIST_L2, maskSize=cv2.DIST_MASK_3
+ ) / (image_size / 2))
+ for m in mask.squeeze(1).detach().cpu().numpy().astype(np.uint8)
+ ]).unsqueeze(1).clip(0, 1).to(mask.device)
+ return distance_transform
+
+
+def default(x, d):
+ return d if x is None else x
+
+def get_custom_betas(beta_start: float, beta_end: float, warmup_frac: float = 0.3, num_train_timesteps: int = 1000):
+ """Custom beta schedule"""
+ betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32)
+ warmup_frac = 0.3
+ warmup_time = int(num_train_timesteps * warmup_frac)
+ warmup_steps = np.linspace(beta_start, beta_end, warmup_time, dtype=np.float64)
+ warmup_time = min(warmup_time, num_train_timesteps)
+ betas[:warmup_time] = warmup_steps[:warmup_time]
+ return betas
diff --git a/model/point_model.py b/model/point_model.py
new file mode 100644
index 0000000000000000000000000000000000000000..36526f9ca52e4add43fae6ae1b59e3340501ae23
--- /dev/null
+++ b/model/point_model.py
@@ -0,0 +1,38 @@
+import torch
+from diffusers.configuration_utils import ConfigMixin, register_to_config
+from diffusers import ModelMixin
+from torch import Tensor
+
+from .temporaltrans.temptrans import SimpleTransModel
+
+class PointModel(ModelMixin, ConfigMixin):
+ @register_to_config
+ def __init__(
+ self,
+ model_type: str = 'pvcnn',
+ in_channels: int = 3,
+ out_channels: int = 3,
+ embed_dim: int = 64,
+ dropout: float = 0.1,
+ width_multiplier: int = 1,
+ voxel_resolution_multiplier: int = 1,
+ ):
+ super().__init__()
+ self.model_type = model_type
+ if self.model_type == 'simple':
+ self.autocast_context = torch.autocast('cuda', dtype=torch.float32)
+ self.model = SimpleTransModel(
+ embed_dim=embed_dim,
+ num_classes=out_channels,
+ extra_feature_channels=(in_channels - 3),
+ )
+ self.model.output_projection.bias.data.normal_(0, 1e-6)
+ self.model.output_projection.weight.data.normal_(0, 1e-6)
+ else:
+ raise NotImplementedError()
+
+ def forward(self, inputs: Tensor, t: Tensor, context=None) -> Tensor:
+ """ Receives input of shape (B, N, in_channels) and returns output
+ of shape (B, N, out_channels) """
+ with self.autocast_context:
+ return self.model(inputs, t, context)
diff --git a/model/temporaltrans/temptrans.py b/model/temporaltrans/temptrans.py
new file mode 100644
index 0000000000000000000000000000000000000000..4ab5798dadfe12b7c40d14ea40f8d881d1728beb
--- /dev/null
+++ b/model/temporaltrans/temptrans.py
@@ -0,0 +1,267 @@
+import torch
+import torch.nn.functional as F
+from torch import nn
+from einops import rearrange
+from .transformer_utils import BaseTemperalPointModel
+import math
+from einops_exts import check_shape, rearrange_many
+from functools import partial
+from rotary_embedding_torch import RotaryEmbedding
+
+def exists(x):
+ return x is not None
+
+class SinusoidalPosEmb(nn.Module):
+ def __init__(self, dim):
+ super().__init__()
+ self.dim = dim
+
+ def forward(self, x):
+ device = x.device
+ half_dim = self.dim // 2
+ emb = math.log(10000) / (half_dim - 1)
+ emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
+ emb = x[:, None] * emb[None, :]
+ emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
+ return emb
+
+
+class RelativePositionBias(nn.Module):
+ def __init__(
+ self,
+ heads = 8,
+ num_buckets = 32,
+ max_distance = 128
+ ):
+ super().__init__()
+ self.num_buckets = num_buckets
+ self.max_distance = max_distance
+ self.relative_attention_bias = nn.Embedding(num_buckets, heads)
+
+ @staticmethod
+ def _relative_position_bucket(relative_position, num_buckets = 32, max_distance = 128):
+ ret = 0
+ n = -relative_position
+
+ num_buckets //= 2
+ ret += (n < 0).long() * num_buckets
+ n = torch.abs(n)
+
+ max_exact = num_buckets // 2
+ is_small = n < max_exact
+
+ val_if_large = max_exact + (
+ torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
+ ).long()
+ val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
+
+ ret += torch.where(is_small, n, val_if_large)
+ return ret
+
+ def forward(self, n, device):
+ q_pos = torch.arange(n, dtype = torch.long, device = device)
+ k_pos = torch.arange(n, dtype = torch.long, device = device)
+ rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1')
+ rp_bucket = self._relative_position_bucket(rel_pos, num_buckets = self.num_buckets, max_distance = self.max_distance)
+ values = self.relative_attention_bias(rp_bucket)
+ return rearrange(values, 'i j h -> h i j')
+
+
+class Residual(nn.Module):
+ def __init__(self, fn):
+ super().__init__()
+ self.fn = fn
+
+ def forward(self, x, *args, **kwargs):
+ return self.fn(x, *args, **kwargs) + x
+
+
+class LayerNorm(nn.Module):
+ def __init__(self, dim, eps = 1e-5):
+ super().__init__()
+ self.eps = eps
+ self.gamma = nn.Parameter(torch.ones(1, 1, dim))
+ self.beta = nn.Parameter(torch.zeros(1, 1, dim))
+
+ def forward(self, x):
+ var = torch.var(x, dim = -1, unbiased = False, keepdim = True)
+ mean = torch.mean(x, dim = -1, keepdim = True)
+ return (x - mean) / (var + self.eps).sqrt() * self.gamma + self.beta
+
+
+class PreNorm(nn.Module):
+ def __init__(self, dim, fn):
+ super().__init__()
+ self.fn = fn
+ self.norm = LayerNorm(dim)
+
+ def forward(self, x, **kwargs):
+ x = self.norm(x)
+ return self.fn(x, **kwargs)
+
+
+class EinopsToAndFrom(nn.Module):
+ def __init__(self, from_einops, to_einops, fn):
+ super().__init__()
+ self.from_einops = from_einops
+ self.to_einops = to_einops
+ self.fn = fn
+
+ def forward(self, x, **kwargs):
+ shape = x.shape
+ reconstitute_kwargs = dict(tuple(zip(self.from_einops.split(' '), shape)))
+ x = rearrange(x, f'{self.from_einops} -> {self.to_einops}')
+ x = self.fn(x, **kwargs)
+ x = rearrange(x, f'{self.to_einops} -> {self.from_einops}', **reconstitute_kwargs)
+ return x
+
+
+class Attention(nn.Module):
+ def __init__(
+ self, dim, heads=4, attn_head_dim=None, casual_attn=False,rotary_emb = None):
+ super().__init__()
+ self.num_heads = heads
+ head_dim = dim // heads
+ self.casual_attn = casual_attn
+
+ if attn_head_dim is not None:
+ head_dim = attn_head_dim
+
+ all_head_dim = head_dim * self.num_heads
+ self.scale = head_dim ** -0.5
+ self.to_qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
+ self.proj = nn.Linear(all_head_dim, dim)
+ self.rotary_emb = rotary_emb
+
+ def forward(self, x, pos_bias = None):
+ N, device = x.shape[-2], x.device
+ qkv = self.to_qkv(x).chunk(3, dim = -1)
+
+ q, k, v = rearrange_many(qkv, '... n (h d) -> ... h n d', h=self.num_heads)
+
+ q = q * self.scale
+
+ if exists(self.rotary_emb):
+ q = self.rotary_emb.rotate_queries_or_keys(q)
+ k = self.rotary_emb.rotate_queries_or_keys(k)
+
+ sim = torch.einsum('... h i d, ... h j d -> ... h i j', q, k)
+
+ if exists(pos_bias):
+ sim = sim + pos_bias
+
+ if self.casual_attn:
+ mask = torch.tril(torch.ones(sim.size(-1), sim.size(-2))).to(device)
+ sim = sim.masked_fill(mask[..., :, :] == 0, float('-inf'))
+
+ attn = sim.softmax(dim = -1)
+ x = torch.einsum('... h i j, ... h j d -> ... h i d', attn, v)
+ x = rearrange(x, '... h n d -> ... n (h d)')
+ x = self.proj(x)
+ return x
+
+
+class Block(nn.Module):
+ def __init__(self, dim, dim_out):
+ super().__init__()
+ self.proj = nn.Linear(dim, dim_out)
+ self.norm = LayerNorm(dim)
+ self.act = nn.SiLU()
+
+ def forward(self, x, scale_shift=None):
+ x = self.proj(x)
+
+ if exists(scale_shift):
+ x = self.norm(x)
+ scale, shift = scale_shift
+ x = x * (scale + 1) + shift
+ return self.act(x)
+
+
+class ResnetBlock(nn.Module):
+ def __init__(self, dim, dim_out, cond_dim=None):
+ super().__init__()
+ self.mlp = nn.Sequential(
+ nn.SiLU(),
+ nn.Linear(cond_dim, dim_out * 2)
+ ) if exists(cond_dim) else None
+
+ self.block1 = Block(dim, dim_out)
+ self.block2 = Block(dim_out, dim_out)
+
+ def forward(self, x, cond_emb=None):
+ scale_shift = None
+ if exists(self.mlp):
+ assert exists(cond_emb), 'time emb must be passed in'
+ cond_emb = self.mlp(cond_emb)
+ #cond_emb = rearrange(cond_emb, 'b f c -> b f 1 c')
+ scale_shift = cond_emb.chunk(2, dim=-1)
+
+ h = self.block1(x, scale_shift=scale_shift)
+ h = self.block2(h)
+ return h + x
+
+class SimpleTransModel(BaseTemperalPointModel):
+ """
+ A simple model that processes a point cloud by applying a series of MLPs to each point
+ individually, along with some pooled global features.
+ """
+
+ def get_layers(self):
+ self.input_projection = nn.Linear(
+ in_features=70,
+ out_features=self.dim
+ )
+
+ cond_dim = 512 + self.timestep_embed_dim
+
+ num_head = self.dim//64
+
+ rotary_emb = RotaryEmbedding(min(32, num_head))
+
+ self.time_rel_pos_bias = RelativePositionBias(heads=num_head, max_distance=128) # realistically will not be able to generate that many frames of video... yet
+
+ temporal_casual_attn = lambda dim: Attention(dim, heads=num_head, casual_attn=False,rotary_emb=rotary_emb)
+
+ cond_block = partial(ResnetBlock, cond_dim=cond_dim)
+
+ layers = nn.ModuleList([])
+
+ for _ in range(self.num_layers):
+ layers.append(nn.ModuleList([
+ cond_block(self.dim, self.dim),
+ cond_block(self.dim, self.dim),
+ Residual(PreNorm(self.dim, temporal_casual_attn(self.dim)))
+ ]))
+
+ return layers
+
+ def forward(self, inputs: torch.Tensor, timesteps: torch.Tensor, context=None):
+ """
+ Apply the model to an input batch.
+ :param x: an [N x C x ...] Tensor of inputs.
+ :param timesteps: a 1-D batch of timesteps.
+ :param context: conditioning plugged in via crossattn
+ """
+ # Prepare inputs
+
+ batch, num_frames, channels = inputs.size()
+
+ device = inputs.device
+ x = self.input_projection(inputs)
+
+ t_emb = self.time_mlp(timesteps) if exists(self.time_mlp) else None
+ t_emb = t_emb[:,None,:].expand(-1, num_frames, -1) # b f c
+ if context is not None:
+ t_emb = torch.cat([t_emb, context],-1)
+
+ time_rel_pos_bias = self.time_rel_pos_bias(num_frames, device=device)
+
+ for block1, block2, temporal_attn in self.layers:
+ x = block1(x, t_emb)
+ x = block2(x, t_emb)
+ x = temporal_attn(x, pos_bias=time_rel_pos_bias)
+
+ # Project
+ x = self.output_projection(x)
+ return x
\ No newline at end of file
diff --git a/model/temporaltrans/transformer_utils.py b/model/temporaltrans/transformer_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..97af01dd96288c3e8382255eec11d9474cd325d9
--- /dev/null
+++ b/model/temporaltrans/transformer_utils.py
@@ -0,0 +1,147 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torch import nn
+from einops import rearrange
+import math
+from einops_exts import check_shape, rearrange_many
+from torch import Size, Tensor, nn
+
+class SinusoidalPosEmb(nn.Module):
+ def __init__(self, dim):
+ super().__init__()
+ self.dim = dim
+
+ def forward(self, x):
+ device = x.device
+ half_dim = self.dim // 2
+ emb = math.log(10000) / (half_dim - 1)
+ emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
+ emb = x[:, None] * emb[None, :]
+ emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
+ return emb
+
+
+def map_positional_encoding(v: Tensor, freq_bands: Tensor) -> Tensor:
+ """Map v to positional encoding representation phi(v)
+
+ Arguments:
+ v (Tensor): input features (B, IFeatures)
+ freq_bands (Tensor): frequency bands (N_freqs, )
+
+ Returns:
+ phi(v) (Tensor): fourrier features (B, 3 + (2 * N_freqs) * 3)
+ """
+ pe = [v]
+ for freq in freq_bands:
+ fv = freq * v
+ pe += [torch.sin(fv), torch.cos(fv)]
+ return torch.cat(pe, dim=-1)
+
+class FeatureMapping(nn.Module):
+ """FeatureMapping nn.Module
+
+ Maps v to features following transformation phi(v)
+
+ Arguments:
+ i_dim (int): input dimensions
+ o_dim (int): output dimensions
+ """
+
+ def __init__(self, i_dim: int, o_dim: int) -> None:
+ super().__init__()
+ self.i_dim = i_dim
+ self.o_dim = o_dim
+
+ def forward(self, v: Tensor) -> Tensor:
+ """FeratureMapping forward pass
+
+ Arguments:
+ v (Tensor): input features (B, IFeatures)
+
+ Returns:
+ phi(v) (Tensor): mapped features (B, OFeatures)
+ """
+ raise NotImplementedError("Forward pass not implemented yet!")
+
+class PositionalEncoding(FeatureMapping):
+ """PositionalEncoding module
+
+ Maps v to positional encoding representation phi(v)
+
+ Arguments:
+ i_dim (int): input dimension for v
+ N_freqs (int): #frequency to sample (default: 10)
+ """
+
+ def __init__(
+ self,
+ i_dim: int,
+ N_freqs: int = 10,
+ ) -> None:
+ super().__init__(i_dim, 3 + (2 * N_freqs) * 3)
+ self.N_freqs = N_freqs
+
+ a, b = 1, self.N_freqs - 1
+ freq_bands = 2 ** torch.linspace(a, b, self.N_freqs)
+ self.register_buffer("freq_bands", freq_bands)
+
+ def forward(self, v: Tensor) -> Tensor:
+ """Map v to positional encoding representation phi(v)
+
+ Arguments:
+ v (Tensor): input features (B, IFeatures)
+
+ Returns:
+ phi(v) (Tensor): fourrier features (B, 3 + (2 * N_freqs) * 3)
+ """
+ return map_positional_encoding(v, self.freq_bands)
+
+class BaseTemperalPointModel(nn.Module):
+ """ A base class providing useful methods for point cloud processing. """
+
+ def __init__(
+ self,
+ *,
+ num_classes,
+ embed_dim,
+ extra_feature_channels,
+ dim: int = 768,
+ num_layers: int = 6
+ ):
+ super().__init__()
+
+ self.extra_feature_channels = extra_feature_channels
+ self.timestep_embed_dim = 256
+ self.output_dim = num_classes
+ self.dim = dim
+ self.num_layers = num_layers
+
+
+ self.time_mlp = nn.Sequential(
+ SinusoidalPosEmb(dim),
+ nn.Linear(dim, self.timestep_embed_dim ),
+ nn.SiLU(),
+ nn.Linear(self.timestep_embed_dim , self.timestep_embed_dim )
+ )
+
+ self.positional_encoding = PositionalEncoding(i_dim=3, N_freqs=10)
+ positional_encoding_d_out = 3 + (2 * 10) * 3
+
+ # Input projection (point coords, point coord encodings, other features, and timestep embeddings)
+
+ self.input_projection = nn.Linear(
+ in_features=(3 + positional_encoding_d_out),
+ out_features=self.dim
+ )#b f p c
+
+ # Transformer layers
+ self.layers = self.get_layers()
+
+ # Output projection
+ self.output_projection = nn.Linear(self.dim, self.output_dim)
+ def get_layers(self):
+ raise NotImplementedError('This method should be implemented by subclasses')
+
+ def forward(self, inputs: torch.Tensor, t: torch.Tensor):
+ raise NotImplementedError('This method should be implemented by subclasses')
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..f6a696fb823660a120ff58c9980dc0f6acb4cfad
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,44 @@
+onnxruntime-gpu==1.18.0
+transformers==4.33.0
+pyyaml==6.0.1
+scipy==1.10.0
+imageio==2.34.2
+lmdb==1.4.1
+tqdm==4.64.1
+rich==13.7.1
+ffmpeg-python==0.2.0
+protobuf==3.20.2
+onnx==1.16.1
+scikit-image==0.24.0
+scikit-learn==1.3.2
+albumentations==1.4.10
+matplotlib==3.7.0
+imageio-ffmpeg==0.5.1
+tyro==0.8.5
+pykalman==0.9.7
+pillow>=10.2.0
+pytorch_fid
+cpbd
+
+wandb==0.17.5
+accelerate==0.23.0
+basicsr==1.4.2
+diffusers==0.10.2
+einops==0.6.0
+einops_exts==0.0.4
+hydra-core==1.3.2
+librosa==0.10.0.post2
+lws==1.2.7
+moviepy==1.0.3
+omegaconf==2.3.0
+opencv_python_headless>=4.9.0.80
+pydub==0.25.1
+PyYAML==6.0.1
+realesrgan==0.3.0
+rotary_embedding_torch==0.3.0
+timm==0.4.12
+torch_ema==0.3
+warmup_scheduler==0.3
+yacs==0.1.8
+numpy==1.24.4
+dlib==19.24.99
\ No newline at end of file
diff --git a/src/config/__init__.py b/src/config/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/src/config/argument_config.py b/src/config/argument_config.py
new file mode 100644
index 0000000000000000000000000000000000000000..bacf15abe59b0899f3c4c25e4fcf9ae9b2a7f427
--- /dev/null
+++ b/src/config/argument_config.py
@@ -0,0 +1,48 @@
+# coding: utf-8
+
+"""
+All configs for user
+"""
+
+from dataclasses import dataclass
+import tyro
+from typing_extensions import Annotated
+from typing import Optional
+from .base_config import PrintableConfig, make_abs_path
+
+
+@dataclass(repr=False) # use repr from PrintableConfig
+class ArgumentConfig(PrintableConfig):
+ ########## input arguments ##########
+ source_image: Annotated[str, tyro.conf.arg(aliases=["-s"])] = make_abs_path('../../assets/examples/source/s6.jpg') # path to the source portrait
+ driving_info: Annotated[str, tyro.conf.arg(aliases=["-d"])] = make_abs_path('../../assets/examples/driving/d12.mp4') # path to driving video or template (.pkl format)
+ output_dir: Annotated[str, tyro.conf.arg(aliases=["-o"])] = 'animations/' # directory to save output video
+
+ ########## inference arguments ##########
+ flag_use_half_precision: bool = False # whether to use half precision (FP16). If black boxes appear, it might be due to GPU incompatibility; set to False.
+ flag_crop_driving_video: bool = False # whether to crop the driving video, if the given driving info is a video
+ device_id: int = 0 # gpu device id
+ flag_force_cpu: bool = False # force cpu inference, WIP!
+ flag_lip_zero: bool = False # whether let the lip to close state before animation, only take effect when flag_eye_retargeting and flag_lip_retargeting is False
+ flag_eye_retargeting: bool = False # not recommend to be True, WIP
+ flag_lip_retargeting: bool = False # not recommend to be True, WIP
+ flag_stitching: bool = False # recommend to True if head movement is small, False if head movement is large
+ flag_relative_motion: bool = False # whether to use relative motion
+ flag_pasteback: bool = False # whether to paste-back/stitch the animated face cropping from the face-cropping space to the original image space
+ flag_do_crop: bool = False # whether to crop the source portrait to the face-cropping space
+ flag_do_rot: bool = False # whether to conduct the rotation when flag_do_crop is True
+
+ ########## crop arguments ##########
+ scale: float = 2.3 # the ratio of face area is smaller if scale is larger
+ vx_ratio: float = 0 # the ratio to move the face to left or right in cropping space
+ vy_ratio: float = -0.125 # the ratio to move the face to up or down in cropping space
+
+ scale_crop_video: float = 2.2 # scale factor for cropping video
+ vx_ratio_crop_video: float = 0. # adjust y offset
+ vy_ratio_crop_video: float = -0.1 # adjust x offset
+
+ ########## gradio arguments ##########
+ server_port: Annotated[int, tyro.conf.arg(aliases=["-p"])] = 8890 # port for gradio server
+ share: bool = False # whether to share the server to public
+ server_name: Optional[str] = "127.0.0.1" # set the local server name, "0.0.0.0" to broadcast all
+ flag_do_torch_compile: bool = False # whether to use torch.compile to accelerate generation
diff --git a/src/config/base_config.py b/src/config/base_config.py
new file mode 100644
index 0000000000000000000000000000000000000000..216b8be50aecc8af4b9d1d2a9401e034dd7769e4
--- /dev/null
+++ b/src/config/base_config.py
@@ -0,0 +1,29 @@
+# coding: utf-8
+
+"""
+pretty printing class
+"""
+
+from __future__ import annotations
+import os.path as osp
+from typing import Tuple
+
+
+def make_abs_path(fn):
+ return osp.join(osp.dirname(osp.realpath(__file__)), fn)
+
+
+class PrintableConfig: # pylint: disable=too-few-public-methods
+ """Printable Config defining str function"""
+
+ def __repr__(self):
+ lines = [self.__class__.__name__ + ":"]
+ for key, val in vars(self).items():
+ if isinstance(val, Tuple):
+ flattened_val = "["
+ for item in val:
+ flattened_val += str(item) + "\n"
+ flattened_val = flattened_val.rstrip("\n")
+ val = flattened_val + "]"
+ lines += f"{key}: {str(val)}".split("\n")
+ return "\n ".join(lines)
diff --git a/src/config/crop_config.py b/src/config/crop_config.py
new file mode 100644
index 0000000000000000000000000000000000000000..d6d6370dd5572e5ebb5f607540baac08c26997bb
--- /dev/null
+++ b/src/config/crop_config.py
@@ -0,0 +1,29 @@
+# coding: utf-8
+
+"""
+parameters used for crop faces
+"""
+
+from dataclasses import dataclass
+
+from .base_config import PrintableConfig
+
+
+@dataclass(repr=False) # use repr from PrintableConfig
+class CropConfig(PrintableConfig):
+ insightface_root: str = "../../pretrained_weights/insightface"
+ landmark_ckpt_path: str = "../../pretrained_weights/liveportrait/landmark.onnx"
+ device_id: int = 0 # gpu device id
+ flag_force_cpu: bool = False # force cpu inference, WIP
+ ########## source image cropping option ##########
+ dsize: int = 512 # crop size
+ scale: float = 2.0 # scale factor
+ vx_ratio: float = 0 # vx ratio
+ vy_ratio: float = -0.125 # vy ratio +up, -down
+ max_face_num: int = 0 # max face number, 0 mean no limit
+
+ ########## driving video auto cropping option ##########
+ scale_crop_video: float = 2.2 # 2.0 # scale factor for cropping video
+ vx_ratio_crop_video: float = 0.0 # adjust y offset
+ vy_ratio_crop_video: float = -0.1 # adjust x offset
+ direction: str = "large-small" # direction of cropping
diff --git a/src/config/inference_config.py b/src/config/inference_config.py
new file mode 100644
index 0000000000000000000000000000000000000000..b14d7cba6205ba4a868d834adc21e9786a17689b
--- /dev/null
+++ b/src/config/inference_config.py
@@ -0,0 +1,52 @@
+# coding: utf-8
+
+"""
+config dataclass used for inference
+"""
+
+import os.path as osp
+import cv2
+from numpy import ndarray
+from dataclasses import dataclass
+from typing import Literal, Tuple
+from .base_config import PrintableConfig, make_abs_path
+
+
+@dataclass(repr=False) # use repr from PrintableConfig
+class InferenceConfig(PrintableConfig):
+ # MODEL CONFIG, NOT EXPORTED PARAMS
+ models_config: str = make_abs_path('./models.yaml') # portrait animation config
+ checkpoint_F: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/appearance_feature_extractor.pth') # path to checkpoint of F
+ checkpoint_M: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/motion_extractor.pth') # path to checkpoint pf M
+ checkpoint_G: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/spade_generator.pth') # path to checkpoint of G
+ checkpoint_W: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/warping_module.pth') # path to checkpoint of W
+ checkpoint_S: str = make_abs_path('../../pretrained_weights/liveportrait/retargeting_models/stitching_retargeting_module.pth') # path to checkpoint to S and R_eyes, R_lip
+
+ # EXPORTED PARAMS
+ flag_use_half_precision: bool = True
+ flag_crop_driving_video: bool = False
+ device_id: int = 0
+ flag_lip_zero: bool = False
+ flag_eye_retargeting: bool = False
+ flag_lip_retargeting: bool = False
+ flag_stitching: bool = False
+ flag_relative_motion: bool = False
+ flag_pasteback: bool = False
+ flag_do_crop: bool = False
+ flag_do_rot: bool = False
+ flag_force_cpu: bool = False
+ flag_do_torch_compile: bool = False
+
+ # NOT EXPORTED PARAMS
+ lip_zero_threshold: float = 0.03 # threshold for flag_lip_zero
+ anchor_frame: int = 0 # TO IMPLEMENT
+
+ input_shape: Tuple[int, int] = (256, 256) # input shape
+ output_format: Literal['mp4', 'gif'] = 'mp4' # output video format
+ crf: int = 15 # crf for output video
+ output_fps: int = 25 # default output fps
+
+ mask_crop: ndarray = cv2.imread(make_abs_path('../utils/resources/mask_template.png'), cv2.IMREAD_COLOR)
+ size_gif: int = 256 # default gif size, TO IMPLEMENT
+ source_max_dim: int = 1280 # the max dim of height and width of source image
+ source_division: int = 2 # make sure the height and width of source image can be divided by this number
diff --git a/src/config/models.yaml b/src/config/models.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..131d1c65025c31e37af9239e211ea14454128a2e
--- /dev/null
+++ b/src/config/models.yaml
@@ -0,0 +1,43 @@
+model_params:
+ appearance_feature_extractor_params: # the F in the paper
+ image_channel: 3
+ block_expansion: 64
+ num_down_blocks: 2
+ max_features: 512
+ reshape_channel: 32
+ reshape_depth: 16
+ num_resblocks: 6
+ motion_extractor_params: # the M in the paper
+ num_kp: 21
+ backbone: convnextv2_tiny
+ warping_module_params: # the W in the paper
+ num_kp: 21
+ block_expansion: 64
+ max_features: 512
+ num_down_blocks: 2
+ reshape_channel: 32
+ estimate_occlusion_map: True
+ dense_motion_params:
+ block_expansion: 32
+ max_features: 1024
+ num_blocks: 5
+ reshape_depth: 16
+ compress: 4
+ spade_generator_params: # the G in the paper
+ upscale: 2 # represents upsample factor 256x256 -> 512x512
+ block_expansion: 64
+ max_features: 512
+ num_down_blocks: 2
+ stitching_retargeting_module_params: # the S in the paper
+ stitching:
+ input_size: 126 # (21*3)*2
+ hidden_sizes: [128, 128, 64]
+ output_size: 65 # (21*3)+2(tx,ty)
+ lip:
+ input_size: 65 # (21*3)+2
+ hidden_sizes: [128, 128, 64]
+ output_size: 63 # (21*3)
+ eye:
+ input_size: 66 # (21*3)+3
+ hidden_sizes: [256, 256, 128, 128, 64]
+ output_size: 63 # (21*3)
diff --git a/src/gradio_pipeline.py b/src/gradio_pipeline.py
new file mode 100644
index 0000000000000000000000000000000000000000..f7343f7df6b8a6c6815c5af3526ed6dc857a7c0c
--- /dev/null
+++ b/src/gradio_pipeline.py
@@ -0,0 +1,117 @@
+# coding: utf-8
+
+"""
+Pipeline for gradio
+"""
+import gradio as gr
+
+from .config.argument_config import ArgumentConfig
+from .live_portrait_pipeline import LivePortraitPipeline
+from .utils.io import load_img_online
+from .utils.rprint import rlog as log
+from .utils.crop import prepare_paste_back, paste_back
+from .utils.camera import get_rotation_matrix
+
+
+def update_args(args, user_args):
+ """update the args according to user inputs
+ """
+ for k, v in user_args.items():
+ if hasattr(args, k):
+ setattr(args, k, v)
+ return args
+
+
+class GradioPipeline(LivePortraitPipeline):
+
+ def __init__(self, inference_cfg, crop_cfg, args: ArgumentConfig):
+ super().__init__(inference_cfg, crop_cfg)
+ # self.live_portrait_wrapper = self.live_portrait_wrapper
+ self.args = args
+
+ def execute_video(
+ self,
+ input_image_path,
+ input_video_path,
+ flag_relative_input,
+ flag_do_crop_input,
+ flag_remap_input,
+ flag_crop_driving_video_input
+ ):
+ """ for video driven potrait animation
+ """
+ if input_image_path is not None and input_video_path is not None:
+ args_user = {
+ 'source_image': input_image_path,
+ 'driving_info': input_video_path,
+ 'flag_relative': flag_relative_input,
+ 'flag_do_crop': flag_do_crop_input,
+ 'flag_pasteback': flag_remap_input,
+ 'flag_crop_driving_video': flag_crop_driving_video_input
+ }
+ # update config from user input
+ self.args = update_args(self.args, args_user)
+ self.live_portrait_wrapper.update_config(self.args.__dict__)
+ self.cropper.update_config(self.args.__dict__)
+ # video driven animation
+ video_path, video_path_concat = self.execute(self.args)
+ gr.Info("Run successfully!", duration=2)
+ return video_path, video_path_concat,
+ else:
+ raise gr.Error("The input source portrait or driving video hasn't been prepared yet 💥!", duration=5)
+
+ def execute_image(self, input_eye_ratio: float, input_lip_ratio: float, input_image, flag_do_crop=True):
+ """ for single image retargeting
+ """
+ # disposable feature
+ f_s_user, x_s_user, source_lmk_user, crop_M_c2o, mask_ori, img_rgb = \
+ self.prepare_retargeting(input_image, flag_do_crop)
+
+ if input_eye_ratio is None or input_lip_ratio is None:
+ raise gr.Error("Invalid ratio input 💥!", duration=5)
+ else:
+ inference_cfg = self.live_portrait_wrapper.inference_cfg
+ x_s_user = x_s_user.to(self.live_portrait_wrapper.device)
+ f_s_user = f_s_user.to(self.live_portrait_wrapper.device)
+ # ∆_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
+ combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio([[input_eye_ratio]], source_lmk_user)
+ eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s_user, combined_eye_ratio_tensor)
+ # ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
+ combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio([[input_lip_ratio]], source_lmk_user)
+ lip_delta = self.live_portrait_wrapper.retarget_lip(x_s_user, combined_lip_ratio_tensor)
+ num_kp = x_s_user.shape[1]
+ # default: use x_s
+ x_d_new = x_s_user + eyes_delta.reshape(-1, num_kp, 3) + lip_delta.reshape(-1, num_kp, 3)
+ # D(W(f_s; x_s, x′_d))
+ out = self.live_portrait_wrapper.warp_decode(f_s_user, x_s_user, x_d_new)
+ out = self.live_portrait_wrapper.parse_output(out['out'])[0]
+ out_to_ori_blend = paste_back(out, crop_M_c2o, img_rgb, mask_ori)
+ gr.Info("Run successfully!", duration=2)
+ return out, out_to_ori_blend
+
+ def prepare_retargeting(self, input_image, flag_do_crop=True):
+ """ for single image retargeting
+ """
+ if input_image is not None:
+ # gr.Info("Upload successfully!", duration=2)
+ inference_cfg = self.live_portrait_wrapper.inference_cfg
+ ######## process source portrait ########
+ img_rgb = load_img_online(input_image, mode='rgb', max_dim=1280, n=16)
+ log(f"Load source image from {input_image}.")
+ crop_info = self.cropper.crop_source_image(img_rgb, self.cropper.crop_cfg)
+ if flag_do_crop:
+ I_s = self.live_portrait_wrapper.prepare_source(crop_info['img_crop_256x256'])
+ else:
+ I_s = self.live_portrait_wrapper.prepare_source(img_rgb)
+ x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
+ R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
+ ############################################
+ f_s_user = self.live_portrait_wrapper.extract_feature_3d(I_s)
+ x_s_user = self.live_portrait_wrapper.transform_keypoint(x_s_info)
+ source_lmk_user = crop_info['lmk_crop']
+ crop_M_c2o = crop_info['M_c2o']
+ mask_ori = prepare_paste_back(inference_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0]))
+ return f_s_user, x_s_user, source_lmk_user, crop_M_c2o, mask_ori, img_rgb
+ else:
+ # when press the clear button, go here
+ raise gr.Error("The retargeting input hasn't been prepared yet 💥!", duration=5)
diff --git a/src/live_portrait_pipeline.py b/src/live_portrait_pipeline.py
new file mode 100644
index 0000000000000000000000000000000000000000..e20db99a98c8015b99167d9e8e36aef6c615999e
--- /dev/null
+++ b/src/live_portrait_pipeline.py
@@ -0,0 +1,285 @@
+# coding: utf-8
+
+"""
+Pipeline of LivePortrait
+"""
+
+import torch
+torch.backends.cudnn.benchmark = True # disable CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR warning
+
+import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
+import numpy as np
+import os
+import os.path as osp
+from rich.progress import track
+
+from .config.argument_config import ArgumentConfig
+from .config.inference_config import InferenceConfig
+from .config.crop_config import CropConfig
+from .utils.cropper import Cropper
+from .utils.camera import get_rotation_matrix
+from .utils.video import images2video, concat_frames, get_fps, add_audio_to_video, has_audio_stream
+from .utils.crop import prepare_paste_back, paste_back
+from .utils.io import load_image_rgb, load_driving_info, resize_to_limit, dump, load
+from .utils.helper import mkdir, basename, dct2device, is_video, is_template, remove_suffix
+from .utils.rprint import rlog as log
+# from .utils.viz import viz_lmk
+from .live_portrait_wrapper import LivePortraitWrapper
+
+
+def make_abs_path(fn):
+ return osp.join(osp.dirname(osp.realpath(__file__)), fn)
+
+
+class LivePortraitPipeline(object):
+
+ def __init__(self, inference_cfg: InferenceConfig, crop_cfg: CropConfig):
+ self.live_portrait_wrapper: LivePortraitWrapper = LivePortraitWrapper(inference_cfg=inference_cfg)
+ self.cropper: Cropper = Cropper(crop_cfg=crop_cfg)
+
+ def execute(self, args: ArgumentConfig):
+ # for convenience
+ inf_cfg = self.live_portrait_wrapper.inference_cfg
+ device = self.live_portrait_wrapper.device
+ crop_cfg = self.cropper.crop_cfg
+
+ ######## process source portrait ########
+ img_rgb = load_image_rgb(args.source_image)
+ img_rgb = resize_to_limit(img_rgb, inf_cfg.source_max_dim, inf_cfg.source_division)
+ log(f"Load source image from {args.source_image}")
+
+ crop_info = self.cropper.crop_source_image(img_rgb, crop_cfg)
+ if crop_info is None:
+ raise Exception("No face detected in the source image!")
+ source_lmk = crop_info['lmk_crop']
+ img_crop, img_crop_256x256 = crop_info['img_crop'], crop_info['img_crop_256x256']
+
+ if inf_cfg.flag_do_crop:
+ I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
+ else:
+ img_crop_256x256 = cv2.resize(img_rgb, (256, 256)) # force to resize to 256x256
+ I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
+ x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
+ x_c_s = x_s_info['kp']
+ R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
+ f_s = self.live_portrait_wrapper.extract_feature_3d(I_s)
+ x_s = self.live_portrait_wrapper.transform_keypoint(x_s_info)
+
+ flag_lip_zero = inf_cfg.flag_lip_zero # not overwrite
+ if flag_lip_zero:
+ # let lip-open scalar to be 0 at first
+ c_d_lip_before_animation = [0.]
+ combined_lip_ratio_tensor_before_animation = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_before_animation, source_lmk)
+ if combined_lip_ratio_tensor_before_animation[0][0] < inf_cfg.lip_zero_threshold:
+ flag_lip_zero = False
+ else:
+ lip_delta_before_animation = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor_before_animation)
+ ############################################
+
+ ######## process driving info ########
+ flag_load_from_template = is_template(args.driving_info)
+ driving_rgb_crop_256x256_lst = None
+ wfp_template = None
+
+ if flag_load_from_template:
+ # NOTE: load from template, it is fast, but the cropping video is None
+ log(f"Load from template: {args.driving_info}, NOT the video, so the cropping video and audio are both NULL.", style='bold green')
+ template_dct = load(args.driving_info)
+ n_frames = template_dct['n_frames']
+
+ # set output_fps
+ output_fps = template_dct.get('output_fps', inf_cfg.output_fps)
+ log(f'The FPS of template: {output_fps}')
+
+ if args.flag_crop_driving_video:
+ log("Warning: flag_crop_driving_video is True, but the driving info is a template, so it is ignored.")
+
+ elif osp.exists(args.driving_info) and is_video(args.driving_info):
+ # load from video file, AND make motion template
+ log(f"Load video: {args.driving_info}")
+ if osp.isdir(args.driving_info):
+ output_fps = inf_cfg.output_fps
+ else:
+ output_fps = int(get_fps(args.driving_info))
+ log(f'The FPS of {args.driving_info} is: {output_fps}')
+
+ log(f"Load video file (mp4 mov avi etc...): {args.driving_info}")
+ driving_rgb_lst = load_driving_info(args.driving_info)
+
+ ######## make motion template ########
+ log("Start making motion template...")
+ if inf_cfg.flag_crop_driving_video:
+ ret = self.cropper.crop_driving_video(driving_rgb_lst)
+ log(f'Driving video is cropped, {len(ret["frame_crop_lst"])} frames are processed.')
+ driving_rgb_crop_lst, driving_lmk_crop_lst = ret['frame_crop_lst'], ret['lmk_crop_lst']
+ driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_crop_lst]
+ else:
+ driving_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(driving_rgb_lst)
+ driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_lst] # force to resize to 256x256
+
+ c_d_eyes_lst, c_d_lip_lst = self.live_portrait_wrapper.calc_driving_ratio(driving_lmk_crop_lst)
+ # save the motion template
+ I_d_lst = self.live_portrait_wrapper.prepare_driving_videos(driving_rgb_crop_256x256_lst)
+ template_dct = self.make_motion_template(I_d_lst, c_d_eyes_lst, c_d_lip_lst, output_fps=output_fps)
+
+ wfp_template = remove_suffix(args.driving_info) + '.pkl'
+ dump(wfp_template, template_dct)
+ log(f"Dump motion template to {wfp_template}")
+
+ n_frames = I_d_lst.shape[0]
+ else:
+ raise Exception(f"{args.driving_info} not exists or unsupported driving info types!")
+ #########################################
+
+ ######## prepare for pasteback ########
+ I_p_pstbk_lst = None
+ if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
+ mask_ori_float = prepare_paste_back(inf_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0]))
+ I_p_pstbk_lst = []
+ log("Prepared pasteback mask done.")
+ #########################################
+
+ I_p_lst = []
+ R_d_0, x_d_0_info = None, None
+
+ for i in track(range(n_frames), description='🚀Animating...', total=n_frames):
+ x_d_i_info = template_dct['motion'][i]
+ x_d_i_info = dct2device(x_d_i_info, device)
+ R_d_i = x_d_i_info['R_d']
+
+ if i == 0:
+ R_d_0 = R_d_i
+ x_d_0_info = x_d_i_info
+
+ if inf_cfg.flag_relative_motion:
+ R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s
+ delta_new = x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp'])
+ scale_new = x_s_info['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
+ t_new = x_s_info['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
+ else:
+ R_new = R_d_i
+ delta_new = x_d_i_info['exp']
+ scale_new = x_s_info['scale']
+ t_new = x_d_i_info['t']
+
+ t_new[..., 2].fill_(0) # zero tz
+ x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new
+
+ # Algorithm 1:
+ if not inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
+ # without stitching or retargeting
+ if flag_lip_zero:
+ x_d_i_new += lip_delta_before_animation.reshape(-1, x_s.shape[1], 3)
+ else:
+ pass
+ elif inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
+ # with stitching and without retargeting
+ if flag_lip_zero:
+ x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new) + lip_delta_before_animation.reshape(-1, x_s.shape[1], 3)
+ else:
+ x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new)
+ else:
+ eyes_delta, lip_delta = None, None
+ if inf_cfg.flag_eye_retargeting:
+ c_d_eyes_i = c_d_eyes_lst[i]
+ combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio(c_d_eyes_i, source_lmk)
+ # ∆_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
+ eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s, combined_eye_ratio_tensor)
+ if inf_cfg.flag_lip_retargeting:
+ c_d_lip_i = c_d_lip_lst[i]
+ combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_i, source_lmk)
+ # ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
+ lip_delta = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor)
+
+ if inf_cfg.flag_relative_motion: # use x_s
+ x_d_i_new = x_s + \
+ (eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \
+ (lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0)
+ else: # use x_d,i
+ x_d_i_new = x_d_i_new + \
+ (eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \
+ (lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0)
+
+ if inf_cfg.flag_stitching:
+ x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new)
+
+ out = self.live_portrait_wrapper.warp_decode(f_s, x_s, x_d_i_new)
+ I_p_i = self.live_portrait_wrapper.parse_output(out['out'])[0]
+ I_p_lst.append(I_p_i)
+
+ if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
+ # TODO: pasteback is slow, considering optimize it using multi-threading or GPU
+ I_p_pstbk = paste_back(I_p_i, crop_info['M_c2o'], img_rgb, mask_ori_float)
+ I_p_pstbk_lst.append(I_p_pstbk)
+
+ mkdir(args.output_dir)
+ wfp_concat = None
+ flag_has_audio = (not flag_load_from_template) and has_audio_stream(args.driving_info)
+
+ ######### build final concact result #########
+ # driving frame | source image | generation, or source image | generation
+ frames_concatenated = concat_frames(driving_rgb_crop_256x256_lst, img_crop_256x256, I_p_lst)
+ wfp_concat = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_concat.mp4')
+ images2video(frames_concatenated, wfp=wfp_concat, fps=output_fps)
+
+ if flag_has_audio:
+ # final result with concact
+ wfp_concat_with_audio = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_concat_with_audio.mp4')
+ add_audio_to_video(wfp_concat, args.driving_info, wfp_concat_with_audio)
+ os.replace(wfp_concat_with_audio, wfp_concat)
+ log(f"Replace {wfp_concat} with {wfp_concat_with_audio}")
+
+ # save drived result
+ wfp = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}.mp4')
+ if I_p_pstbk_lst is not None and len(I_p_pstbk_lst) > 0:
+ images2video(I_p_pstbk_lst, wfp=wfp, fps=output_fps)
+ else:
+ images2video(I_p_lst, wfp=wfp, fps=output_fps)
+
+ ######### build final result #########
+ if flag_has_audio:
+ wfp_with_audio = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_with_audio.mp4')
+ add_audio_to_video(wfp, args.driving_info, wfp_with_audio)
+ os.replace(wfp_with_audio, wfp)
+ log(f"Replace {wfp} with {wfp_with_audio}")
+
+ # final log
+ if wfp_template not in (None, ''):
+ log(f'Animated template: {wfp_template}, you can specify `-d` argument with this template path next time to avoid cropping video, motion making and protecting privacy.', style='bold green')
+ log(f'Animated video: {wfp}')
+ log(f'Animated video with concact: {wfp_concat}')
+
+ return wfp, wfp_concat
+
+ def make_motion_template(self, I_d_lst, c_d_eyes_lst, c_d_lip_lst, **kwargs):
+ n_frames = I_d_lst.shape[0]
+ template_dct = {
+ 'n_frames': n_frames,
+ 'output_fps': kwargs.get('output_fps', 25),
+ 'motion': [],
+ 'c_d_eyes_lst': [],
+ 'c_d_lip_lst': [],
+ }
+
+ for i in track(range(n_frames), description='Making motion templates...', total=n_frames):
+ # collect s_d, R_d, δ_d and t_d for inference
+ I_d_i = I_d_lst[i]
+ x_d_i_info = self.live_portrait_wrapper.get_kp_info(I_d_i)
+ R_d_i = get_rotation_matrix(x_d_i_info['pitch'], x_d_i_info['yaw'], x_d_i_info['roll'])
+
+ item_dct = {
+ 'scale': x_d_i_info['scale'].cpu().numpy().astype(np.float32),
+ 'R_d': R_d_i.cpu().numpy().astype(np.float32),
+ 'exp': x_d_i_info['exp'].cpu().numpy().astype(np.float32),
+ 't': x_d_i_info['t'].cpu().numpy().astype(np.float32),
+ }
+
+ template_dct['motion'].append(item_dct)
+
+ c_d_eyes = c_d_eyes_lst[i].astype(np.float32)
+ template_dct['c_d_eyes_lst'].append(c_d_eyes)
+
+ c_d_lip = c_d_lip_lst[i].astype(np.float32)
+ template_dct['c_d_lip_lst'].append(c_d_lip)
+
+ return template_dct
diff --git a/src/live_portrait_wrapper.py b/src/live_portrait_wrapper.py
new file mode 100644
index 0000000000000000000000000000000000000000..6c5bd6eebe929d9aa535dc3000c48272e7cdf417
--- /dev/null
+++ b/src/live_portrait_wrapper.py
@@ -0,0 +1,318 @@
+# coding: utf-8
+
+"""
+Wrapper for LivePortrait core functions
+"""
+
+import os.path as osp
+import numpy as np
+import cv2
+import torch
+import yaml
+
+from .utils.timer import Timer
+from .utils.helper import load_model, concat_feat
+from .utils.camera import headpose_pred_to_degree, get_rotation_matrix
+from .utils.retargeting_utils import calc_eye_close_ratio, calc_lip_close_ratio
+from .config.inference_config import InferenceConfig
+from .utils.rprint import rlog as log
+
+
+class LivePortraitWrapper(object):
+
+ def __init__(self, inference_cfg: InferenceConfig):
+
+ self.inference_cfg = inference_cfg
+ self.device_id = inference_cfg.device_id
+ self.compile = inference_cfg.flag_do_torch_compile
+ if inference_cfg.flag_force_cpu:
+ self.device = 'cpu'
+ else:
+ self.device = 'cuda:' + str(self.device_id)
+
+ model_config = yaml.load(open(inference_cfg.models_config, 'r'), Loader=yaml.SafeLoader)
+ # init F
+ self.appearance_feature_extractor = load_model(inference_cfg.checkpoint_F, model_config, self.device, 'appearance_feature_extractor')
+ log(f'Load appearance_feature_extractor done.')
+ # init M
+ self.motion_extractor = load_model(inference_cfg.checkpoint_M, model_config, self.device, 'motion_extractor')
+ log(f'Load motion_extractor done.')
+ # init W
+ self.warping_module = load_model(inference_cfg.checkpoint_W, model_config, self.device, 'warping_module')
+ log(f'Load warping_module done.')
+ # init G
+ self.spade_generator = load_model(inference_cfg.checkpoint_G, model_config, self.device, 'spade_generator')
+ log(f'Load spade_generator done.')
+ # init S and R
+ if inference_cfg.checkpoint_S is not None and osp.exists(inference_cfg.checkpoint_S):
+ self.stitching_retargeting_module = load_model(inference_cfg.checkpoint_S, model_config, self.device, 'stitching_retargeting_module')
+ log(f'Load stitching_retargeting_module done.')
+ else:
+ self.stitching_retargeting_module = None
+ # Optimize for inference
+ if self.compile:
+ self.warping_module = torch.compile(self.warping_module, mode='max-autotune')
+ self.spade_generator = torch.compile(self.spade_generator, mode='max-autotune')
+
+ self.timer = Timer()
+
+ def update_config(self, user_args):
+ for k, v in user_args.items():
+ if hasattr(self.inference_cfg, k):
+ setattr(self.inference_cfg, k, v)
+
+ def prepare_source(self, img: np.ndarray) -> torch.Tensor:
+ """ construct the input as standard
+ img: HxWx3, uint8, 256x256
+ """
+ h, w = img.shape[:2]
+ if h != self.inference_cfg.input_shape[0] or w != self.inference_cfg.input_shape[1]:
+ x = cv2.resize(img, (self.inference_cfg.input_shape[0], self.inference_cfg.input_shape[1]))
+ else:
+ x = img.copy()
+
+ if x.ndim == 3:
+ x = x[np.newaxis].astype(np.float32) / 255. # HxWx3 -> 1xHxWx3, normalized to 0~1
+ elif x.ndim == 4:
+ x = x.astype(np.float32) / 255. # BxHxWx3, normalized to 0~1
+ else:
+ raise ValueError(f'img ndim should be 3 or 4: {x.ndim}')
+ x = np.clip(x, 0, 1) # clip to 0~1
+ x = torch.from_numpy(x).permute(0, 3, 1, 2) # 1xHxWx3 -> 1x3xHxW
+ x = x.to(self.device)
+ return x
+
+ def prepare_driving_videos(self, imgs) -> torch.Tensor:
+ """ construct the input as standard
+ imgs: NxBxHxWx3, uint8
+ """
+ if isinstance(imgs, list):
+ _imgs = np.array(imgs)[..., np.newaxis] # TxHxWx3x1
+ elif isinstance(imgs, np.ndarray):
+ _imgs = imgs
+ else:
+ raise ValueError(f'imgs type error: {type(imgs)}')
+
+ y = _imgs.astype(np.float32) / 255.
+ y = np.clip(y, 0, 1) # clip to 0~1
+ y = torch.from_numpy(y).permute(0, 4, 3, 1, 2) # TxHxWx3x1 -> Tx1x3xHxW
+ y = y.to(self.device)
+
+ return y
+
+ def extract_feature_3d(self, x: torch.Tensor) -> torch.Tensor:
+ """ get the appearance feature of the image by F
+ x: Bx3xHxW, normalized to 0~1
+ """
+ with torch.no_grad():
+ with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.inference_cfg.flag_use_half_precision):
+ feature_3d = self.appearance_feature_extractor(x)
+
+ return feature_3d.float()
+
+ def get_kp_info(self, x: torch.Tensor, **kwargs) -> dict:
+ """ get the implicit keypoint information
+ x: Bx3xHxW, normalized to 0~1
+ flag_refine_info: whether to trandform the pose to degrees and the dimention of the reshape
+ return: A dict contains keys: 'pitch', 'yaw', 'roll', 't', 'exp', 'scale', 'kp'
+ """
+ with torch.no_grad():
+ with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.inference_cfg.flag_use_half_precision):
+ kp_info = self.motion_extractor(x)
+
+ if self.inference_cfg.flag_use_half_precision:
+ # float the dict
+ for k, v in kp_info.items():
+ if isinstance(v, torch.Tensor):
+ kp_info[k] = v.float()
+
+ flag_refine_info: bool = kwargs.get('flag_refine_info', True)
+ if flag_refine_info:
+ bs = kp_info['kp'].shape[0]
+ kp_info['pitch'] = headpose_pred_to_degree(kp_info['pitch'])[:, None] # Bx1
+ kp_info['yaw'] = headpose_pred_to_degree(kp_info['yaw'])[:, None] # Bx1
+ kp_info['roll'] = headpose_pred_to_degree(kp_info['roll'])[:, None] # Bx1
+ kp_info['kp'] = kp_info['kp'].reshape(bs, -1) # B,Nx3
+ kp_info['exp'] = kp_info['exp'].reshape(bs, -1) # B,Nx3
+
+ return kp_info
+
+ def get_pose_dct(self, kp_info: dict) -> dict:
+ pose_dct = dict(
+ pitch=headpose_pred_to_degree(kp_info['pitch']).item(),
+ yaw=headpose_pred_to_degree(kp_info['yaw']).item(),
+ roll=headpose_pred_to_degree(kp_info['roll']).item(),
+ )
+ return pose_dct
+
+ def get_fs_and_kp_info(self, source_prepared, driving_first_frame):
+
+ # get the canonical keypoints of source image by M
+ source_kp_info = self.get_kp_info(source_prepared, flag_refine_info=True)
+ source_rotation = get_rotation_matrix(source_kp_info['pitch'], source_kp_info['yaw'], source_kp_info['roll'])
+
+ # get the canonical keypoints of first driving frame by M
+ driving_first_frame_kp_info = self.get_kp_info(driving_first_frame, flag_refine_info=True)
+ driving_first_frame_rotation = get_rotation_matrix(
+ driving_first_frame_kp_info['pitch'],
+ driving_first_frame_kp_info['yaw'],
+ driving_first_frame_kp_info['roll']
+ )
+
+ # get feature volume by F
+ source_feature_3d = self.extract_feature_3d(source_prepared)
+
+ return source_kp_info, source_rotation, source_feature_3d, driving_first_frame_kp_info, driving_first_frame_rotation
+
+ def transform_keypoint(self, kp_info: dict):
+ """
+ transform the implicit keypoints with the pose, shift, and expression deformation
+ kp: BxNx3
+ """
+ kp = kp_info['kp'] # (bs, k, 3)
+ pitch, yaw, roll = kp_info['pitch'], kp_info['yaw'], kp_info['roll']
+
+ t, exp = kp_info['t'], kp_info['exp']
+ scale = kp_info['scale']
+
+ pitch = headpose_pred_to_degree(pitch)
+ yaw = headpose_pred_to_degree(yaw)
+ roll = headpose_pred_to_degree(roll)
+
+ bs = kp.shape[0]
+ if kp.ndim == 2:
+ num_kp = kp.shape[1] // 3 # Bx(num_kpx3)
+ else:
+ num_kp = kp.shape[1] # Bxnum_kpx3
+
+ rot_mat = get_rotation_matrix(pitch, yaw, roll) # (bs, 3, 3)
+
+ # Eqn.2: s * (R * x_c,s + exp) + t
+ kp_transformed = kp.view(bs, num_kp, 3) @ rot_mat + exp.view(bs, num_kp, 3)
+ kp_transformed *= scale[..., None] # (bs, k, 3) * (bs, 1, 1) = (bs, k, 3)
+ kp_transformed[:, :, 0:2] += t[:, None, 0:2] # remove z, only apply tx ty
+ # kp_transformed[:, :, :] += t[:, None, :]
+
+ return kp_transformed
+
+ def retarget_eye(self, kp_source: torch.Tensor, eye_close_ratio: torch.Tensor) -> torch.Tensor:
+ """
+ kp_source: BxNx3
+ eye_close_ratio: Bx3
+ Return: Bx(3*num_kp+2)
+ """
+ feat_eye = concat_feat(kp_source, eye_close_ratio)
+
+ with torch.no_grad():
+ delta = self.stitching_retargeting_module['eye'](feat_eye)
+
+ return delta
+
+ def retarget_lip(self, kp_source: torch.Tensor, lip_close_ratio: torch.Tensor) -> torch.Tensor:
+ """
+ kp_source: BxNx3
+ lip_close_ratio: Bx2
+ """
+ feat_lip = concat_feat(kp_source, lip_close_ratio)
+
+ with torch.no_grad():
+ delta = self.stitching_retargeting_module['lip'](feat_lip)
+
+ return delta
+
+ def stitch(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
+ """
+ kp_source: BxNx3
+ kp_driving: BxNx3
+ Return: Bx(3*num_kp+2)
+ """
+ feat_stiching = concat_feat(kp_source, kp_driving)
+
+ with torch.no_grad():
+ delta = self.stitching_retargeting_module['stitching'](feat_stiching)
+
+ return delta
+
+ def stitching(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
+ """ conduct the stitching
+ kp_source: Bxnum_kpx3
+ kp_driving: Bxnum_kpx3
+ """
+
+ if self.stitching_retargeting_module is not None:
+
+ bs, num_kp = kp_source.shape[:2]
+
+ kp_driving_new = kp_driving.clone()
+ delta = self.stitch(kp_source, kp_driving_new)
+
+ delta_exp = delta[..., :3*num_kp].reshape(bs, num_kp, 3) # 1x20x3
+ delta_tx_ty = delta[..., 3*num_kp:3*num_kp+2].reshape(bs, 1, 2) # 1x1x2
+
+ kp_driving_new += delta_exp
+ kp_driving_new[..., :2] += delta_tx_ty
+
+ return kp_driving_new
+
+ return kp_driving
+
+ def warp_decode(self, feature_3d: torch.Tensor, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
+ """ get the image after the warping of the implicit keypoints
+ feature_3d: Bx32x16x64x64, feature volume
+ kp_source: BxNx3
+ kp_driving: BxNx3
+ """
+ # The line 18 in Algorithm 1: D(W(f_s; x_s, x′_d,i))
+ with torch.no_grad():
+ with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.inference_cfg.flag_use_half_precision):
+ if self.compile:
+ # Mark the beginning of a new CUDA Graph step
+ torch.compiler.cudagraph_mark_step_begin()
+ # get decoder input
+ ret_dct = self.warping_module(feature_3d, kp_source=kp_source, kp_driving=kp_driving)
+ # decode
+ ret_dct['out'] = self.spade_generator(feature=ret_dct['out'])
+
+ # float the dict
+ if self.inference_cfg.flag_use_half_precision:
+ for k, v in ret_dct.items():
+ if isinstance(v, torch.Tensor):
+ ret_dct[k] = v.float()
+
+ return ret_dct
+
+ def parse_output(self, out: torch.Tensor) -> np.ndarray:
+ """ construct the output as standard
+ return: 1xHxWx3, uint8
+ """
+ out = np.transpose(out.data.cpu().numpy(), [0, 2, 3, 1]) # 1x3xHxW -> 1xHxWx3
+ out = np.clip(out, 0, 1) # clip to 0~1
+ out = np.clip(out * 255, 0, 255).astype(np.uint8) # 0~1 -> 0~255
+
+ return out
+
+ def calc_driving_ratio(self, driving_lmk_lst):
+ input_eye_ratio_lst = []
+ input_lip_ratio_lst = []
+ for lmk in driving_lmk_lst:
+ # for eyes retargeting
+ input_eye_ratio_lst.append(calc_eye_close_ratio(lmk[None]))
+ # for lip retargeting
+ input_lip_ratio_lst.append(calc_lip_close_ratio(lmk[None]))
+ return input_eye_ratio_lst, input_lip_ratio_lst
+
+ def calc_combined_eye_ratio(self, c_d_eyes_i, source_lmk):
+ c_s_eyes = calc_eye_close_ratio(source_lmk[None])
+ c_s_eyes_tensor = torch.from_numpy(c_s_eyes).float().to(self.device)
+ c_d_eyes_i_tensor = torch.Tensor([c_d_eyes_i[0][0]]).reshape(1, 1).to(self.device)
+ # [c_s,eyes, c_d,eyes,i]
+ combined_eye_ratio_tensor = torch.cat([c_s_eyes_tensor, c_d_eyes_i_tensor], dim=1)
+ return combined_eye_ratio_tensor
+
+ def calc_combined_lip_ratio(self, c_d_lip_i, source_lmk):
+ c_s_lip = calc_lip_close_ratio(source_lmk[None])
+ c_s_lip_tensor = torch.from_numpy(c_s_lip).float().to(self.device)
+ c_d_lip_i_tensor = torch.Tensor([c_d_lip_i[0]]).to(self.device).reshape(1, 1) # 1x1
+ # [c_s,lip, c_d,lip,i]
+ combined_lip_ratio_tensor = torch.cat([c_s_lip_tensor, c_d_lip_i_tensor], dim=1) # 1x2
+ return combined_lip_ratio_tensor
diff --git a/src/modules/__init__.py b/src/modules/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/src/modules/appearance_feature_extractor.py b/src/modules/appearance_feature_extractor.py
new file mode 100644
index 0000000000000000000000000000000000000000..8d89e4f18a2fbe58447f52ab4c5e3f2011a4ec80
--- /dev/null
+++ b/src/modules/appearance_feature_extractor.py
@@ -0,0 +1,48 @@
+# coding: utf-8
+
+"""
+Appearance extractor(F) defined in paper, which maps the source image s to a 3D appearance feature volume.
+"""
+
+import torch
+from torch import nn
+from .util import SameBlock2d, DownBlock2d, ResBlock3d
+
+
+class AppearanceFeatureExtractor(nn.Module):
+
+ def __init__(self, image_channel, block_expansion, num_down_blocks, max_features, reshape_channel, reshape_depth, num_resblocks):
+ super(AppearanceFeatureExtractor, self).__init__()
+ self.image_channel = image_channel
+ self.block_expansion = block_expansion
+ self.num_down_blocks = num_down_blocks
+ self.max_features = max_features
+ self.reshape_channel = reshape_channel
+ self.reshape_depth = reshape_depth
+
+ self.first = SameBlock2d(image_channel, block_expansion, kernel_size=(3, 3), padding=(1, 1))
+
+ down_blocks = []
+ for i in range(num_down_blocks):
+ in_features = min(max_features, block_expansion * (2 ** i))
+ out_features = min(max_features, block_expansion * (2 ** (i + 1)))
+ down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1)))
+ self.down_blocks = nn.ModuleList(down_blocks)
+
+ self.second = nn.Conv2d(in_channels=out_features, out_channels=max_features, kernel_size=1, stride=1)
+
+ self.resblocks_3d = torch.nn.Sequential()
+ for i in range(num_resblocks):
+ self.resblocks_3d.add_module('3dr' + str(i), ResBlock3d(reshape_channel, kernel_size=3, padding=1))
+
+ def forward(self, source_image):
+ out = self.first(source_image) # Bx3x256x256 -> Bx64x256x256
+
+ for i in range(len(self.down_blocks)):
+ out = self.down_blocks[i](out)
+ out = self.second(out)
+ bs, c, h, w = out.shape # ->Bx512x64x64
+
+ f_s = out.view(bs, self.reshape_channel, self.reshape_depth, h, w) # ->Bx32x16x64x64
+ f_s = self.resblocks_3d(f_s) # ->Bx32x16x64x64
+ return f_s
diff --git a/src/modules/convnextv2.py b/src/modules/convnextv2.py
new file mode 100644
index 0000000000000000000000000000000000000000..83ea12662b607854915df8c7abb160b588d330b1
--- /dev/null
+++ b/src/modules/convnextv2.py
@@ -0,0 +1,149 @@
+# coding: utf-8
+
+"""
+This moudle is adapted to the ConvNeXtV2 version for the extraction of implicit keypoints, poses, and expression deformation.
+"""
+
+import torch
+import torch.nn as nn
+# from timm.models.layers import trunc_normal_, DropPath
+from .util import LayerNorm, DropPath, trunc_normal_, GRN
+
+__all__ = ['convnextv2_tiny']
+
+
+class Block(nn.Module):
+ """ ConvNeXtV2 Block.
+
+ Args:
+ dim (int): Number of input channels.
+ drop_path (float): Stochastic depth rate. Default: 0.0
+ """
+
+ def __init__(self, dim, drop_path=0.):
+ super().__init__()
+ self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
+ self.norm = LayerNorm(dim, eps=1e-6)
+ self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
+ self.act = nn.GELU()
+ self.grn = GRN(4 * dim)
+ self.pwconv2 = nn.Linear(4 * dim, dim)
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
+
+ def forward(self, x):
+ input = x
+ x = self.dwconv(x)
+ x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
+ x = self.norm(x)
+ x = self.pwconv1(x)
+ x = self.act(x)
+ x = self.grn(x)
+ x = self.pwconv2(x)
+ x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
+
+ x = input + self.drop_path(x)
+ return x
+
+
+class ConvNeXtV2(nn.Module):
+ """ ConvNeXt V2
+
+ Args:
+ in_chans (int): Number of input image channels. Default: 3
+ num_classes (int): Number of classes for classification head. Default: 1000
+ depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
+ dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
+ drop_path_rate (float): Stochastic depth rate. Default: 0.
+ head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
+ """
+
+ def __init__(
+ self,
+ in_chans=3,
+ depths=[3, 3, 9, 3],
+ dims=[96, 192, 384, 768],
+ drop_path_rate=0.,
+ **kwargs
+ ):
+ super().__init__()
+ self.depths = depths
+ self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers
+ stem = nn.Sequential(
+ nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
+ LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
+ )
+ self.downsample_layers.append(stem)
+ for i in range(3):
+ downsample_layer = nn.Sequential(
+ LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
+ nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
+ )
+ self.downsample_layers.append(downsample_layer)
+
+ self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks
+ dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
+ cur = 0
+ for i in range(4):
+ stage = nn.Sequential(
+ *[Block(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depths[i])]
+ )
+ self.stages.append(stage)
+ cur += depths[i]
+
+ self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer
+
+ # NOTE: the output semantic items
+ num_bins = kwargs.get('num_bins', 66)
+ num_kp = kwargs.get('num_kp', 24) # the number of implicit keypoints
+ self.fc_kp = nn.Linear(dims[-1], 3 * num_kp) # implicit keypoints
+
+ # print('dims[-1]: ', dims[-1])
+ self.fc_scale = nn.Linear(dims[-1], 1) # scale
+ self.fc_pitch = nn.Linear(dims[-1], num_bins) # pitch bins
+ self.fc_yaw = nn.Linear(dims[-1], num_bins) # yaw bins
+ self.fc_roll = nn.Linear(dims[-1], num_bins) # roll bins
+ self.fc_t = nn.Linear(dims[-1], 3) # translation
+ self.fc_exp = nn.Linear(dims[-1], 3 * num_kp) # expression / delta
+
+ def _init_weights(self, m):
+ if isinstance(m, (nn.Conv2d, nn.Linear)):
+ trunc_normal_(m.weight, std=.02)
+ nn.init.constant_(m.bias, 0)
+
+ def forward_features(self, x):
+ for i in range(4):
+ x = self.downsample_layers[i](x)
+ x = self.stages[i](x)
+ return self.norm(x.mean([-2, -1])) # global average pooling, (N, C, H, W) -> (N, C)
+
+ def forward(self, x):
+ x = self.forward_features(x)
+
+ # implicit keypoints
+ kp = self.fc_kp(x)
+
+ # pose and expression deformation
+ pitch = self.fc_pitch(x)
+ yaw = self.fc_yaw(x)
+ roll = self.fc_roll(x)
+ t = self.fc_t(x)
+ exp = self.fc_exp(x)
+ scale = self.fc_scale(x)
+
+ ret_dct = {
+ 'pitch': pitch,
+ 'yaw': yaw,
+ 'roll': roll,
+ 't': t,
+ 'exp': exp,
+ 'scale': scale,
+
+ 'kp': kp, # canonical keypoint
+ }
+
+ return ret_dct
+
+
+def convnextv2_tiny(**kwargs):
+ model = ConvNeXtV2(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
+ return model
diff --git a/src/modules/dense_motion.py b/src/modules/dense_motion.py
new file mode 100644
index 0000000000000000000000000000000000000000..0eec0c46345f8854b125a51eaee730bd4ee77f7d
--- /dev/null
+++ b/src/modules/dense_motion.py
@@ -0,0 +1,104 @@
+# coding: utf-8
+
+"""
+The module that predicting a dense motion from sparse motion representation given by kp_source and kp_driving
+"""
+
+from torch import nn
+import torch.nn.functional as F
+import torch
+from .util import Hourglass, make_coordinate_grid, kp2gaussian
+
+
+class DenseMotionNetwork(nn.Module):
+ def __init__(self, block_expansion, num_blocks, max_features, num_kp, feature_channel, reshape_depth, compress, estimate_occlusion_map=True):
+ super(DenseMotionNetwork, self).__init__()
+ self.hourglass = Hourglass(block_expansion=block_expansion, in_features=(num_kp+1)*(compress+1), max_features=max_features, num_blocks=num_blocks) # ~60+G
+
+ self.mask = nn.Conv3d(self.hourglass.out_filters, num_kp + 1, kernel_size=7, padding=3) # 65G! NOTE: computation cost is large
+ self.compress = nn.Conv3d(feature_channel, compress, kernel_size=1) # 0.8G
+ self.norm = nn.BatchNorm3d(compress, affine=True)
+ self.num_kp = num_kp
+ self.flag_estimate_occlusion_map = estimate_occlusion_map
+
+ if self.flag_estimate_occlusion_map:
+ self.occlusion = nn.Conv2d(self.hourglass.out_filters*reshape_depth, 1, kernel_size=7, padding=3)
+ else:
+ self.occlusion = None
+
+ def create_sparse_motions(self, feature, kp_driving, kp_source):
+ bs, _, d, h, w = feature.shape # (bs, 4, 16, 64, 64)
+ identity_grid = make_coordinate_grid((d, h, w), ref=kp_source) # (16, 64, 64, 3)
+ identity_grid = identity_grid.view(1, 1, d, h, w, 3) # (1, 1, d=16, h=64, w=64, 3)
+ coordinate_grid = identity_grid - kp_driving.view(bs, self.num_kp, 1, 1, 1, 3)
+
+ k = coordinate_grid.shape[1]
+
+ # NOTE: there lacks an one-order flow
+ driving_to_source = coordinate_grid + kp_source.view(bs, self.num_kp, 1, 1, 1, 3) # (bs, num_kp, d, h, w, 3)
+
+ # adding background feature
+ identity_grid = identity_grid.repeat(bs, 1, 1, 1, 1, 1)
+ sparse_motions = torch.cat([identity_grid, driving_to_source], dim=1) # (bs, 1+num_kp, d, h, w, 3)
+ return sparse_motions
+
+ def create_deformed_feature(self, feature, sparse_motions):
+ bs, _, d, h, w = feature.shape
+ feature_repeat = feature.unsqueeze(1).unsqueeze(1).repeat(1, self.num_kp+1, 1, 1, 1, 1, 1) # (bs, num_kp+1, 1, c, d, h, w)
+ feature_repeat = feature_repeat.view(bs * (self.num_kp+1), -1, d, h, w) # (bs*(num_kp+1), c, d, h, w)
+ sparse_motions = sparse_motions.view((bs * (self.num_kp+1), d, h, w, -1)) # (bs*(num_kp+1), d, h, w, 3)
+ sparse_deformed = F.grid_sample(feature_repeat, sparse_motions, align_corners=False)
+ sparse_deformed = sparse_deformed.view((bs, self.num_kp+1, -1, d, h, w)) # (bs, num_kp+1, c, d, h, w)
+
+ return sparse_deformed
+
+ def create_heatmap_representations(self, feature, kp_driving, kp_source):
+ spatial_size = feature.shape[3:] # (d=16, h=64, w=64)
+ gaussian_driving = kp2gaussian(kp_driving, spatial_size=spatial_size, kp_variance=0.01) # (bs, num_kp, d, h, w)
+ gaussian_source = kp2gaussian(kp_source, spatial_size=spatial_size, kp_variance=0.01) # (bs, num_kp, d, h, w)
+ heatmap = gaussian_driving - gaussian_source # (bs, num_kp, d, h, w)
+
+ # adding background feature
+ zeros = torch.zeros(heatmap.shape[0], 1, spatial_size[0], spatial_size[1], spatial_size[2]).type(heatmap.type()).to(heatmap.device)
+ heatmap = torch.cat([zeros, heatmap], dim=1)
+ heatmap = heatmap.unsqueeze(2) # (bs, 1+num_kp, 1, d, h, w)
+ return heatmap
+
+ def forward(self, feature, kp_driving, kp_source):
+ bs, _, d, h, w = feature.shape # (bs, 32, 16, 64, 64)
+
+ feature = self.compress(feature) # (bs, 4, 16, 64, 64)
+ feature = self.norm(feature) # (bs, 4, 16, 64, 64)
+ feature = F.relu(feature) # (bs, 4, 16, 64, 64)
+
+ out_dict = dict()
+
+ # 1. deform 3d feature
+ sparse_motion = self.create_sparse_motions(feature, kp_driving, kp_source) # (bs, 1+num_kp, d, h, w, 3)
+ deformed_feature = self.create_deformed_feature(feature, sparse_motion) # (bs, 1+num_kp, c=4, d=16, h=64, w=64)
+
+ # 2. (bs, 1+num_kp, d, h, w)
+ heatmap = self.create_heatmap_representations(deformed_feature, kp_driving, kp_source) # (bs, 1+num_kp, 1, d, h, w)
+
+ input = torch.cat([heatmap, deformed_feature], dim=2) # (bs, 1+num_kp, c=5, d=16, h=64, w=64)
+ input = input.view(bs, -1, d, h, w) # (bs, (1+num_kp)*c=105, d=16, h=64, w=64)
+
+ prediction = self.hourglass(input)
+
+ mask = self.mask(prediction)
+ mask = F.softmax(mask, dim=1) # (bs, 1+num_kp, d=16, h=64, w=64)
+ out_dict['mask'] = mask
+ mask = mask.unsqueeze(2) # (bs, num_kp+1, 1, d, h, w)
+ sparse_motion = sparse_motion.permute(0, 1, 5, 2, 3, 4) # (bs, num_kp+1, 3, d, h, w)
+ deformation = (sparse_motion * mask).sum(dim=1) # (bs, 3, d, h, w) mask take effect in this place
+ deformation = deformation.permute(0, 2, 3, 4, 1) # (bs, d, h, w, 3)
+
+ out_dict['deformation'] = deformation
+
+ if self.flag_estimate_occlusion_map:
+ bs, _, d, h, w = prediction.shape
+ prediction_reshape = prediction.view(bs, -1, h, w)
+ occlusion_map = torch.sigmoid(self.occlusion(prediction_reshape)) # Bx1x64x64
+ out_dict['occlusion_map'] = occlusion_map
+
+ return out_dict
diff --git a/src/modules/motion_extractor.py b/src/modules/motion_extractor.py
new file mode 100644
index 0000000000000000000000000000000000000000..b2982e53c52d9ec1e0bec0453cc05edb51a15d23
--- /dev/null
+++ b/src/modules/motion_extractor.py
@@ -0,0 +1,35 @@
+# coding: utf-8
+
+"""
+Motion extractor(M), which directly predicts the canonical keypoints, head pose and expression deformation of the input image
+"""
+
+from torch import nn
+import torch
+
+from .convnextv2 import convnextv2_tiny
+from .util import filter_state_dict
+
+model_dict = {
+ 'convnextv2_tiny': convnextv2_tiny,
+}
+
+
+class MotionExtractor(nn.Module):
+ def __init__(self, **kwargs):
+ super(MotionExtractor, self).__init__()
+
+ # default is convnextv2_base
+ backbone = kwargs.get('backbone', 'convnextv2_tiny')
+ self.detector = model_dict.get(backbone)(**kwargs)
+
+ def load_pretrained(self, init_path: str):
+ if init_path not in (None, ''):
+ state_dict = torch.load(init_path, map_location=lambda storage, loc: storage)['model']
+ state_dict = filter_state_dict(state_dict, remove_name='head')
+ ret = self.detector.load_state_dict(state_dict, strict=False)
+ print(f'Load pretrained model from {init_path}, ret: {ret}')
+
+ def forward(self, x):
+ out = self.detector(x)
+ return out
diff --git a/src/modules/spade_generator.py b/src/modules/spade_generator.py
new file mode 100644
index 0000000000000000000000000000000000000000..147a9aed0c7707fe6ae3d59ce1a30154ef75afcc
--- /dev/null
+++ b/src/modules/spade_generator.py
@@ -0,0 +1,59 @@
+# coding: utf-8
+
+"""
+Spade decoder(G) defined in the paper, which input the warped feature to generate the animated image.
+"""
+
+import torch
+from torch import nn
+import torch.nn.functional as F
+from .util import SPADEResnetBlock
+
+
+class SPADEDecoder(nn.Module):
+ def __init__(self, upscale=1, max_features=256, block_expansion=64, out_channels=64, num_down_blocks=2):
+ for i in range(num_down_blocks):
+ input_channels = min(max_features, block_expansion * (2 ** (i + 1)))
+ self.upscale = upscale
+ super().__init__()
+ norm_G = 'spadespectralinstance'
+ label_num_channels = input_channels # 256
+
+ self.fc = nn.Conv2d(input_channels, 2 * input_channels, 3, padding=1)
+ self.G_middle_0 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
+ self.G_middle_1 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
+ self.G_middle_2 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
+ self.G_middle_3 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
+ self.G_middle_4 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
+ self.G_middle_5 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
+ self.up_0 = SPADEResnetBlock(2 * input_channels, input_channels, norm_G, label_num_channels)
+ self.up_1 = SPADEResnetBlock(input_channels, out_channels, norm_G, label_num_channels)
+ self.up = nn.Upsample(scale_factor=2)
+
+ if self.upscale is None or self.upscale <= 1:
+ self.conv_img = nn.Conv2d(out_channels, 3, 3, padding=1)
+ else:
+ self.conv_img = nn.Sequential(
+ nn.Conv2d(out_channels, 3 * (2 * 2), kernel_size=3, padding=1),
+ nn.PixelShuffle(upscale_factor=2)
+ )
+
+ def forward(self, feature):
+ seg = feature # Bx256x64x64
+ x = self.fc(feature) # Bx512x64x64
+ x = self.G_middle_0(x, seg)
+ x = self.G_middle_1(x, seg)
+ x = self.G_middle_2(x, seg)
+ x = self.G_middle_3(x, seg)
+ x = self.G_middle_4(x, seg)
+ x = self.G_middle_5(x, seg)
+
+ x = self.up(x) # Bx512x64x64 -> Bx512x128x128
+ x = self.up_0(x, seg) # Bx512x128x128 -> Bx256x128x128
+ x = self.up(x) # Bx256x128x128 -> Bx256x256x256
+ x = self.up_1(x, seg) # Bx256x256x256 -> Bx64x256x256
+
+ x = self.conv_img(F.leaky_relu(x, 2e-1)) # Bx64x256x256 -> Bx3xHxW
+ x = torch.sigmoid(x) # Bx3xHxW
+
+ return x
\ No newline at end of file
diff --git a/src/modules/stitching_retargeting_network.py b/src/modules/stitching_retargeting_network.py
new file mode 100644
index 0000000000000000000000000000000000000000..5f50b7cf5a21cd71c70a7bbaaa4b6b68b4762ea3
--- /dev/null
+++ b/src/modules/stitching_retargeting_network.py
@@ -0,0 +1,38 @@
+# coding: utf-8
+
+"""
+Stitching module(S) and two retargeting modules(R) defined in the paper.
+
+- The stitching module pastes the animated portrait back into the original image space without pixel misalignment, such as in
+the stitching region.
+
+- The eyes retargeting module is designed to address the issue of incomplete eye closure during cross-id reenactment, especially
+when a person with small eyes drives a person with larger eyes.
+
+- The lip retargeting module is designed similarly to the eye retargeting module, and can also normalize the input by ensuring that
+the lips are in a closed state, which facilitates better animation driving.
+"""
+from torch import nn
+
+
+class StitchingRetargetingNetwork(nn.Module):
+ def __init__(self, input_size, hidden_sizes, output_size):
+ super(StitchingRetargetingNetwork, self).__init__()
+ layers = []
+ for i in range(len(hidden_sizes)):
+ if i == 0:
+ layers.append(nn.Linear(input_size, hidden_sizes[i]))
+ else:
+ layers.append(nn.Linear(hidden_sizes[i - 1], hidden_sizes[i]))
+ layers.append(nn.ReLU(inplace=True))
+ layers.append(nn.Linear(hidden_sizes[-1], output_size))
+ self.mlp = nn.Sequential(*layers)
+
+ def initialize_weights_to_zero(self):
+ for m in self.modules():
+ if isinstance(m, nn.Linear):
+ nn.init.zeros_(m.weight)
+ nn.init.zeros_(m.bias)
+
+ def forward(self, x):
+ return self.mlp(x)
diff --git a/src/modules/util.py b/src/modules/util.py
new file mode 100644
index 0000000000000000000000000000000000000000..f83980b24372bee38779ceeb3349fca91735e56e
--- /dev/null
+++ b/src/modules/util.py
@@ -0,0 +1,441 @@
+# coding: utf-8
+
+"""
+This file defines various neural network modules and utility functions, including convolutional and residual blocks,
+normalizations, and functions for spatial transformation and tensor manipulation.
+"""
+
+from torch import nn
+import torch.nn.functional as F
+import torch
+import torch.nn.utils.spectral_norm as spectral_norm
+import math
+import warnings
+
+
+def kp2gaussian(kp, spatial_size, kp_variance):
+ """
+ Transform a keypoint into gaussian like representation
+ """
+ mean = kp
+
+ coordinate_grid = make_coordinate_grid(spatial_size, mean)
+ number_of_leading_dimensions = len(mean.shape) - 1
+ shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape
+ coordinate_grid = coordinate_grid.view(*shape)
+ repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 1)
+ coordinate_grid = coordinate_grid.repeat(*repeats)
+
+ # Preprocess kp shape
+ shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 3)
+ mean = mean.view(*shape)
+
+ mean_sub = (coordinate_grid - mean)
+
+ out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance)
+
+ return out
+
+
+def make_coordinate_grid(spatial_size, ref, **kwargs):
+ d, h, w = spatial_size
+ x = torch.arange(w).type(ref.dtype).to(ref.device)
+ y = torch.arange(h).type(ref.dtype).to(ref.device)
+ z = torch.arange(d).type(ref.dtype).to(ref.device)
+
+ # NOTE: must be right-down-in
+ x = (2 * (x / (w - 1)) - 1) # the x axis faces to the right
+ y = (2 * (y / (h - 1)) - 1) # the y axis faces to the bottom
+ z = (2 * (z / (d - 1)) - 1) # the z axis faces to the inner
+
+ yy = y.view(1, -1, 1).repeat(d, 1, w)
+ xx = x.view(1, 1, -1).repeat(d, h, 1)
+ zz = z.view(-1, 1, 1).repeat(1, h, w)
+
+ meshed = torch.cat([xx.unsqueeze_(3), yy.unsqueeze_(3), zz.unsqueeze_(3)], 3)
+
+ return meshed
+
+
+class ConvT2d(nn.Module):
+ """
+ Upsampling block for use in decoder.
+ """
+
+ def __init__(self, in_features, out_features, kernel_size=3, stride=2, padding=1, output_padding=1):
+ super(ConvT2d, self).__init__()
+
+ self.convT = nn.ConvTranspose2d(in_features, out_features, kernel_size=kernel_size, stride=stride,
+ padding=padding, output_padding=output_padding)
+ self.norm = nn.InstanceNorm2d(out_features)
+
+ def forward(self, x):
+ out = self.convT(x)
+ out = self.norm(out)
+ out = F.leaky_relu(out)
+ return out
+
+
+class ResBlock3d(nn.Module):
+ """
+ Res block, preserve spatial resolution.
+ """
+
+ def __init__(self, in_features, kernel_size, padding):
+ super(ResBlock3d, self).__init__()
+ self.conv1 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding)
+ self.conv2 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding)
+ self.norm1 = nn.BatchNorm3d(in_features, affine=True)
+ self.norm2 = nn.BatchNorm3d(in_features, affine=True)
+
+ def forward(self, x):
+ out = self.norm1(x)
+ out = F.relu(out)
+ out = self.conv1(out)
+ out = self.norm2(out)
+ out = F.relu(out)
+ out = self.conv2(out)
+ out += x
+ return out
+
+
+class UpBlock3d(nn.Module):
+ """
+ Upsampling block for use in decoder.
+ """
+
+ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
+ super(UpBlock3d, self).__init__()
+
+ self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
+ padding=padding, groups=groups)
+ self.norm = nn.BatchNorm3d(out_features, affine=True)
+
+ def forward(self, x):
+ out = F.interpolate(x, scale_factor=(1, 2, 2))
+ out = self.conv(out)
+ out = self.norm(out)
+ out = F.relu(out)
+ return out
+
+
+class DownBlock2d(nn.Module):
+ """
+ Downsampling block for use in encoder.
+ """
+
+ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
+ super(DownBlock2d, self).__init__()
+ self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups)
+ self.norm = nn.BatchNorm2d(out_features, affine=True)
+ self.pool = nn.AvgPool2d(kernel_size=(2, 2))
+
+ def forward(self, x):
+ out = self.conv(x)
+ out = self.norm(out)
+ out = F.relu(out)
+ out = self.pool(out)
+ return out
+
+
+class DownBlock3d(nn.Module):
+ """
+ Downsampling block for use in encoder.
+ """
+
+ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
+ super(DownBlock3d, self).__init__()
+ '''
+ self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
+ padding=padding, groups=groups, stride=(1, 2, 2))
+ '''
+ self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
+ padding=padding, groups=groups)
+ self.norm = nn.BatchNorm3d(out_features, affine=True)
+ self.pool = nn.AvgPool3d(kernel_size=(1, 2, 2))
+
+ def forward(self, x):
+ out = self.conv(x)
+ out = self.norm(out)
+ out = F.relu(out)
+ out = self.pool(out)
+ return out
+
+
+class SameBlock2d(nn.Module):
+ """
+ Simple block, preserve spatial resolution.
+ """
+
+ def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1, lrelu=False):
+ super(SameBlock2d, self).__init__()
+ self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups)
+ self.norm = nn.BatchNorm2d(out_features, affine=True)
+ if lrelu:
+ self.ac = nn.LeakyReLU()
+ else:
+ self.ac = nn.ReLU()
+
+ def forward(self, x):
+ out = self.conv(x)
+ out = self.norm(out)
+ out = self.ac(out)
+ return out
+
+
+class Encoder(nn.Module):
+ """
+ Hourglass Encoder
+ """
+
+ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
+ super(Encoder, self).__init__()
+
+ down_blocks = []
+ for i in range(num_blocks):
+ down_blocks.append(DownBlock3d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)), min(max_features, block_expansion * (2 ** (i + 1))), kernel_size=3, padding=1))
+ self.down_blocks = nn.ModuleList(down_blocks)
+
+ def forward(self, x):
+ outs = [x]
+ for down_block in self.down_blocks:
+ outs.append(down_block(outs[-1]))
+ return outs
+
+
+class Decoder(nn.Module):
+ """
+ Hourglass Decoder
+ """
+
+ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
+ super(Decoder, self).__init__()
+
+ up_blocks = []
+
+ for i in range(num_blocks)[::-1]:
+ in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1)))
+ out_filters = min(max_features, block_expansion * (2 ** i))
+ up_blocks.append(UpBlock3d(in_filters, out_filters, kernel_size=3, padding=1))
+
+ self.up_blocks = nn.ModuleList(up_blocks)
+ self.out_filters = block_expansion + in_features
+
+ self.conv = nn.Conv3d(in_channels=self.out_filters, out_channels=self.out_filters, kernel_size=3, padding=1)
+ self.norm = nn.BatchNorm3d(self.out_filters, affine=True)
+
+ def forward(self, x):
+ out = x.pop()
+ for up_block in self.up_blocks:
+ out = up_block(out)
+ skip = x.pop()
+ out = torch.cat([out, skip], dim=1)
+ out = self.conv(out)
+ out = self.norm(out)
+ out = F.relu(out)
+ return out
+
+
+class Hourglass(nn.Module):
+ """
+ Hourglass architecture.
+ """
+
+ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
+ super(Hourglass, self).__init__()
+ self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features)
+ self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features)
+ self.out_filters = self.decoder.out_filters
+
+ def forward(self, x):
+ return self.decoder(self.encoder(x))
+
+
+class SPADE(nn.Module):
+ def __init__(self, norm_nc, label_nc):
+ super().__init__()
+
+ self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
+ nhidden = 128
+
+ self.mlp_shared = nn.Sequential(
+ nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1),
+ nn.ReLU())
+ self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
+ self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
+
+ def forward(self, x, segmap):
+ normalized = self.param_free_norm(x)
+ segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
+ actv = self.mlp_shared(segmap)
+ gamma = self.mlp_gamma(actv)
+ beta = self.mlp_beta(actv)
+ out = normalized * (1 + gamma) + beta
+ return out
+
+
+class SPADEResnetBlock(nn.Module):
+ def __init__(self, fin, fout, norm_G, label_nc, use_se=False, dilation=1):
+ super().__init__()
+ # Attributes
+ self.learned_shortcut = (fin != fout)
+ fmiddle = min(fin, fout)
+ self.use_se = use_se
+ # create conv layers
+ self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=dilation, dilation=dilation)
+ self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=dilation, dilation=dilation)
+ if self.learned_shortcut:
+ self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False)
+ # apply spectral norm if specified
+ if 'spectral' in norm_G:
+ self.conv_0 = spectral_norm(self.conv_0)
+ self.conv_1 = spectral_norm(self.conv_1)
+ if self.learned_shortcut:
+ self.conv_s = spectral_norm(self.conv_s)
+ # define normalization layers
+ self.norm_0 = SPADE(fin, label_nc)
+ self.norm_1 = SPADE(fmiddle, label_nc)
+ if self.learned_shortcut:
+ self.norm_s = SPADE(fin, label_nc)
+
+ def forward(self, x, seg1):
+ x_s = self.shortcut(x, seg1)
+ dx = self.conv_0(self.actvn(self.norm_0(x, seg1)))
+ dx = self.conv_1(self.actvn(self.norm_1(dx, seg1)))
+ out = x_s + dx
+ return out
+
+ def shortcut(self, x, seg1):
+ if self.learned_shortcut:
+ x_s = self.conv_s(self.norm_s(x, seg1))
+ else:
+ x_s = x
+ return x_s
+
+ def actvn(self, x):
+ return F.leaky_relu(x, 2e-1)
+
+
+def filter_state_dict(state_dict, remove_name='fc'):
+ new_state_dict = {}
+ for key in state_dict:
+ if remove_name in key:
+ continue
+ new_state_dict[key] = state_dict[key]
+ return new_state_dict
+
+
+class GRN(nn.Module):
+ """ GRN (Global Response Normalization) layer
+ """
+
+ def __init__(self, dim):
+ super().__init__()
+ self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
+ self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
+
+ def forward(self, x):
+ Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
+ Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
+ return self.gamma * (x * Nx) + self.beta + x
+
+
+class LayerNorm(nn.Module):
+ r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
+ The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
+ shape (batch_size, height, width, channels) while channels_first corresponds to inputs
+ with shape (batch_size, channels, height, width).
+ """
+
+ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
+ super().__init__()
+ self.weight = nn.Parameter(torch.ones(normalized_shape))
+ self.bias = nn.Parameter(torch.zeros(normalized_shape))
+ self.eps = eps
+ self.data_format = data_format
+ if self.data_format not in ["channels_last", "channels_first"]:
+ raise NotImplementedError
+ self.normalized_shape = (normalized_shape, )
+
+ def forward(self, x):
+ if self.data_format == "channels_last":
+ return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
+ elif self.data_format == "channels_first":
+ u = x.mean(1, keepdim=True)
+ s = (x - u).pow(2).mean(1, keepdim=True)
+ x = (x - u) / torch.sqrt(s + self.eps)
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
+ return x
+
+
+def _no_grad_trunc_normal_(tensor, mean, std, a, b):
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
+ def norm_cdf(x):
+ # Computes standard normal cumulative distribution function
+ return (1. + math.erf(x / math.sqrt(2.))) / 2.
+
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
+ warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
+ "The distribution of values may be incorrect.",
+ stacklevel=2)
+
+ with torch.no_grad():
+ # Values are generated by using a truncated uniform distribution and
+ # then using the inverse CDF for the normal distribution.
+ # Get upper and lower cdf values
+ l = norm_cdf((a - mean) / std)
+ u = norm_cdf((b - mean) / std)
+
+ # Uniformly fill tensor with values from [l, u], then translate to
+ # [2l-1, 2u-1].
+ tensor.uniform_(2 * l - 1, 2 * u - 1)
+
+ # Use inverse cdf transform for normal distribution to get truncated
+ # standard normal
+ tensor.erfinv_()
+
+ # Transform to proper mean, std
+ tensor.mul_(std * math.sqrt(2.))
+ tensor.add_(mean)
+
+ # Clamp to ensure it's in the proper range
+ tensor.clamp_(min=a, max=b)
+ return tensor
+
+
+def drop_path(x, drop_prob=0., training=False, scale_by_keep=True):
+ """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
+
+ This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
+ the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
+ See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
+ changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
+ 'survival rate' as the argument.
+
+ """
+ if drop_prob == 0. or not training:
+ return x
+ keep_prob = 1 - drop_prob
+ shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
+ random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
+ if keep_prob > 0.0 and scale_by_keep:
+ random_tensor.div_(keep_prob)
+ return x * random_tensor
+
+
+class DropPath(nn.Module):
+ """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
+ """
+
+ def __init__(self, drop_prob=None, scale_by_keep=True):
+ super(DropPath, self).__init__()
+ self.drop_prob = drop_prob
+ self.scale_by_keep = scale_by_keep
+
+ def forward(self, x):
+ return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
+
+
+def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
+ return _no_grad_trunc_normal_(tensor, mean, std, a, b)
diff --git a/src/modules/warping_network.py b/src/modules/warping_network.py
new file mode 100644
index 0000000000000000000000000000000000000000..9191a197055a954272ee8ed86c5e34f3f33f9ad5
--- /dev/null
+++ b/src/modules/warping_network.py
@@ -0,0 +1,77 @@
+# coding: utf-8
+
+"""
+Warping field estimator(W) defined in the paper, which generates a warping field using the implicit
+keypoint representations x_s and x_d, and employs this flow field to warp the source feature volume f_s.
+"""
+
+from torch import nn
+import torch.nn.functional as F
+from .util import SameBlock2d
+from .dense_motion import DenseMotionNetwork
+
+
+class WarpingNetwork(nn.Module):
+ def __init__(
+ self,
+ num_kp,
+ block_expansion,
+ max_features,
+ num_down_blocks,
+ reshape_channel,
+ estimate_occlusion_map=False,
+ dense_motion_params=None,
+ **kwargs
+ ):
+ super(WarpingNetwork, self).__init__()
+
+ self.upscale = kwargs.get('upscale', 1)
+ self.flag_use_occlusion_map = kwargs.get('flag_use_occlusion_map', True)
+
+ if dense_motion_params is not None:
+ self.dense_motion_network = DenseMotionNetwork(
+ num_kp=num_kp,
+ feature_channel=reshape_channel,
+ estimate_occlusion_map=estimate_occlusion_map,
+ **dense_motion_params
+ )
+ else:
+ self.dense_motion_network = None
+
+ self.third = SameBlock2d(max_features, block_expansion * (2 ** num_down_blocks), kernel_size=(3, 3), padding=(1, 1), lrelu=True)
+ self.fourth = nn.Conv2d(in_channels=block_expansion * (2 ** num_down_blocks), out_channels=block_expansion * (2 ** num_down_blocks), kernel_size=1, stride=1)
+
+ self.estimate_occlusion_map = estimate_occlusion_map
+
+ def deform_input(self, inp, deformation):
+ return F.grid_sample(inp, deformation, align_corners=False)
+
+ def forward(self, feature_3d, kp_driving, kp_source):
+ if self.dense_motion_network is not None:
+ # Feature warper, Transforming feature representation according to deformation and occlusion
+ dense_motion = self.dense_motion_network(
+ feature=feature_3d, kp_driving=kp_driving, kp_source=kp_source
+ )
+ if 'occlusion_map' in dense_motion:
+ occlusion_map = dense_motion['occlusion_map'] # Bx1x64x64
+ else:
+ occlusion_map = None
+
+ deformation = dense_motion['deformation'] # Bx16x64x64x3
+ out = self.deform_input(feature_3d, deformation) # Bx32x16x64x64
+
+ bs, c, d, h, w = out.shape # Bx32x16x64x64
+ out = out.view(bs, c * d, h, w) # -> Bx512x64x64
+ out = self.third(out) # -> Bx256x64x64
+ out = self.fourth(out) # -> Bx256x64x64
+
+ if self.flag_use_occlusion_map and (occlusion_map is not None):
+ out = out * occlusion_map
+
+ ret_dct = {
+ 'occlusion_map': occlusion_map,
+ 'deformation': deformation,
+ 'out': out,
+ }
+
+ return ret_dct
diff --git a/src/utils/__init__.py b/src/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/src/utils/camera.py b/src/utils/camera.py
new file mode 100644
index 0000000000000000000000000000000000000000..a3dd942697e1f00a96dc3efc75b883d98b52e525
--- /dev/null
+++ b/src/utils/camera.py
@@ -0,0 +1,73 @@
+# coding: utf-8
+
+"""
+functions for processing and transforming 3D facial keypoints
+"""
+
+import numpy as np
+import torch
+import torch.nn.functional as F
+
+PI = np.pi
+
+
+def headpose_pred_to_degree(pred):
+ """
+ pred: (bs, 66) or (bs, 1) or others
+ """
+ if pred.ndim > 1 and pred.shape[1] == 66:
+ # NOTE: note that the average is modified to 97.5
+ device = pred.device
+ idx_tensor = [idx for idx in range(0, 66)]
+ idx_tensor = torch.FloatTensor(idx_tensor).to(device)
+ pred = F.softmax(pred, dim=1)
+ degree = torch.sum(pred*idx_tensor, axis=1) * 3 - 97.5
+
+ return degree
+
+ return pred
+
+
+def get_rotation_matrix(pitch_, yaw_, roll_):
+ """ the input is in degree
+ """
+ # transform to radian
+ pitch = pitch_ / 180 * PI
+ yaw = yaw_ / 180 * PI
+ roll = roll_ / 180 * PI
+
+ device = pitch.device
+
+ if pitch.ndim == 1:
+ pitch = pitch.unsqueeze(1)
+ if yaw.ndim == 1:
+ yaw = yaw.unsqueeze(1)
+ if roll.ndim == 1:
+ roll = roll.unsqueeze(1)
+
+ # calculate the euler matrix
+ bs = pitch.shape[0]
+ ones = torch.ones([bs, 1]).to(device)
+ zeros = torch.zeros([bs, 1]).to(device)
+ x, y, z = pitch, yaw, roll
+
+ rot_x = torch.cat([
+ ones, zeros, zeros,
+ zeros, torch.cos(x), -torch.sin(x),
+ zeros, torch.sin(x), torch.cos(x)
+ ], dim=1).reshape([bs, 3, 3])
+
+ rot_y = torch.cat([
+ torch.cos(y), zeros, torch.sin(y),
+ zeros, ones, zeros,
+ -torch.sin(y), zeros, torch.cos(y)
+ ], dim=1).reshape([bs, 3, 3])
+
+ rot_z = torch.cat([
+ torch.cos(z), -torch.sin(z), zeros,
+ torch.sin(z), torch.cos(z), zeros,
+ zeros, zeros, ones
+ ], dim=1).reshape([bs, 3, 3])
+
+ rot = rot_z @ rot_y @ rot_x
+ return rot.permute(0, 2, 1) # transpose
diff --git a/src/utils/crop.py b/src/utils/crop.py
new file mode 100644
index 0000000000000000000000000000000000000000..065b9f0f9f25be8444b7c9bfca45652f80f5685b
--- /dev/null
+++ b/src/utils/crop.py
@@ -0,0 +1,398 @@
+# coding: utf-8
+
+"""
+cropping function and the related preprocess functions for cropping
+"""
+
+import numpy as np
+import os.path as osp
+from math import sin, cos, acos, degrees
+import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False) # NOTE: enforce single thread
+from .rprint import rprint as print
+
+DTYPE = np.float32
+CV2_INTERP = cv2.INTER_LINEAR
+
+def make_abs_path(fn):
+ return osp.join(osp.dirname(osp.realpath(__file__)), fn)
+
+def _transform_img(img, M, dsize, flags=CV2_INTERP, borderMode=None):
+ """ conduct similarity or affine transformation to the image, do not do border operation!
+ img:
+ M: 2x3 matrix or 3x3 matrix
+ dsize: target shape (width, height)
+ """
+ if isinstance(dsize, tuple) or isinstance(dsize, list):
+ _dsize = tuple(dsize)
+ else:
+ _dsize = (dsize, dsize)
+
+ if borderMode is not None:
+ return cv2.warpAffine(img, M[:2, :], dsize=_dsize, flags=flags, borderMode=borderMode, borderValue=(0, 0, 0))
+ else:
+ return cv2.warpAffine(img, M[:2, :], dsize=_dsize, flags=flags)
+
+
+def _transform_pts(pts, M):
+ """ conduct similarity or affine transformation to the pts
+ pts: Nx2 ndarray
+ M: 2x3 matrix or 3x3 matrix
+ return: Nx2
+ """
+ return pts @ M[:2, :2].T + M[:2, 2]
+
+
+def parse_pt2_from_pt101(pt101, use_lip=True):
+ """
+ parsing the 2 points according to the 101 points, which cancels the roll
+ """
+ # the former version use the eye center, but it is not robust, now use interpolation
+ pt_left_eye = np.mean(pt101[[39, 42, 45, 48]], axis=0) # left eye center
+ pt_right_eye = np.mean(pt101[[51, 54, 57, 60]], axis=0) # right eye center
+
+ if use_lip:
+ # use lip
+ pt_center_eye = (pt_left_eye + pt_right_eye) / 2
+ pt_center_lip = (pt101[75] + pt101[81]) / 2
+ pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0)
+ else:
+ pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0)
+ return pt2
+
+
+def parse_pt2_from_pt106(pt106, use_lip=True):
+ """
+ parsing the 2 points according to the 106 points, which cancels the roll
+ """
+ pt_left_eye = np.mean(pt106[[33, 35, 40, 39]], axis=0) # left eye center
+ pt_right_eye = np.mean(pt106[[87, 89, 94, 93]], axis=0) # right eye center
+
+ if use_lip:
+ # use lip
+ pt_center_eye = (pt_left_eye + pt_right_eye) / 2
+ pt_center_lip = (pt106[52] + pt106[61]) / 2
+ pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0)
+ else:
+ pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0)
+ return pt2
+
+
+def parse_pt2_from_pt203(pt203, use_lip=True):
+ """
+ parsing the 2 points according to the 203 points, which cancels the roll
+ """
+ pt_left_eye = np.mean(pt203[[0, 6, 12, 18]], axis=0) # left eye center
+ pt_right_eye = np.mean(pt203[[24, 30, 36, 42]], axis=0) # right eye center
+ if use_lip:
+ # use lip
+ pt_center_eye = (pt_left_eye + pt_right_eye) / 2
+ pt_center_lip = (pt203[48] + pt203[66]) / 2
+ pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0)
+ else:
+ pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0)
+ return pt2
+
+
+def parse_pt2_from_pt68(pt68, use_lip=True):
+ """
+ parsing the 2 points according to the 68 points, which cancels the roll
+ """
+ lm_idx = np.array([31, 37, 40, 43, 46, 49, 55], dtype=np.int32) - 1
+ if use_lip:
+ pt5 = np.stack([
+ np.mean(pt68[lm_idx[[1, 2]], :], 0), # left eye
+ np.mean(pt68[lm_idx[[3, 4]], :], 0), # right eye
+ pt68[lm_idx[0], :], # nose
+ pt68[lm_idx[5], :], # lip
+ pt68[lm_idx[6], :] # lip
+ ], axis=0)
+
+ pt2 = np.stack([
+ (pt5[0] + pt5[1]) / 2,
+ (pt5[3] + pt5[4]) / 2
+ ], axis=0)
+ else:
+ pt2 = np.stack([
+ np.mean(pt68[lm_idx[[1, 2]], :], 0), # left eye
+ np.mean(pt68[lm_idx[[3, 4]], :], 0), # right eye
+ ], axis=0)
+
+ return pt2
+
+
+def parse_pt2_from_pt5(pt5, use_lip=True):
+ """
+ parsing the 2 points according to the 5 points, which cancels the roll
+ """
+ if use_lip:
+ pt2 = np.stack([
+ (pt5[0] + pt5[1]) / 2,
+ (pt5[3] + pt5[4]) / 2
+ ], axis=0)
+ else:
+ pt2 = np.stack([
+ pt5[0],
+ pt5[1]
+ ], axis=0)
+ return pt2
+
+
+def parse_pt2_from_pt_x(pts, use_lip=True):
+ if pts.shape[0] == 101:
+ pt2 = parse_pt2_from_pt101(pts, use_lip=use_lip)
+ elif pts.shape[0] == 106:
+ pt2 = parse_pt2_from_pt106(pts, use_lip=use_lip)
+ elif pts.shape[0] == 68:
+ pt2 = parse_pt2_from_pt68(pts, use_lip=use_lip)
+ elif pts.shape[0] == 5:
+ pt2 = parse_pt2_from_pt5(pts, use_lip=use_lip)
+ elif pts.shape[0] == 203:
+ pt2 = parse_pt2_from_pt203(pts, use_lip=use_lip)
+ elif pts.shape[0] > 101:
+ # take the first 101 points
+ pt2 = parse_pt2_from_pt101(pts[:101], use_lip=use_lip)
+ else:
+ raise Exception(f'Unknow shape: {pts.shape}')
+
+ if not use_lip:
+ # NOTE: to compile with the latter code, need to rotate the pt2 90 degrees clockwise manually
+ v = pt2[1] - pt2[0]
+ pt2[1, 0] = pt2[0, 0] - v[1]
+ pt2[1, 1] = pt2[0, 1] + v[0]
+
+ return pt2
+
+
+def parse_rect_from_landmark(
+ pts,
+ scale=1.5,
+ need_square=True,
+ vx_ratio=0,
+ vy_ratio=0,
+ use_deg_flag=False,
+ **kwargs
+):
+ """parsing center, size, angle from 101/68/5/x landmarks
+ vx_ratio: the offset ratio along the pupil axis x-axis, multiplied by size
+ vy_ratio: the offset ratio along the pupil axis y-axis, multiplied by size, which is used to contain more forehead area
+
+ judge with pts.shape
+ """
+ pt2 = parse_pt2_from_pt_x(pts, use_lip=kwargs.get('use_lip', True))
+
+ uy = pt2[1] - pt2[0]
+ l = np.linalg.norm(uy)
+ if l <= 1e-3:
+ uy = np.array([0, 1], dtype=DTYPE)
+ else:
+ uy /= l
+ ux = np.array((uy[1], -uy[0]), dtype=DTYPE)
+
+ # the rotation degree of the x-axis, the clockwise is positive, the counterclockwise is negative (image coordinate system)
+ # print(uy)
+ # print(ux)
+ angle = acos(ux[0])
+ if ux[1] < 0:
+ angle = -angle
+
+ # rotation matrix
+ M = np.array([ux, uy])
+
+ # calculate the size which contains the angle degree of the bbox, and the center
+ center0 = np.mean(pts, axis=0)
+ rpts = (pts - center0) @ M.T # (M @ P.T).T = P @ M.T
+ lt_pt = np.min(rpts, axis=0)
+ rb_pt = np.max(rpts, axis=0)
+ center1 = (lt_pt + rb_pt) / 2
+
+ size = rb_pt - lt_pt
+ if need_square:
+ m = max(size[0], size[1])
+ size[0] = m
+ size[1] = m
+
+ size *= scale # scale size
+ center = center0 + ux * center1[0] + uy * center1[1] # counterclockwise rotation, equivalent to M.T @ center1.T
+ center = center + ux * (vx_ratio * size) + uy * \
+ (vy_ratio * size) # considering the offset in vx and vy direction
+
+ if use_deg_flag:
+ angle = degrees(angle)
+
+ return center, size, angle
+
+
+def parse_bbox_from_landmark(pts, **kwargs):
+ center, size, angle = parse_rect_from_landmark(pts, **kwargs)
+ cx, cy = center
+ w, h = size
+
+ # calculate the vertex positions before rotation
+ bbox = np.array([
+ [cx-w/2, cy-h/2], # left, top
+ [cx+w/2, cy-h/2],
+ [cx+w/2, cy+h/2], # right, bottom
+ [cx-w/2, cy+h/2]
+ ], dtype=DTYPE)
+
+ # construct rotation matrix
+ bbox_rot = bbox.copy()
+ R = np.array([
+ [np.cos(angle), -np.sin(angle)],
+ [np.sin(angle), np.cos(angle)]
+ ], dtype=DTYPE)
+
+ # calculate the relative position of each vertex from the rotation center, then rotate these positions, and finally add the coordinates of the rotation center
+ bbox_rot = (bbox_rot - center) @ R.T + center
+
+ return {
+ 'center': center, # 2x1
+ 'size': size, # scalar
+ 'angle': angle, # rad, counterclockwise
+ 'bbox': bbox, # 4x2
+ 'bbox_rot': bbox_rot, # 4x2
+ }
+
+
+def crop_image_by_bbox(img, bbox, lmk=None, dsize=512, angle=None, flag_rot=False, **kwargs):
+ left, top, right, bot = bbox
+ if int(right - left) != int(bot - top):
+ print(f'right-left {right-left} != bot-top {bot-top}')
+ size = right - left
+
+ src_center = np.array([(left + right) / 2, (top + bot) / 2], dtype=DTYPE)
+ tgt_center = np.array([dsize / 2, dsize / 2], dtype=DTYPE)
+
+ s = dsize / size # scale
+ if flag_rot and angle is not None:
+ costheta, sintheta = cos(angle), sin(angle)
+ cx, cy = src_center[0], src_center[1] # ori center
+ tcx, tcy = tgt_center[0], tgt_center[1] # target center
+ # need to infer
+ M_o2c = np.array(
+ [[s * costheta, s * sintheta, tcx - s * (costheta * cx + sintheta * cy)],
+ [-s * sintheta, s * costheta, tcy - s * (-sintheta * cx + costheta * cy)]],
+ dtype=DTYPE
+ )
+ else:
+ M_o2c = np.array(
+ [[s, 0, tgt_center[0] - s * src_center[0]],
+ [0, s, tgt_center[1] - s * src_center[1]]],
+ dtype=DTYPE
+ )
+
+ # if flag_rot and angle is None:
+ # print('angle is None, but flag_rotate is True', style="bold yellow")
+
+ img_crop = _transform_img(img, M_o2c, dsize=dsize, borderMode=kwargs.get('borderMode', None))
+ lmk_crop = _transform_pts(lmk, M_o2c) if lmk is not None else None
+
+ M_o2c = np.vstack([M_o2c, np.array([0, 0, 1], dtype=DTYPE)])
+ M_c2o = np.linalg.inv(M_o2c)
+
+ # cv2.imwrite('crop.jpg', img_crop)
+
+ return {
+ 'img_crop': img_crop,
+ 'lmk_crop': lmk_crop,
+ 'M_o2c': M_o2c,
+ 'M_c2o': M_c2o,
+ }
+
+
+def _estimate_similar_transform_from_pts(
+ pts,
+ dsize,
+ scale=1.5,
+ vx_ratio=0,
+ vy_ratio=-0.1,
+ flag_do_rot=True,
+ **kwargs
+):
+ """ calculate the affine matrix of the cropped image from sparse points, the original image to the cropped image, the inverse is the cropped image to the original image
+ pts: landmark, 101 or 68 points or other points, Nx2
+ scale: the larger scale factor, the smaller face ratio
+ vx_ratio: x shift
+ vy_ratio: y shift, the smaller the y shift, the lower the face region
+ rot_flag: if it is true, conduct correction
+ """
+ center, size, angle = parse_rect_from_landmark(
+ pts, scale=scale, vx_ratio=vx_ratio, vy_ratio=vy_ratio,
+ use_lip=kwargs.get('use_lip', True)
+ )
+
+ s = dsize / size[0] # scale
+ tgt_center = np.array([dsize / 2, dsize / 2], dtype=DTYPE) # center of dsize
+
+ if flag_do_rot:
+ costheta, sintheta = cos(angle), sin(angle)
+ cx, cy = center[0], center[1] # ori center
+ tcx, tcy = tgt_center[0], tgt_center[1] # target center
+ # need to infer
+ M_INV = np.array(
+ [[s * costheta, s * sintheta, tcx - s * (costheta * cx + sintheta * cy)],
+ [-s * sintheta, s * costheta, tcy - s * (-sintheta * cx + costheta * cy)]],
+ dtype=DTYPE
+ )
+ else:
+ M_INV = np.array(
+ [[s, 0, tgt_center[0] - s * center[0]],
+ [0, s, tgt_center[1] - s * center[1]]],
+ dtype=DTYPE
+ )
+
+ M_INV_H = np.vstack([M_INV, np.array([0, 0, 1])])
+ M = np.linalg.inv(M_INV_H)
+
+ # M_INV is from the original image to the cropped image, M is from the cropped image to the original image
+ return M_INV, M[:2, ...]
+
+
+def crop_image(img, pts: np.ndarray, **kwargs):
+ dsize = kwargs.get('dsize', 224)
+ scale = kwargs.get('scale', 1.5) # 1.5 | 1.6
+ vy_ratio = kwargs.get('vy_ratio', -0.1) # -0.0625 | -0.1
+
+ M_INV, _ = _estimate_similar_transform_from_pts(
+ pts,
+ dsize=dsize,
+ scale=scale,
+ vy_ratio=vy_ratio,
+ flag_do_rot=kwargs.get('flag_do_rot', True),
+ )
+
+ img_crop = _transform_img(img, M_INV, dsize) # origin to crop
+ pt_crop = _transform_pts(pts, M_INV)
+
+ M_o2c = np.vstack([M_INV, np.array([0, 0, 1], dtype=DTYPE)])
+ M_c2o = np.linalg.inv(M_o2c)
+
+ ret_dct = {
+ 'M_o2c': M_o2c, # from the original image to the cropped image 3x3
+ 'M_c2o': M_c2o, # from the cropped image to the original image 3x3
+ 'img_crop': img_crop, # the cropped image
+ 'pt_crop': pt_crop, # the landmarks of the cropped image
+ }
+
+ return ret_dct
+
+def average_bbox_lst(bbox_lst):
+ if len(bbox_lst) == 0:
+ return None
+ bbox_arr = np.array(bbox_lst)
+ return np.mean(bbox_arr, axis=0).tolist()
+
+def prepare_paste_back(mask_crop, crop_M_c2o, dsize):
+ """prepare mask for later image paste back
+ """
+ mask_ori = _transform_img(mask_crop, crop_M_c2o, dsize)
+ mask_ori = mask_ori.astype(np.float32) / 255.
+ return mask_ori
+
+def paste_back(img_crop, M_c2o, img_ori, mask_ori):
+ """paste back the image
+ """
+ dsize = (img_ori.shape[1], img_ori.shape[0])
+ result = _transform_img(img_crop, M_c2o, dsize=dsize)
+ result = np.clip(mask_ori * result + (1 - mask_ori) * img_ori, 0, 255).astype(np.uint8)
+ return result
diff --git a/src/utils/cropper.py b/src/utils/cropper.py
new file mode 100644
index 0000000000000000000000000000000000000000..916d33b42106b26d3d47691d8c3484f8f295db85
--- /dev/null
+++ b/src/utils/cropper.py
@@ -0,0 +1,196 @@
+# coding: utf-8
+
+import os.path as osp
+from dataclasses import dataclass, field
+from typing import List, Tuple, Union
+
+import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
+import numpy as np
+
+from ..config.crop_config import CropConfig
+from .crop import (
+ average_bbox_lst,
+ crop_image,
+ crop_image_by_bbox,
+ parse_bbox_from_landmark,
+)
+from .io import contiguous
+from .rprint import rlog as log
+from .face_analysis_diy import FaceAnalysisDIY
+from .landmark_runner import LandmarkRunner
+
+
+def make_abs_path(fn):
+ return osp.join(osp.dirname(osp.realpath(__file__)), fn)
+
+
+@dataclass
+class Trajectory:
+ start: int = -1 # start frame
+ end: int = -1 # end frame
+ lmk_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # lmk list
+ bbox_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # bbox list
+
+ frame_rgb_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # frame list
+ lmk_crop_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # lmk list
+ frame_rgb_crop_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # frame crop list
+
+
+class Cropper(object):
+ def __init__(self, **kwargs) -> None:
+ self.crop_cfg: CropConfig = kwargs.get("crop_cfg", None)
+ device_id = kwargs.get("device_id", 0)
+ flag_force_cpu = kwargs.get("flag_force_cpu", False)
+ if flag_force_cpu:
+ device = "cpu"
+ face_analysis_wrapper_provicer = ["CPUExecutionProvider"]
+ else:
+ device = "cuda"
+ face_analysis_wrapper_provicer = ["CUDAExecutionProvider"]
+ self.landmark_runner = LandmarkRunner(
+ ckpt_path=make_abs_path(self.crop_cfg.landmark_ckpt_path),
+ onnx_provider=device,
+ device_id=device_id,
+ )
+ self.landmark_runner.warmup()
+
+ self.face_analysis_wrapper = FaceAnalysisDIY(
+ name="buffalo_l",
+ root=make_abs_path(self.crop_cfg.insightface_root),
+ providers=face_analysis_wrapper_provicer,
+ )
+ self.face_analysis_wrapper.prepare(ctx_id=device_id, det_size=(512, 512))
+ self.face_analysis_wrapper.warmup()
+
+ def update_config(self, user_args):
+ for k, v in user_args.items():
+ if hasattr(self.crop_cfg, k):
+ setattr(self.crop_cfg, k, v)
+
+ def crop_source_image(self, img_rgb_: np.ndarray, crop_cfg: CropConfig):
+ # crop a source image and get neccessary information
+ img_rgb = img_rgb_.copy() # copy it
+
+ img_bgr = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR)
+ src_face = self.face_analysis_wrapper.get(
+ img_bgr,
+ flag_do_landmark_2d_106=True,
+ direction=crop_cfg.direction,
+ max_face_num=crop_cfg.max_face_num,
+ )
+
+ if len(src_face) == 0:
+ log("No face detected in the source image.")
+ return None
+ elif len(src_face) > 1:
+ log(f"More than one face detected in the image, only pick one face by rule {crop_cfg.direction}.")
+
+ # NOTE: temporarily only pick the first face, to support multiple face in the future
+ src_face = src_face[0]
+ lmk = src_face.landmark_2d_106 # this is the 106 landmarks from insightface
+
+ # crop the face
+ ret_dct = crop_image(
+ img_rgb, # ndarray
+ lmk, # 106x2 or Nx2
+ dsize=crop_cfg.dsize,
+ scale=crop_cfg.scale,
+ vx_ratio=crop_cfg.vx_ratio,
+ vy_ratio=crop_cfg.vy_ratio,
+ )
+
+ lmk = self.landmark_runner.run(img_rgb, lmk)
+ ret_dct["lmk_crop"] = lmk
+
+ # update a 256x256 version for network input
+ ret_dct["img_crop_256x256"] = cv2.resize(ret_dct["img_crop"], (256, 256), interpolation=cv2.INTER_AREA)
+ ret_dct["lmk_crop_256x256"] = ret_dct["lmk_crop"] * 256 / crop_cfg.dsize
+
+ return ret_dct
+
+ def crop_driving_video(self, driving_rgb_lst, **kwargs):
+ """Tracking based landmarks/alignment and cropping"""
+ trajectory = Trajectory()
+ direction = kwargs.get("direction", "large-small")
+ for idx, frame_rgb in enumerate(driving_rgb_lst):
+ if idx == 0 or trajectory.start == -1:
+ src_face = self.face_analysis_wrapper.get(
+ contiguous(frame_rgb[..., ::-1]),
+ flag_do_landmark_2d_106=True,
+ direction=direction,
+ )
+ if len(src_face) == 0:
+ log(f"No face detected in the frame #{idx}")
+ continue
+ elif len(src_face) > 1:
+ log(f"More than one face detected in the driving frame_{idx}, only pick one face by rule {direction}.")
+ src_face = src_face[0]
+ lmk = src_face.landmark_2d_106
+ lmk = self.landmark_runner.run(frame_rgb, lmk)
+ trajectory.start, trajectory.end = idx, idx
+ else:
+ lmk = self.landmark_runner.run(frame_rgb, trajectory.lmk_lst[-1])
+ trajectory.end = idx
+
+ trajectory.lmk_lst.append(lmk)
+ ret_bbox = parse_bbox_from_landmark(
+ lmk,
+ scale=self.crop_cfg.scale_crop_video,
+ vx_ratio_crop_video=self.crop_cfg.vx_ratio_crop_video,
+ vy_ratio=self.crop_cfg.vy_ratio_crop_video,
+ )["bbox"]
+ bbox = [
+ ret_bbox[0, 0],
+ ret_bbox[0, 1],
+ ret_bbox[2, 0],
+ ret_bbox[2, 1],
+ ] # 4,
+ trajectory.bbox_lst.append(bbox) # bbox
+ trajectory.frame_rgb_lst.append(frame_rgb)
+
+ global_bbox = average_bbox_lst(trajectory.bbox_lst)
+
+ for idx, (frame_rgb, lmk) in enumerate(zip(trajectory.frame_rgb_lst, trajectory.lmk_lst)):
+ ret_dct = crop_image_by_bbox(
+ frame_rgb,
+ global_bbox,
+ lmk=lmk,
+ dsize=kwargs.get("dsize", 512),
+ flag_rot=False,
+ borderValue=(0, 0, 0),
+ )
+ trajectory.frame_rgb_crop_lst.append(ret_dct["img_crop"])
+ trajectory.lmk_crop_lst.append(ret_dct["lmk_crop"])
+
+ return {
+ "frame_crop_lst": trajectory.frame_rgb_crop_lst,
+ "lmk_crop_lst": trajectory.lmk_crop_lst,
+ }
+
+ def calc_lmks_from_cropped_video(self, driving_rgb_crop_lst, **kwargs):
+ """Tracking based landmarks/alignment"""
+ trajectory = Trajectory()
+ direction = kwargs.get("direction", "large-small")
+
+ for idx, frame_rgb_crop in enumerate(driving_rgb_crop_lst):
+ if idx == 0 or trajectory.start == -1:
+ src_face = self.face_analysis_wrapper.get(
+ contiguous(frame_rgb_crop[..., ::-1]), # convert to BGR
+ flag_do_landmark_2d_106=True,
+ direction=direction,
+ )
+ if len(src_face) == 0:
+ log(f"No face detected in the frame #{idx}")
+ raise Exception(f"No face detected in the frame #{idx}")
+ elif len(src_face) > 1:
+ log(f"More than one face detected in the driving frame_{idx}, only pick one face by rule {direction}.")
+ src_face = src_face[0]
+ lmk = src_face.landmark_2d_106
+ lmk = self.landmark_runner.run(frame_rgb_crop, lmk)
+ trajectory.start, trajectory.end = idx, idx
+ else:
+ lmk = self.landmark_runner.run(frame_rgb_crop, trajectory.lmk_lst[-1])
+ trajectory.end = idx
+
+ trajectory.lmk_lst.append(lmk)
+ return trajectory.lmk_lst
diff --git a/src/utils/dependencies/insightface/__init__.py b/src/utils/dependencies/insightface/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..1680083da47850b31da10803c7d255e67dda619a
--- /dev/null
+++ b/src/utils/dependencies/insightface/__init__.py
@@ -0,0 +1,20 @@
+# coding: utf-8
+# pylint: disable=wrong-import-position
+"""InsightFace: A Face Analysis Toolkit."""
+from __future__ import absolute_import
+
+try:
+ #import mxnet as mx
+ import onnxruntime
+except ImportError:
+ raise ImportError(
+ "Unable to import dependency onnxruntime. "
+ )
+
+__version__ = '0.7.3'
+
+from . import model_zoo
+from . import utils
+from . import app
+from . import data
+
diff --git a/src/utils/dependencies/insightface/app/__init__.py b/src/utils/dependencies/insightface/app/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..cc574616885290489798bac5c682e7aaa65a5dad
--- /dev/null
+++ b/src/utils/dependencies/insightface/app/__init__.py
@@ -0,0 +1 @@
+from .face_analysis import *
diff --git a/src/utils/dependencies/insightface/app/common.py b/src/utils/dependencies/insightface/app/common.py
new file mode 100644
index 0000000000000000000000000000000000000000..82ca987aeede35510b3aef72b4edf2390ad84e65
--- /dev/null
+++ b/src/utils/dependencies/insightface/app/common.py
@@ -0,0 +1,49 @@
+import numpy as np
+from numpy.linalg import norm as l2norm
+#from easydict import EasyDict
+
+class Face(dict):
+
+ def __init__(self, d=None, **kwargs):
+ if d is None:
+ d = {}
+ if kwargs:
+ d.update(**kwargs)
+ for k, v in d.items():
+ setattr(self, k, v)
+ # Class attributes
+ #for k in self.__class__.__dict__.keys():
+ # if not (k.startswith('__') and k.endswith('__')) and not k in ('update', 'pop'):
+ # setattr(self, k, getattr(self, k))
+
+ def __setattr__(self, name, value):
+ if isinstance(value, (list, tuple)):
+ value = [self.__class__(x)
+ if isinstance(x, dict) else x for x in value]
+ elif isinstance(value, dict) and not isinstance(value, self.__class__):
+ value = self.__class__(value)
+ super(Face, self).__setattr__(name, value)
+ super(Face, self).__setitem__(name, value)
+
+ __setitem__ = __setattr__
+
+ def __getattr__(self, name):
+ return None
+
+ @property
+ def embedding_norm(self):
+ if self.embedding is None:
+ return None
+ return l2norm(self.embedding)
+
+ @property
+ def normed_embedding(self):
+ if self.embedding is None:
+ return None
+ return self.embedding / self.embedding_norm
+
+ @property
+ def sex(self):
+ if self.gender is None:
+ return None
+ return 'M' if self.gender==1 else 'F'
diff --git a/src/utils/dependencies/insightface/app/face_analysis.py b/src/utils/dependencies/insightface/app/face_analysis.py
new file mode 100644
index 0000000000000000000000000000000000000000..aa5128b3f5e02c2c19e7df195cc1c1e7fcf36c4d
--- /dev/null
+++ b/src/utils/dependencies/insightface/app/face_analysis.py
@@ -0,0 +1,110 @@
+# -*- coding: utf-8 -*-
+# @Organization : insightface.ai
+# @Author : Jia Guo
+# @Time : 2021-05-04
+# @Function :
+
+
+from __future__ import division
+
+import glob
+import os.path as osp
+
+import numpy as np
+import onnxruntime
+from numpy.linalg import norm
+
+from ..model_zoo import model_zoo
+from ..utils import ensure_available
+from .common import Face
+
+
+DEFAULT_MP_NAME = 'buffalo_l'
+__all__ = ['FaceAnalysis']
+
+class FaceAnalysis:
+ def __init__(self, name=DEFAULT_MP_NAME, root='~/.insightface', allowed_modules=None, **kwargs):
+ onnxruntime.set_default_logger_severity(3)
+ self.models = {}
+ self.model_dir = ensure_available('models', name, root=root)
+ onnx_files = glob.glob(osp.join(self.model_dir, '*.onnx'))
+ onnx_files = sorted(onnx_files)
+ for onnx_file in onnx_files:
+ model = model_zoo.get_model(onnx_file, **kwargs)
+ if model is None:
+ print('model not recognized:', onnx_file)
+ elif allowed_modules is not None and model.taskname not in allowed_modules:
+ print('model ignore:', onnx_file, model.taskname)
+ del model
+ elif model.taskname not in self.models and (allowed_modules is None or model.taskname in allowed_modules):
+ # print('find model:', onnx_file, model.taskname, model.input_shape, model.input_mean, model.input_std)
+ self.models[model.taskname] = model
+ else:
+ print('duplicated model task type, ignore:', onnx_file, model.taskname)
+ del model
+ assert 'detection' in self.models
+ self.det_model = self.models['detection']
+
+
+ def prepare(self, ctx_id, det_thresh=0.5, det_size=(640, 640)):
+ self.det_thresh = det_thresh
+ assert det_size is not None
+ # print('set det-size:', det_size)
+ self.det_size = det_size
+ for taskname, model in self.models.items():
+ if taskname=='detection':
+ model.prepare(ctx_id, input_size=det_size, det_thresh=det_thresh)
+ else:
+ model.prepare(ctx_id)
+
+ def get(self, img, max_num=0):
+ bboxes, kpss = self.det_model.detect(img,
+ max_num=max_num,
+ metric='default')
+ if bboxes.shape[0] == 0:
+ return []
+ ret = []
+ for i in range(bboxes.shape[0]):
+ bbox = bboxes[i, 0:4]
+ det_score = bboxes[i, 4]
+ kps = None
+ if kpss is not None:
+ kps = kpss[i]
+ face = Face(bbox=bbox, kps=kps, det_score=det_score)
+ for taskname, model in self.models.items():
+ if taskname=='detection':
+ continue
+ model.get(img, face)
+ ret.append(face)
+ return ret
+
+ def draw_on(self, img, faces):
+ import cv2
+ dimg = img.copy()
+ for i in range(len(faces)):
+ face = faces[i]
+ box = face.bbox.astype(np.int)
+ color = (0, 0, 255)
+ cv2.rectangle(dimg, (box[0], box[1]), (box[2], box[3]), color, 2)
+ if face.kps is not None:
+ kps = face.kps.astype(np.int)
+ #print(landmark.shape)
+ for l in range(kps.shape[0]):
+ color = (0, 0, 255)
+ if l == 0 or l == 3:
+ color = (0, 255, 0)
+ cv2.circle(dimg, (kps[l][0], kps[l][1]), 1, color,
+ 2)
+ if face.gender is not None and face.age is not None:
+ cv2.putText(dimg,'%s,%d'%(face.sex,face.age), (box[0]-1, box[1]-4),cv2.FONT_HERSHEY_COMPLEX,0.7,(0,255,0),1)
+
+ #for key, value in face.items():
+ # if key.startswith('landmark_3d'):
+ # print(key, value.shape)
+ # print(value[0:10,:])
+ # lmk = np.round(value).astype(np.int)
+ # for l in range(lmk.shape[0]):
+ # color = (255, 0, 0)
+ # cv2.circle(dimg, (lmk[l][0], lmk[l][1]), 1, color,
+ # 2)
+ return dimg
diff --git a/src/utils/dependencies/insightface/data/__init__.py b/src/utils/dependencies/insightface/data/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..665c59ec99b6ebf12822015e0350969c7903e243
--- /dev/null
+++ b/src/utils/dependencies/insightface/data/__init__.py
@@ -0,0 +1,2 @@
+from .image import get_image
+from .pickle_object import get_object
diff --git a/src/utils/dependencies/insightface/data/image.py b/src/utils/dependencies/insightface/data/image.py
new file mode 100644
index 0000000000000000000000000000000000000000..6d32c4bcb1b13d33bcb0d840cf7b8c08d183b3ea
--- /dev/null
+++ b/src/utils/dependencies/insightface/data/image.py
@@ -0,0 +1,27 @@
+import cv2
+import os
+import os.path as osp
+from pathlib import Path
+
+class ImageCache:
+ data = {}
+
+def get_image(name, to_rgb=False):
+ key = (name, to_rgb)
+ if key in ImageCache.data:
+ return ImageCache.data[key]
+ images_dir = osp.join(Path(__file__).parent.absolute(), 'images')
+ ext_names = ['.jpg', '.png', '.jpeg']
+ image_file = None
+ for ext_name in ext_names:
+ _image_file = osp.join(images_dir, "%s%s"%(name, ext_name))
+ if osp.exists(_image_file):
+ image_file = _image_file
+ break
+ assert image_file is not None, '%s not found'%name
+ img = cv2.imread(image_file)
+ if to_rgb:
+ img = img[:,:,::-1]
+ ImageCache.data[key] = img
+ return img
+
diff --git a/src/utils/dependencies/insightface/data/images/Tom_Hanks_54745.png b/src/utils/dependencies/insightface/data/images/Tom_Hanks_54745.png
new file mode 100644
index 0000000000000000000000000000000000000000..906315d13fa29bb3a5ded3e162592f2c7f041b23
Binary files /dev/null and b/src/utils/dependencies/insightface/data/images/Tom_Hanks_54745.png differ
diff --git a/src/utils/dependencies/insightface/data/images/mask_black.jpg b/src/utils/dependencies/insightface/data/images/mask_black.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..0eab0df555c23f1e033537fe39f3c0c8303dd369
Binary files /dev/null and b/src/utils/dependencies/insightface/data/images/mask_black.jpg differ
diff --git a/src/utils/dependencies/insightface/data/images/mask_blue.jpg b/src/utils/dependencies/insightface/data/images/mask_blue.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..f71336b9a0d3038ebd84e6995ebfbe54946fcbb4
Binary files /dev/null and b/src/utils/dependencies/insightface/data/images/mask_blue.jpg differ
diff --git a/src/utils/dependencies/insightface/data/images/mask_green.jpg b/src/utils/dependencies/insightface/data/images/mask_green.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..ac2ad55f4fc580c915dfa4c157ca3bfc84e453f4
Binary files /dev/null and b/src/utils/dependencies/insightface/data/images/mask_green.jpg differ
diff --git a/src/utils/dependencies/insightface/data/images/mask_white.jpg b/src/utils/dependencies/insightface/data/images/mask_white.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..2148ab2d09fdee6e3f59315470e98ecfc54339e4
Binary files /dev/null and b/src/utils/dependencies/insightface/data/images/mask_white.jpg differ
diff --git a/src/utils/dependencies/insightface/data/images/t1.jpg b/src/utils/dependencies/insightface/data/images/t1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..8fd6427a177bd01650c0150e9d02457c3a5dcddd
--- /dev/null
+++ b/src/utils/dependencies/insightface/data/images/t1.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:47f682e945b659f93a9e490b9c9c4a2a864abe64dace9e1a2893845ddfd69489
+size 128824
diff --git a/src/utils/dependencies/insightface/data/objects/meanshape_68.pkl b/src/utils/dependencies/insightface/data/objects/meanshape_68.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..d5297e9e8ea5574298ddd287b058252e03aa18c1
--- /dev/null
+++ b/src/utils/dependencies/insightface/data/objects/meanshape_68.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:39ffecf84ba73f0d0d7e49380833ba88713c9fcdec51df4f7ac45a48b8f4cc51
+size 974
diff --git a/src/utils/dependencies/insightface/data/pickle_object.py b/src/utils/dependencies/insightface/data/pickle_object.py
new file mode 100644
index 0000000000000000000000000000000000000000..fbd87030ea15e1d01af1cd4cff1be2bc54cc82dd
--- /dev/null
+++ b/src/utils/dependencies/insightface/data/pickle_object.py
@@ -0,0 +1,17 @@
+import cv2
+import os
+import os.path as osp
+from pathlib import Path
+import pickle
+
+def get_object(name):
+ objects_dir = osp.join(Path(__file__).parent.absolute(), 'objects')
+ if not name.endswith('.pkl'):
+ name = name+".pkl"
+ filepath = osp.join(objects_dir, name)
+ if not osp.exists(filepath):
+ return None
+ with open(filepath, 'rb') as f:
+ obj = pickle.load(f)
+ return obj
+
diff --git a/src/utils/dependencies/insightface/data/rec_builder.py b/src/utils/dependencies/insightface/data/rec_builder.py
new file mode 100644
index 0000000000000000000000000000000000000000..e02abc969da2f882639326f5bad3c7e8d08c1fde
--- /dev/null
+++ b/src/utils/dependencies/insightface/data/rec_builder.py
@@ -0,0 +1,71 @@
+import pickle
+import numpy as np
+import os
+import os.path as osp
+import sys
+import mxnet as mx
+
+
+class RecBuilder():
+ def __init__(self, path, image_size=(112, 112)):
+ self.path = path
+ self.image_size = image_size
+ self.widx = 0
+ self.wlabel = 0
+ self.max_label = -1
+ assert not osp.exists(path), '%s exists' % path
+ os.makedirs(path)
+ self.writer = mx.recordio.MXIndexedRecordIO(os.path.join(path, 'train.idx'),
+ os.path.join(path, 'train.rec'),
+ 'w')
+ self.meta = []
+
+ def add(self, imgs):
+ #!!! img should be BGR!!!!
+ #assert label >= 0
+ #assert label > self.last_label
+ assert len(imgs) > 0
+ label = self.wlabel
+ for img in imgs:
+ idx = self.widx
+ image_meta = {'image_index': idx, 'image_classes': [label]}
+ header = mx.recordio.IRHeader(0, label, idx, 0)
+ if isinstance(img, np.ndarray):
+ s = mx.recordio.pack_img(header,img,quality=95,img_fmt='.jpg')
+ else:
+ s = mx.recordio.pack(header, img)
+ self.writer.write_idx(idx, s)
+ self.meta.append(image_meta)
+ self.widx += 1
+ self.max_label = label
+ self.wlabel += 1
+
+
+ def add_image(self, img, label):
+ #!!! img should be BGR!!!!
+ #assert label >= 0
+ #assert label > self.last_label
+ idx = self.widx
+ header = mx.recordio.IRHeader(0, label, idx, 0)
+ if isinstance(label, list):
+ idlabel = label[0]
+ else:
+ idlabel = label
+ image_meta = {'image_index': idx, 'image_classes': [idlabel]}
+ if isinstance(img, np.ndarray):
+ s = mx.recordio.pack_img(header,img,quality=95,img_fmt='.jpg')
+ else:
+ s = mx.recordio.pack(header, img)
+ self.writer.write_idx(idx, s)
+ self.meta.append(image_meta)
+ self.widx += 1
+ self.max_label = max(self.max_label, idlabel)
+
+ def close(self):
+ with open(osp.join(self.path, 'train.meta'), 'wb') as pfile:
+ pickle.dump(self.meta, pfile, protocol=pickle.HIGHEST_PROTOCOL)
+ print('stat:', self.widx, self.wlabel)
+ with open(os.path.join(self.path, 'property'), 'w') as f:
+ f.write("%d,%d,%d\n" % (self.max_label+1, self.image_size[0], self.image_size[1]))
+ f.write("%d\n" % (self.widx))
+
diff --git a/src/utils/dependencies/insightface/model_zoo/__init__.py b/src/utils/dependencies/insightface/model_zoo/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..225623d6142c968b4040f391039bfab88bdd1b2a
--- /dev/null
+++ b/src/utils/dependencies/insightface/model_zoo/__init__.py
@@ -0,0 +1,6 @@
+from .model_zoo import get_model
+from .arcface_onnx import ArcFaceONNX
+from .retinaface import RetinaFace
+from .scrfd import SCRFD
+from .landmark import Landmark
+from .attribute import Attribute
diff --git a/src/utils/dependencies/insightface/model_zoo/arcface_onnx.py b/src/utils/dependencies/insightface/model_zoo/arcface_onnx.py
new file mode 100644
index 0000000000000000000000000000000000000000..b537ce2ee15d4a1834d54e185f34e336aab30a77
--- /dev/null
+++ b/src/utils/dependencies/insightface/model_zoo/arcface_onnx.py
@@ -0,0 +1,92 @@
+# -*- coding: utf-8 -*-
+# @Organization : insightface.ai
+# @Author : Jia Guo
+# @Time : 2021-05-04
+# @Function :
+
+from __future__ import division
+import numpy as np
+import cv2
+import onnx
+import onnxruntime
+from ..utils import face_align
+
+__all__ = [
+ 'ArcFaceONNX',
+]
+
+
+class ArcFaceONNX:
+ def __init__(self, model_file=None, session=None):
+ assert model_file is not None
+ self.model_file = model_file
+ self.session = session
+ self.taskname = 'recognition'
+ find_sub = False
+ find_mul = False
+ model = onnx.load(self.model_file)
+ graph = model.graph
+ for nid, node in enumerate(graph.node[:8]):
+ #print(nid, node.name)
+ if node.name.startswith('Sub') or node.name.startswith('_minus'):
+ find_sub = True
+ if node.name.startswith('Mul') or node.name.startswith('_mul'):
+ find_mul = True
+ if find_sub and find_mul:
+ #mxnet arcface model
+ input_mean = 0.0
+ input_std = 1.0
+ else:
+ input_mean = 127.5
+ input_std = 127.5
+ self.input_mean = input_mean
+ self.input_std = input_std
+ #print('input mean and std:', self.input_mean, self.input_std)
+ if self.session is None:
+ self.session = onnxruntime.InferenceSession(self.model_file, None)
+ input_cfg = self.session.get_inputs()[0]
+ input_shape = input_cfg.shape
+ input_name = input_cfg.name
+ self.input_size = tuple(input_shape[2:4][::-1])
+ self.input_shape = input_shape
+ outputs = self.session.get_outputs()
+ output_names = []
+ for out in outputs:
+ output_names.append(out.name)
+ self.input_name = input_name
+ self.output_names = output_names
+ assert len(self.output_names)==1
+ self.output_shape = outputs[0].shape
+
+ def prepare(self, ctx_id, **kwargs):
+ if ctx_id<0:
+ self.session.set_providers(['CPUExecutionProvider'])
+
+ def get(self, img, face):
+ aimg = face_align.norm_crop(img, landmark=face.kps, image_size=self.input_size[0])
+ face.embedding = self.get_feat(aimg).flatten()
+ return face.embedding
+
+ def compute_sim(self, feat1, feat2):
+ from numpy.linalg import norm
+ feat1 = feat1.ravel()
+ feat2 = feat2.ravel()
+ sim = np.dot(feat1, feat2) / (norm(feat1) * norm(feat2))
+ return sim
+
+ def get_feat(self, imgs):
+ if not isinstance(imgs, list):
+ imgs = [imgs]
+ input_size = self.input_size
+
+ blob = cv2.dnn.blobFromImages(imgs, 1.0 / self.input_std, input_size,
+ (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
+ net_out = self.session.run(self.output_names, {self.input_name: blob})[0]
+ return net_out
+
+ def forward(self, batch_data):
+ blob = (batch_data - self.input_mean) / self.input_std
+ net_out = self.session.run(self.output_names, {self.input_name: blob})[0]
+ return net_out
+
+
diff --git a/src/utils/dependencies/insightface/model_zoo/attribute.py b/src/utils/dependencies/insightface/model_zoo/attribute.py
new file mode 100644
index 0000000000000000000000000000000000000000..40c34de3f0995499448cf5779004cc1e5f3564fb
--- /dev/null
+++ b/src/utils/dependencies/insightface/model_zoo/attribute.py
@@ -0,0 +1,94 @@
+# -*- coding: utf-8 -*-
+# @Organization : insightface.ai
+# @Author : Jia Guo
+# @Time : 2021-06-19
+# @Function :
+
+from __future__ import division
+import numpy as np
+import cv2
+import onnx
+import onnxruntime
+from ..utils import face_align
+
+__all__ = [
+ 'Attribute',
+]
+
+
+class Attribute:
+ def __init__(self, model_file=None, session=None):
+ assert model_file is not None
+ self.model_file = model_file
+ self.session = session
+ find_sub = False
+ find_mul = False
+ model = onnx.load(self.model_file)
+ graph = model.graph
+ for nid, node in enumerate(graph.node[:8]):
+ #print(nid, node.name)
+ if node.name.startswith('Sub') or node.name.startswith('_minus'):
+ find_sub = True
+ if node.name.startswith('Mul') or node.name.startswith('_mul'):
+ find_mul = True
+ if nid<3 and node.name=='bn_data':
+ find_sub = True
+ find_mul = True
+ if find_sub and find_mul:
+ #mxnet arcface model
+ input_mean = 0.0
+ input_std = 1.0
+ else:
+ input_mean = 127.5
+ input_std = 128.0
+ self.input_mean = input_mean
+ self.input_std = input_std
+ #print('input mean and std:', model_file, self.input_mean, self.input_std)
+ if self.session is None:
+ self.session = onnxruntime.InferenceSession(self.model_file, None)
+ input_cfg = self.session.get_inputs()[0]
+ input_shape = input_cfg.shape
+ input_name = input_cfg.name
+ self.input_size = tuple(input_shape[2:4][::-1])
+ self.input_shape = input_shape
+ outputs = self.session.get_outputs()
+ output_names = []
+ for out in outputs:
+ output_names.append(out.name)
+ self.input_name = input_name
+ self.output_names = output_names
+ assert len(self.output_names)==1
+ output_shape = outputs[0].shape
+ #print('init output_shape:', output_shape)
+ if output_shape[1]==3:
+ self.taskname = 'genderage'
+ else:
+ self.taskname = 'attribute_%d'%output_shape[1]
+
+ def prepare(self, ctx_id, **kwargs):
+ if ctx_id<0:
+ self.session.set_providers(['CPUExecutionProvider'])
+
+ def get(self, img, face):
+ bbox = face.bbox
+ w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1])
+ center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2
+ rotate = 0
+ _scale = self.input_size[0] / (max(w, h)*1.5)
+ #print('param:', img.shape, bbox, center, self.input_size, _scale, rotate)
+ aimg, M = face_align.transform(img, center, self.input_size[0], _scale, rotate)
+ input_size = tuple(aimg.shape[0:2][::-1])
+ #assert input_size==self.input_size
+ blob = cv2.dnn.blobFromImage(aimg, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
+ pred = self.session.run(self.output_names, {self.input_name : blob})[0][0]
+ if self.taskname=='genderage':
+ assert len(pred)==3
+ gender = np.argmax(pred[:2])
+ age = int(np.round(pred[2]*100))
+ face['gender'] = gender
+ face['age'] = age
+ return gender, age
+ else:
+ return pred
+
+
diff --git a/src/utils/dependencies/insightface/model_zoo/inswapper.py b/src/utils/dependencies/insightface/model_zoo/inswapper.py
new file mode 100644
index 0000000000000000000000000000000000000000..f321c627ee66cceddcab98b561b997441dd4f768
--- /dev/null
+++ b/src/utils/dependencies/insightface/model_zoo/inswapper.py
@@ -0,0 +1,114 @@
+import time
+import numpy as np
+import onnxruntime
+import cv2
+import onnx
+from onnx import numpy_helper
+from ..utils import face_align
+
+
+
+
+class INSwapper():
+ def __init__(self, model_file=None, session=None):
+ self.model_file = model_file
+ self.session = session
+ model = onnx.load(self.model_file)
+ graph = model.graph
+ self.emap = numpy_helper.to_array(graph.initializer[-1])
+ self.input_mean = 0.0
+ self.input_std = 255.0
+ #print('input mean and std:', model_file, self.input_mean, self.input_std)
+ if self.session is None:
+ self.session = onnxruntime.InferenceSession(self.model_file, None)
+ inputs = self.session.get_inputs()
+ self.input_names = []
+ for inp in inputs:
+ self.input_names.append(inp.name)
+ outputs = self.session.get_outputs()
+ output_names = []
+ for out in outputs:
+ output_names.append(out.name)
+ self.output_names = output_names
+ assert len(self.output_names)==1
+ output_shape = outputs[0].shape
+ input_cfg = inputs[0]
+ input_shape = input_cfg.shape
+ self.input_shape = input_shape
+ # print('inswapper-shape:', self.input_shape)
+ self.input_size = tuple(input_shape[2:4][::-1])
+
+ def forward(self, img, latent):
+ img = (img - self.input_mean) / self.input_std
+ pred = self.session.run(self.output_names, {self.input_names[0]: img, self.input_names[1]: latent})[0]
+ return pred
+
+ def get(self, img, target_face, source_face, paste_back=True):
+ face_mask = np.zeros((img.shape[0], img.shape[1]), np.uint8)
+ cv2.fillPoly(face_mask, np.array([target_face.landmark_2d_106[[1,9,10,11,12,13,14,15,16,2,3,4,5,6,7,8,0,24,23,22,21,20,19,18,32,31,30,29,28,27,26,25,17,101,105,104,103,51,49,48,43]].astype('int64')]), 1)
+ aimg, M = face_align.norm_crop2(img, target_face.kps, self.input_size[0])
+ blob = cv2.dnn.blobFromImage(aimg, 1.0 / self.input_std, self.input_size,
+ (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
+ latent = source_face.normed_embedding.reshape((1,-1))
+ latent = np.dot(latent, self.emap)
+ latent /= np.linalg.norm(latent)
+ pred = self.session.run(self.output_names, {self.input_names[0]: blob, self.input_names[1]: latent})[0]
+ #print(latent.shape, latent.dtype, pred.shape)
+ img_fake = pred.transpose((0,2,3,1))[0]
+ bgr_fake = np.clip(255 * img_fake, 0, 255).astype(np.uint8)[:,:,::-1]
+ if not paste_back:
+ return bgr_fake, M
+ else:
+ target_img = img
+ fake_diff = bgr_fake.astype(np.float32) - aimg.astype(np.float32)
+ fake_diff = np.abs(fake_diff).mean(axis=2)
+ fake_diff[:2,:] = 0
+ fake_diff[-2:,:] = 0
+ fake_diff[:,:2] = 0
+ fake_diff[:,-2:] = 0
+ IM = cv2.invertAffineTransform(M)
+ img_white = np.full((aimg.shape[0],aimg.shape[1]), 255, dtype=np.float32)
+ bgr_fake = cv2.warpAffine(bgr_fake, IM, (target_img.shape[1], target_img.shape[0]), borderValue=0.0)
+ img_white = cv2.warpAffine(img_white, IM, (target_img.shape[1], target_img.shape[0]), borderValue=0.0)
+ fake_diff = cv2.warpAffine(fake_diff, IM, (target_img.shape[1], target_img.shape[0]), borderValue=0.0)
+ img_white[img_white>20] = 255
+ fthresh = 10
+ fake_diff[fake_diff
=fthresh] = 255
+ img_mask = img_white
+ mask_h_inds, mask_w_inds = np.where(img_mask==255)
+ mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
+ mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
+ mask_size = int(np.sqrt(mask_h*mask_w))
+ k = max(mask_size//10, 10)
+ #k = max(mask_size//20, 6)
+ #k = 6
+ kernel = np.ones((k,k),np.uint8)
+ img_mask = cv2.erode(img_mask,kernel,iterations = 1)
+ kernel = np.ones((2,2),np.uint8)
+ fake_diff = cv2.dilate(fake_diff,kernel,iterations = 1)
+
+ face_mask = cv2.erode(face_mask,np.ones((11,11),np.uint8),iterations = 1)
+ fake_diff[face_mask==1] = 255
+
+ k = max(mask_size//20, 5)
+ #k = 3
+ #k = 3
+ kernel_size = (k, k)
+ blur_size = tuple(2*i+1 for i in kernel_size)
+ img_mask = cv2.GaussianBlur(img_mask, blur_size, 0)
+ k = 5
+ kernel_size = (k, k)
+ blur_size = tuple(2*i+1 for i in kernel_size)
+ fake_diff = cv2.blur(fake_diff, (11,11), 0)
+ ##fake_diff = cv2.GaussianBlur(fake_diff, blur_size, 0)
+ # print('blur_size: ', blur_size)
+ # fake_diff = cv2.blur(fake_diff, (21, 21), 0) # blur_size
+ img_mask /= 255
+ fake_diff /= 255
+ # img_mask = fake_diff
+ img_mask = img_mask*fake_diff
+ img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1])
+ fake_merged = img_mask * bgr_fake + (1-img_mask) * target_img.astype(np.float32)
+ fake_merged = fake_merged.astype(np.uint8)
+ return fake_merged
diff --git a/src/utils/dependencies/insightface/model_zoo/landmark.py b/src/utils/dependencies/insightface/model_zoo/landmark.py
new file mode 100644
index 0000000000000000000000000000000000000000..598b4b29a2d0674d8bb25b681f921c61460d101c
--- /dev/null
+++ b/src/utils/dependencies/insightface/model_zoo/landmark.py
@@ -0,0 +1,114 @@
+# -*- coding: utf-8 -*-
+# @Organization : insightface.ai
+# @Author : Jia Guo
+# @Time : 2021-05-04
+# @Function :
+
+from __future__ import division
+import numpy as np
+import cv2
+import onnx
+import onnxruntime
+from ..utils import face_align
+from ..utils import transform
+from ..data import get_object
+
+__all__ = [
+ 'Landmark',
+]
+
+
+class Landmark:
+ def __init__(self, model_file=None, session=None):
+ assert model_file is not None
+ self.model_file = model_file
+ self.session = session
+ find_sub = False
+ find_mul = False
+ model = onnx.load(self.model_file)
+ graph = model.graph
+ for nid, node in enumerate(graph.node[:8]):
+ #print(nid, node.name)
+ if node.name.startswith('Sub') or node.name.startswith('_minus'):
+ find_sub = True
+ if node.name.startswith('Mul') or node.name.startswith('_mul'):
+ find_mul = True
+ if nid<3 and node.name=='bn_data':
+ find_sub = True
+ find_mul = True
+ if find_sub and find_mul:
+ #mxnet arcface model
+ input_mean = 0.0
+ input_std = 1.0
+ else:
+ input_mean = 127.5
+ input_std = 128.0
+ self.input_mean = input_mean
+ self.input_std = input_std
+ #print('input mean and std:', model_file, self.input_mean, self.input_std)
+ if self.session is None:
+ self.session = onnxruntime.InferenceSession(self.model_file, None)
+ input_cfg = self.session.get_inputs()[0]
+ input_shape = input_cfg.shape
+ input_name = input_cfg.name
+ self.input_size = tuple(input_shape[2:4][::-1])
+ self.input_shape = input_shape
+ outputs = self.session.get_outputs()
+ output_names = []
+ for out in outputs:
+ output_names.append(out.name)
+ self.input_name = input_name
+ self.output_names = output_names
+ assert len(self.output_names)==1
+ output_shape = outputs[0].shape
+ self.require_pose = False
+ #print('init output_shape:', output_shape)
+ if output_shape[1]==3309:
+ self.lmk_dim = 3
+ self.lmk_num = 68
+ self.mean_lmk = get_object('meanshape_68.pkl')
+ self.require_pose = True
+ else:
+ self.lmk_dim = 2
+ self.lmk_num = output_shape[1]//self.lmk_dim
+ self.taskname = 'landmark_%dd_%d'%(self.lmk_dim, self.lmk_num)
+
+ def prepare(self, ctx_id, **kwargs):
+ if ctx_id<0:
+ self.session.set_providers(['CPUExecutionProvider'])
+
+ def get(self, img, face):
+ bbox = face.bbox
+ w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1])
+ center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2
+ rotate = 0
+ _scale = self.input_size[0] / (max(w, h)*1.5)
+ #print('param:', img.shape, bbox, center, self.input_size, _scale, rotate)
+ aimg, M = face_align.transform(img, center, self.input_size[0], _scale, rotate)
+ input_size = tuple(aimg.shape[0:2][::-1])
+ #assert input_size==self.input_size
+ blob = cv2.dnn.blobFromImage(aimg, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
+ pred = self.session.run(self.output_names, {self.input_name : blob})[0][0]
+ if pred.shape[0] >= 3000:
+ pred = pred.reshape((-1, 3))
+ else:
+ pred = pred.reshape((-1, 2))
+ if self.lmk_num < pred.shape[0]:
+ pred = pred[self.lmk_num*-1:,:]
+ pred[:, 0:2] += 1
+ pred[:, 0:2] *= (self.input_size[0] // 2)
+ if pred.shape[1] == 3:
+ pred[:, 2] *= (self.input_size[0] // 2)
+
+ IM = cv2.invertAffineTransform(M)
+ pred = face_align.trans_points(pred, IM)
+ face[self.taskname] = pred
+ if self.require_pose:
+ P = transform.estimate_affine_matrix_3d23d(self.mean_lmk, pred)
+ s, R, t = transform.P2sRt(P)
+ rx, ry, rz = transform.matrix2angle(R)
+ pose = np.array( [rx, ry, rz], dtype=np.float32 )
+ face['pose'] = pose #pitch, yaw, roll
+ return pred
+
+
diff --git a/src/utils/dependencies/insightface/model_zoo/model_store.py b/src/utils/dependencies/insightface/model_zoo/model_store.py
new file mode 100644
index 0000000000000000000000000000000000000000..50bb85d314f5b7a0ea8211d2cd21186e32791592
--- /dev/null
+++ b/src/utils/dependencies/insightface/model_zoo/model_store.py
@@ -0,0 +1,103 @@
+"""
+This code file mainly comes from https://github.com/dmlc/gluon-cv/blob/master/gluoncv/model_zoo/model_store.py
+"""
+from __future__ import print_function
+
+__all__ = ['get_model_file']
+import os
+import zipfile
+import glob
+
+from ..utils import download, check_sha1
+
+_model_sha1 = {
+ name: checksum
+ for checksum, name in [
+ ('95be21b58e29e9c1237f229dae534bd854009ce0', 'arcface_r100_v1'),
+ ('', 'arcface_mfn_v1'),
+ ('39fd1e087a2a2ed70a154ac01fecaa86c315d01b', 'retinaface_r50_v1'),
+ ('2c9de8116d1f448fd1d4661f90308faae34c990a', 'retinaface_mnet025_v1'),
+ ('0db1d07921d005e6c9a5b38e059452fc5645e5a4', 'retinaface_mnet025_v2'),
+ ('7dd8111652b7aac2490c5dcddeb268e53ac643e6', 'genderage_v1'),
+ ]
+}
+
+base_repo_url = 'https://insightface.ai/files/'
+_url_format = '{repo_url}models/{file_name}.zip'
+
+
+def short_hash(name):
+ if name not in _model_sha1:
+ raise ValueError(
+ 'Pretrained model for {name} is not available.'.format(name=name))
+ return _model_sha1[name][:8]
+
+
+def find_params_file(dir_path):
+ if not os.path.exists(dir_path):
+ return None
+ paths = glob.glob("%s/*.params" % dir_path)
+ if len(paths) == 0:
+ return None
+ paths = sorted(paths)
+ return paths[-1]
+
+
+def get_model_file(name, root=os.path.join('~', '.insightface', 'models')):
+ r"""Return location for the pretrained on local file system.
+
+ This function will download from online model zoo when model cannot be found or has mismatch.
+ The root directory will be created if it doesn't exist.
+
+ Parameters
+ ----------
+ name : str
+ Name of the model.
+ root : str, default '~/.mxnet/models'
+ Location for keeping the model parameters.
+
+ Returns
+ -------
+ file_path
+ Path to the requested pretrained model file.
+ """
+
+ file_name = name
+ root = os.path.expanduser(root)
+ dir_path = os.path.join(root, name)
+ file_path = find_params_file(dir_path)
+ #file_path = os.path.join(root, file_name + '.params')
+ sha1_hash = _model_sha1[name]
+ if file_path is not None:
+ if check_sha1(file_path, sha1_hash):
+ return file_path
+ else:
+ print(
+ 'Mismatch in the content of model file detected. Downloading again.'
+ )
+ else:
+ print('Model file is not found. Downloading.')
+
+ if not os.path.exists(root):
+ os.makedirs(root)
+ if not os.path.exists(dir_path):
+ os.makedirs(dir_path)
+
+ zip_file_path = os.path.join(root, file_name + '.zip')
+ repo_url = base_repo_url
+ if repo_url[-1] != '/':
+ repo_url = repo_url + '/'
+ download(_url_format.format(repo_url=repo_url, file_name=file_name),
+ path=zip_file_path,
+ overwrite=True)
+ with zipfile.ZipFile(zip_file_path) as zf:
+ zf.extractall(dir_path)
+ os.remove(zip_file_path)
+ file_path = find_params_file(dir_path)
+
+ if check_sha1(file_path, sha1_hash):
+ return file_path
+ else:
+ raise ValueError(
+ 'Downloaded file has different hash. Please try again.')
+
diff --git a/src/utils/dependencies/insightface/model_zoo/model_zoo.py b/src/utils/dependencies/insightface/model_zoo/model_zoo.py
new file mode 100644
index 0000000000000000000000000000000000000000..d8366e2a5461d5d6688f23e102a40944330084a4
--- /dev/null
+++ b/src/utils/dependencies/insightface/model_zoo/model_zoo.py
@@ -0,0 +1,97 @@
+# -*- coding: utf-8 -*-
+# @Organization : insightface.ai
+# @Author : Jia Guo
+# @Time : 2021-05-04
+# @Function :
+
+import os
+import os.path as osp
+import glob
+import onnxruntime
+from .arcface_onnx import *
+from .retinaface import *
+#from .scrfd import *
+from .landmark import *
+from .attribute import Attribute
+from .inswapper import INSwapper
+from ..utils import download_onnx
+
+__all__ = ['get_model']
+
+
+class PickableInferenceSession(onnxruntime.InferenceSession):
+ # This is a wrapper to make the current InferenceSession class pickable.
+ def __init__(self, model_path, **kwargs):
+ super().__init__(model_path, **kwargs)
+ self.model_path = model_path
+
+ def __getstate__(self):
+ return {'model_path': self.model_path}
+
+ def __setstate__(self, values):
+ model_path = values['model_path']
+ self.__init__(model_path)
+
+class ModelRouter:
+ def __init__(self, onnx_file):
+ self.onnx_file = onnx_file
+
+ def get_model(self, **kwargs):
+ session = PickableInferenceSession(self.onnx_file, **kwargs)
+ # print(f'Applied providers: {session._providers}, with options: {session._provider_options}')
+ inputs = session.get_inputs()
+ input_cfg = inputs[0]
+ input_shape = input_cfg.shape
+ outputs = session.get_outputs()
+
+ if len(outputs)>=5:
+ return RetinaFace(model_file=self.onnx_file, session=session)
+ elif input_shape[2]==192 and input_shape[3]==192:
+ return Landmark(model_file=self.onnx_file, session=session)
+ elif input_shape[2]==96 and input_shape[3]==96:
+ return Attribute(model_file=self.onnx_file, session=session)
+ elif len(inputs)==2 and input_shape[2]==128 and input_shape[3]==128:
+ return INSwapper(model_file=self.onnx_file, session=session)
+ elif input_shape[2]==input_shape[3] and input_shape[2]>=112 and input_shape[2]%16==0:
+ return ArcFaceONNX(model_file=self.onnx_file, session=session)
+ else:
+ #raise RuntimeError('error on model routing')
+ return None
+
+def find_onnx_file(dir_path):
+ if not os.path.exists(dir_path):
+ return None
+ paths = glob.glob("%s/*.onnx" % dir_path)
+ if len(paths) == 0:
+ return None
+ paths = sorted(paths)
+ return paths[-1]
+
+def get_default_providers():
+ return ['CUDAExecutionProvider', 'CPUExecutionProvider']
+
+def get_default_provider_options():
+ return None
+
+def get_model(name, **kwargs):
+ root = kwargs.get('root', '~/.insightface')
+ root = os.path.expanduser(root)
+ model_root = osp.join(root, 'models')
+ allow_download = kwargs.get('download', False)
+ download_zip = kwargs.get('download_zip', False)
+ if not name.endswith('.onnx'):
+ model_dir = os.path.join(model_root, name)
+ model_file = find_onnx_file(model_dir)
+ if model_file is None:
+ return None
+ else:
+ model_file = name
+ if not osp.exists(model_file) and allow_download:
+ model_file = download_onnx('models', model_file, root=root, download_zip=download_zip)
+ assert osp.exists(model_file), 'model_file %s should exist'%model_file
+ assert osp.isfile(model_file), 'model_file %s should be a file'%model_file
+ router = ModelRouter(model_file)
+ providers = kwargs.get('providers', get_default_providers())
+ provider_options = kwargs.get('provider_options', get_default_provider_options())
+ model = router.get_model(providers=providers, provider_options=provider_options)
+ return model
diff --git a/src/utils/dependencies/insightface/model_zoo/retinaface.py b/src/utils/dependencies/insightface/model_zoo/retinaface.py
new file mode 100644
index 0000000000000000000000000000000000000000..fc4ad91ed70688b38503127137e928dc7e5433e1
--- /dev/null
+++ b/src/utils/dependencies/insightface/model_zoo/retinaface.py
@@ -0,0 +1,301 @@
+# -*- coding: utf-8 -*-
+# @Organization : insightface.ai
+# @Author : Jia Guo
+# @Time : 2021-09-18
+# @Function :
+
+from __future__ import division
+import datetime
+import numpy as np
+import onnx
+import onnxruntime
+import os
+import os.path as osp
+import cv2
+import sys
+
+def softmax(z):
+ assert len(z.shape) == 2
+ s = np.max(z, axis=1)
+ s = s[:, np.newaxis] # necessary step to do broadcasting
+ e_x = np.exp(z - s)
+ div = np.sum(e_x, axis=1)
+ div = div[:, np.newaxis] # dito
+ return e_x / div
+
+def distance2bbox(points, distance, max_shape=None):
+ """Decode distance prediction to bounding box.
+
+ Args:
+ points (Tensor): Shape (n, 2), [x, y].
+ distance (Tensor): Distance from the given point to 4
+ boundaries (left, top, right, bottom).
+ max_shape (tuple): Shape of the image.
+
+ Returns:
+ Tensor: Decoded bboxes.
+ """
+ x1 = points[:, 0] - distance[:, 0]
+ y1 = points[:, 1] - distance[:, 1]
+ x2 = points[:, 0] + distance[:, 2]
+ y2 = points[:, 1] + distance[:, 3]
+ if max_shape is not None:
+ x1 = x1.clamp(min=0, max=max_shape[1])
+ y1 = y1.clamp(min=0, max=max_shape[0])
+ x2 = x2.clamp(min=0, max=max_shape[1])
+ y2 = y2.clamp(min=0, max=max_shape[0])
+ return np.stack([x1, y1, x2, y2], axis=-1)
+
+def distance2kps(points, distance, max_shape=None):
+ """Decode distance prediction to bounding box.
+
+ Args:
+ points (Tensor): Shape (n, 2), [x, y].
+ distance (Tensor): Distance from the given point to 4
+ boundaries (left, top, right, bottom).
+ max_shape (tuple): Shape of the image.
+
+ Returns:
+ Tensor: Decoded bboxes.
+ """
+ preds = []
+ for i in range(0, distance.shape[1], 2):
+ px = points[:, i%2] + distance[:, i]
+ py = points[:, i%2+1] + distance[:, i+1]
+ if max_shape is not None:
+ px = px.clamp(min=0, max=max_shape[1])
+ py = py.clamp(min=0, max=max_shape[0])
+ preds.append(px)
+ preds.append(py)
+ return np.stack(preds, axis=-1)
+
+class RetinaFace:
+ def __init__(self, model_file=None, session=None):
+ import onnxruntime
+ self.model_file = model_file
+ self.session = session
+ self.taskname = 'detection'
+ if self.session is None:
+ assert self.model_file is not None
+ assert osp.exists(self.model_file)
+ self.session = onnxruntime.InferenceSession(self.model_file, None)
+ self.center_cache = {}
+ self.nms_thresh = 0.4
+ self.det_thresh = 0.5
+ self._init_vars()
+
+ def _init_vars(self):
+ input_cfg = self.session.get_inputs()[0]
+ input_shape = input_cfg.shape
+ #print(input_shape)
+ if isinstance(input_shape[2], str):
+ self.input_size = None
+ else:
+ self.input_size = tuple(input_shape[2:4][::-1])
+ #print('image_size:', self.image_size)
+ input_name = input_cfg.name
+ self.input_shape = input_shape
+ outputs = self.session.get_outputs()
+ output_names = []
+ for o in outputs:
+ output_names.append(o.name)
+ self.input_name = input_name
+ self.output_names = output_names
+ self.input_mean = 127.5
+ self.input_std = 128.0
+ #print(self.output_names)
+ #assert len(outputs)==10 or len(outputs)==15
+ self.use_kps = False
+ self._anchor_ratio = 1.0
+ self._num_anchors = 1
+ if len(outputs)==6:
+ self.fmc = 3
+ self._feat_stride_fpn = [8, 16, 32]
+ self._num_anchors = 2
+ elif len(outputs)==9:
+ self.fmc = 3
+ self._feat_stride_fpn = [8, 16, 32]
+ self._num_anchors = 2
+ self.use_kps = True
+ elif len(outputs)==10:
+ self.fmc = 5
+ self._feat_stride_fpn = [8, 16, 32, 64, 128]
+ self._num_anchors = 1
+ elif len(outputs)==15:
+ self.fmc = 5
+ self._feat_stride_fpn = [8, 16, 32, 64, 128]
+ self._num_anchors = 1
+ self.use_kps = True
+
+ def prepare(self, ctx_id, **kwargs):
+ if ctx_id<0:
+ self.session.set_providers(['CPUExecutionProvider'])
+ nms_thresh = kwargs.get('nms_thresh', None)
+ if nms_thresh is not None:
+ self.nms_thresh = nms_thresh
+ det_thresh = kwargs.get('det_thresh', None)
+ if det_thresh is not None:
+ self.det_thresh = det_thresh
+ input_size = kwargs.get('input_size', None)
+ if input_size is not None:
+ if self.input_size is not None:
+ print('warning: det_size is already set in detection model, ignore')
+ else:
+ self.input_size = input_size
+
+ def forward(self, img, threshold):
+ scores_list = []
+ bboxes_list = []
+ kpss_list = []
+ input_size = tuple(img.shape[0:2][::-1])
+ blob = cv2.dnn.blobFromImage(img, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
+ net_outs = self.session.run(self.output_names, {self.input_name : blob})
+
+ input_height = blob.shape[2]
+ input_width = blob.shape[3]
+ fmc = self.fmc
+ for idx, stride in enumerate(self._feat_stride_fpn):
+ scores = net_outs[idx]
+ bbox_preds = net_outs[idx+fmc]
+ bbox_preds = bbox_preds * stride
+ if self.use_kps:
+ kps_preds = net_outs[idx+fmc*2] * stride
+ height = input_height // stride
+ width = input_width // stride
+ K = height * width
+ key = (height, width, stride)
+ if key in self.center_cache:
+ anchor_centers = self.center_cache[key]
+ else:
+ #solution-1, c style:
+ #anchor_centers = np.zeros( (height, width, 2), dtype=np.float32 )
+ #for i in range(height):
+ # anchor_centers[i, :, 1] = i
+ #for i in range(width):
+ # anchor_centers[:, i, 0] = i
+
+ #solution-2:
+ #ax = np.arange(width, dtype=np.float32)
+ #ay = np.arange(height, dtype=np.float32)
+ #xv, yv = np.meshgrid(np.arange(width), np.arange(height))
+ #anchor_centers = np.stack([xv, yv], axis=-1).astype(np.float32)
+
+ #solution-3:
+ anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32)
+ #print(anchor_centers.shape)
+
+ anchor_centers = (anchor_centers * stride).reshape( (-1, 2) )
+ if self._num_anchors>1:
+ anchor_centers = np.stack([anchor_centers]*self._num_anchors, axis=1).reshape( (-1,2) )
+ if len(self.center_cache)<100:
+ self.center_cache[key] = anchor_centers
+
+ pos_inds = np.where(scores>=threshold)[0]
+ bboxes = distance2bbox(anchor_centers, bbox_preds)
+ pos_scores = scores[pos_inds]
+ pos_bboxes = bboxes[pos_inds]
+ scores_list.append(pos_scores)
+ bboxes_list.append(pos_bboxes)
+ if self.use_kps:
+ kpss = distance2kps(anchor_centers, kps_preds)
+ #kpss = kps_preds
+ kpss = kpss.reshape( (kpss.shape[0], -1, 2) )
+ pos_kpss = kpss[pos_inds]
+ kpss_list.append(pos_kpss)
+ return scores_list, bboxes_list, kpss_list
+
+ def detect(self, img, input_size = None, max_num=0, metric='default'):
+ assert input_size is not None or self.input_size is not None
+ input_size = self.input_size if input_size is None else input_size
+
+ im_ratio = float(img.shape[0]) / img.shape[1]
+ model_ratio = float(input_size[1]) / input_size[0]
+ if im_ratio>model_ratio:
+ new_height = input_size[1]
+ new_width = int(new_height / im_ratio)
+ else:
+ new_width = input_size[0]
+ new_height = int(new_width * im_ratio)
+ det_scale = float(new_height) / img.shape[0]
+ resized_img = cv2.resize(img, (new_width, new_height))
+ det_img = np.zeros( (input_size[1], input_size[0], 3), dtype=np.uint8 )
+ det_img[:new_height, :new_width, :] = resized_img
+
+ scores_list, bboxes_list, kpss_list = self.forward(det_img, self.det_thresh)
+
+ scores = np.vstack(scores_list)
+ scores_ravel = scores.ravel()
+ order = scores_ravel.argsort()[::-1]
+ bboxes = np.vstack(bboxes_list) / det_scale
+ if self.use_kps:
+ kpss = np.vstack(kpss_list) / det_scale
+ pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False)
+ pre_det = pre_det[order, :]
+ keep = self.nms(pre_det)
+ det = pre_det[keep, :]
+ if self.use_kps:
+ kpss = kpss[order,:,:]
+ kpss = kpss[keep,:,:]
+ else:
+ kpss = None
+ if max_num > 0 and det.shape[0] > max_num:
+ area = (det[:, 2] - det[:, 0]) * (det[:, 3] -
+ det[:, 1])
+ img_center = img.shape[0] // 2, img.shape[1] // 2
+ offsets = np.vstack([
+ (det[:, 0] + det[:, 2]) / 2 - img_center[1],
+ (det[:, 1] + det[:, 3]) / 2 - img_center[0]
+ ])
+ offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
+ if metric=='max':
+ values = area
+ else:
+ values = area - offset_dist_squared * 2.0 # some extra weight on the centering
+ bindex = np.argsort(
+ values)[::-1] # some extra weight on the centering
+ bindex = bindex[0:max_num]
+ det = det[bindex, :]
+ if kpss is not None:
+ kpss = kpss[bindex, :]
+ return det, kpss
+
+ def nms(self, dets):
+ thresh = self.nms_thresh
+ x1 = dets[:, 0]
+ y1 = dets[:, 1]
+ x2 = dets[:, 2]
+ y2 = dets[:, 3]
+ scores = dets[:, 4]
+
+ areas = (x2 - x1 + 1) * (y2 - y1 + 1)
+ order = scores.argsort()[::-1]
+
+ keep = []
+ while order.size > 0:
+ i = order[0]
+ keep.append(i)
+ xx1 = np.maximum(x1[i], x1[order[1:]])
+ yy1 = np.maximum(y1[i], y1[order[1:]])
+ xx2 = np.minimum(x2[i], x2[order[1:]])
+ yy2 = np.minimum(y2[i], y2[order[1:]])
+
+ w = np.maximum(0.0, xx2 - xx1 + 1)
+ h = np.maximum(0.0, yy2 - yy1 + 1)
+ inter = w * h
+ ovr = inter / (areas[i] + areas[order[1:]] - inter)
+
+ inds = np.where(ovr <= thresh)[0]
+ order = order[inds + 1]
+
+ return keep
+
+def get_retinaface(name, download=False, root='~/.insightface/models', **kwargs):
+ if not download:
+ assert os.path.exists(name)
+ return RetinaFace(name)
+ else:
+ from .model_store import get_model_file
+ _file = get_model_file("retinaface_%s" % name, root=root)
+ return retinaface(_file)
+
+
diff --git a/src/utils/dependencies/insightface/model_zoo/scrfd.py b/src/utils/dependencies/insightface/model_zoo/scrfd.py
new file mode 100644
index 0000000000000000000000000000000000000000..674db4bba761157592dfb95c5d1638da1099f89c
--- /dev/null
+++ b/src/utils/dependencies/insightface/model_zoo/scrfd.py
@@ -0,0 +1,348 @@
+# -*- coding: utf-8 -*-
+# @Organization : insightface.ai
+# @Author : Jia Guo
+# @Time : 2021-05-04
+# @Function :
+
+from __future__ import division
+import datetime
+import numpy as np
+import onnx
+import onnxruntime
+import os
+import os.path as osp
+import cv2
+import sys
+
+def softmax(z):
+ assert len(z.shape) == 2
+ s = np.max(z, axis=1)
+ s = s[:, np.newaxis] # necessary step to do broadcasting
+ e_x = np.exp(z - s)
+ div = np.sum(e_x, axis=1)
+ div = div[:, np.newaxis] # dito
+ return e_x / div
+
+def distance2bbox(points, distance, max_shape=None):
+ """Decode distance prediction to bounding box.
+
+ Args:
+ points (Tensor): Shape (n, 2), [x, y].
+ distance (Tensor): Distance from the given point to 4
+ boundaries (left, top, right, bottom).
+ max_shape (tuple): Shape of the image.
+
+ Returns:
+ Tensor: Decoded bboxes.
+ """
+ x1 = points[:, 0] - distance[:, 0]
+ y1 = points[:, 1] - distance[:, 1]
+ x2 = points[:, 0] + distance[:, 2]
+ y2 = points[:, 1] + distance[:, 3]
+ if max_shape is not None:
+ x1 = x1.clamp(min=0, max=max_shape[1])
+ y1 = y1.clamp(min=0, max=max_shape[0])
+ x2 = x2.clamp(min=0, max=max_shape[1])
+ y2 = y2.clamp(min=0, max=max_shape[0])
+ return np.stack([x1, y1, x2, y2], axis=-1)
+
+def distance2kps(points, distance, max_shape=None):
+ """Decode distance prediction to bounding box.
+
+ Args:
+ points (Tensor): Shape (n, 2), [x, y].
+ distance (Tensor): Distance from the given point to 4
+ boundaries (left, top, right, bottom).
+ max_shape (tuple): Shape of the image.
+
+ Returns:
+ Tensor: Decoded bboxes.
+ """
+ preds = []
+ for i in range(0, distance.shape[1], 2):
+ px = points[:, i%2] + distance[:, i]
+ py = points[:, i%2+1] + distance[:, i+1]
+ if max_shape is not None:
+ px = px.clamp(min=0, max=max_shape[1])
+ py = py.clamp(min=0, max=max_shape[0])
+ preds.append(px)
+ preds.append(py)
+ return np.stack(preds, axis=-1)
+
+class SCRFD:
+ def __init__(self, model_file=None, session=None):
+ import onnxruntime
+ self.model_file = model_file
+ self.session = session
+ self.taskname = 'detection'
+ self.batched = False
+ if self.session is None:
+ assert self.model_file is not None
+ assert osp.exists(self.model_file)
+ self.session = onnxruntime.InferenceSession(self.model_file, None)
+ self.center_cache = {}
+ self.nms_thresh = 0.4
+ self.det_thresh = 0.5
+ self._init_vars()
+
+ def _init_vars(self):
+ input_cfg = self.session.get_inputs()[0]
+ input_shape = input_cfg.shape
+ #print(input_shape)
+ if isinstance(input_shape[2], str):
+ self.input_size = None
+ else:
+ self.input_size = tuple(input_shape[2:4][::-1])
+ #print('image_size:', self.image_size)
+ input_name = input_cfg.name
+ self.input_shape = input_shape
+ outputs = self.session.get_outputs()
+ if len(outputs[0].shape) == 3:
+ self.batched = True
+ output_names = []
+ for o in outputs:
+ output_names.append(o.name)
+ self.input_name = input_name
+ self.output_names = output_names
+ self.input_mean = 127.5
+ self.input_std = 128.0
+ #print(self.output_names)
+ #assert len(outputs)==10 or len(outputs)==15
+ self.use_kps = False
+ self._anchor_ratio = 1.0
+ self._num_anchors = 1
+ if len(outputs)==6:
+ self.fmc = 3
+ self._feat_stride_fpn = [8, 16, 32]
+ self._num_anchors = 2
+ elif len(outputs)==9:
+ self.fmc = 3
+ self._feat_stride_fpn = [8, 16, 32]
+ self._num_anchors = 2
+ self.use_kps = True
+ elif len(outputs)==10:
+ self.fmc = 5
+ self._feat_stride_fpn = [8, 16, 32, 64, 128]
+ self._num_anchors = 1
+ elif len(outputs)==15:
+ self.fmc = 5
+ self._feat_stride_fpn = [8, 16, 32, 64, 128]
+ self._num_anchors = 1
+ self.use_kps = True
+
+ def prepare(self, ctx_id, **kwargs):
+ if ctx_id<0:
+ self.session.set_providers(['CPUExecutionProvider'])
+ nms_thresh = kwargs.get('nms_thresh', None)
+ if nms_thresh is not None:
+ self.nms_thresh = nms_thresh
+ det_thresh = kwargs.get('det_thresh', None)
+ if det_thresh is not None:
+ self.det_thresh = det_thresh
+ input_size = kwargs.get('input_size', None)
+ if input_size is not None:
+ if self.input_size is not None:
+ print('warning: det_size is already set in scrfd model, ignore')
+ else:
+ self.input_size = input_size
+
+ def forward(self, img, threshold):
+ scores_list = []
+ bboxes_list = []
+ kpss_list = []
+ input_size = tuple(img.shape[0:2][::-1])
+ blob = cv2.dnn.blobFromImage(img, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
+ net_outs = self.session.run(self.output_names, {self.input_name : blob})
+
+ input_height = blob.shape[2]
+ input_width = blob.shape[3]
+ fmc = self.fmc
+ for idx, stride in enumerate(self._feat_stride_fpn):
+ # If model support batch dim, take first output
+ if self.batched:
+ scores = net_outs[idx][0]
+ bbox_preds = net_outs[idx + fmc][0]
+ bbox_preds = bbox_preds * stride
+ if self.use_kps:
+ kps_preds = net_outs[idx + fmc * 2][0] * stride
+ # If model doesn't support batching take output as is
+ else:
+ scores = net_outs[idx]
+ bbox_preds = net_outs[idx + fmc]
+ bbox_preds = bbox_preds * stride
+ if self.use_kps:
+ kps_preds = net_outs[idx + fmc * 2] * stride
+
+ height = input_height // stride
+ width = input_width // stride
+ K = height * width
+ key = (height, width, stride)
+ if key in self.center_cache:
+ anchor_centers = self.center_cache[key]
+ else:
+ #solution-1, c style:
+ #anchor_centers = np.zeros( (height, width, 2), dtype=np.float32 )
+ #for i in range(height):
+ # anchor_centers[i, :, 1] = i
+ #for i in range(width):
+ # anchor_centers[:, i, 0] = i
+
+ #solution-2:
+ #ax = np.arange(width, dtype=np.float32)
+ #ay = np.arange(height, dtype=np.float32)
+ #xv, yv = np.meshgrid(np.arange(width), np.arange(height))
+ #anchor_centers = np.stack([xv, yv], axis=-1).astype(np.float32)
+
+ #solution-3:
+ anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32)
+ #print(anchor_centers.shape)
+
+ anchor_centers = (anchor_centers * stride).reshape( (-1, 2) )
+ if self._num_anchors>1:
+ anchor_centers = np.stack([anchor_centers]*self._num_anchors, axis=1).reshape( (-1,2) )
+ if len(self.center_cache)<100:
+ self.center_cache[key] = anchor_centers
+
+ pos_inds = np.where(scores>=threshold)[0]
+ bboxes = distance2bbox(anchor_centers, bbox_preds)
+ pos_scores = scores[pos_inds]
+ pos_bboxes = bboxes[pos_inds]
+ scores_list.append(pos_scores)
+ bboxes_list.append(pos_bboxes)
+ if self.use_kps:
+ kpss = distance2kps(anchor_centers, kps_preds)
+ #kpss = kps_preds
+ kpss = kpss.reshape( (kpss.shape[0], -1, 2) )
+ pos_kpss = kpss[pos_inds]
+ kpss_list.append(pos_kpss)
+ return scores_list, bboxes_list, kpss_list
+
+ def detect(self, img, input_size = None, max_num=0, metric='default'):
+ assert input_size is not None or self.input_size is not None
+ input_size = self.input_size if input_size is None else input_size
+
+ im_ratio = float(img.shape[0]) / img.shape[1]
+ model_ratio = float(input_size[1]) / input_size[0]
+ if im_ratio>model_ratio:
+ new_height = input_size[1]
+ new_width = int(new_height / im_ratio)
+ else:
+ new_width = input_size[0]
+ new_height = int(new_width * im_ratio)
+ det_scale = float(new_height) / img.shape[0]
+ resized_img = cv2.resize(img, (new_width, new_height))
+ det_img = np.zeros( (input_size[1], input_size[0], 3), dtype=np.uint8 )
+ det_img[:new_height, :new_width, :] = resized_img
+
+ scores_list, bboxes_list, kpss_list = self.forward(det_img, self.det_thresh)
+
+ scores = np.vstack(scores_list)
+ scores_ravel = scores.ravel()
+ order = scores_ravel.argsort()[::-1]
+ bboxes = np.vstack(bboxes_list) / det_scale
+ if self.use_kps:
+ kpss = np.vstack(kpss_list) / det_scale
+ pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False)
+ pre_det = pre_det[order, :]
+ keep = self.nms(pre_det)
+ det = pre_det[keep, :]
+ if self.use_kps:
+ kpss = kpss[order,:,:]
+ kpss = kpss[keep,:,:]
+ else:
+ kpss = None
+ if max_num > 0 and det.shape[0] > max_num:
+ area = (det[:, 2] - det[:, 0]) * (det[:, 3] -
+ det[:, 1])
+ img_center = img.shape[0] // 2, img.shape[1] // 2
+ offsets = np.vstack([
+ (det[:, 0] + det[:, 2]) / 2 - img_center[1],
+ (det[:, 1] + det[:, 3]) / 2 - img_center[0]
+ ])
+ offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
+ if metric=='max':
+ values = area
+ else:
+ values = area - offset_dist_squared * 2.0 # some extra weight on the centering
+ bindex = np.argsort(
+ values)[::-1] # some extra weight on the centering
+ bindex = bindex[0:max_num]
+ det = det[bindex, :]
+ if kpss is not None:
+ kpss = kpss[bindex, :]
+ return det, kpss
+
+ def nms(self, dets):
+ thresh = self.nms_thresh
+ x1 = dets[:, 0]
+ y1 = dets[:, 1]
+ x2 = dets[:, 2]
+ y2 = dets[:, 3]
+ scores = dets[:, 4]
+
+ areas = (x2 - x1 + 1) * (y2 - y1 + 1)
+ order = scores.argsort()[::-1]
+
+ keep = []
+ while order.size > 0:
+ i = order[0]
+ keep.append(i)
+ xx1 = np.maximum(x1[i], x1[order[1:]])
+ yy1 = np.maximum(y1[i], y1[order[1:]])
+ xx2 = np.minimum(x2[i], x2[order[1:]])
+ yy2 = np.minimum(y2[i], y2[order[1:]])
+
+ w = np.maximum(0.0, xx2 - xx1 + 1)
+ h = np.maximum(0.0, yy2 - yy1 + 1)
+ inter = w * h
+ ovr = inter / (areas[i] + areas[order[1:]] - inter)
+
+ inds = np.where(ovr <= thresh)[0]
+ order = order[inds + 1]
+
+ return keep
+
+def get_scrfd(name, download=False, root='~/.insightface/models', **kwargs):
+ if not download:
+ assert os.path.exists(name)
+ return SCRFD(name)
+ else:
+ from .model_store import get_model_file
+ _file = get_model_file("scrfd_%s" % name, root=root)
+ return SCRFD(_file)
+
+
+def scrfd_2p5gkps(**kwargs):
+ return get_scrfd("2p5gkps", download=True, **kwargs)
+
+
+if __name__ == '__main__':
+ import glob
+ detector = SCRFD(model_file='./det.onnx')
+ detector.prepare(-1)
+ img_paths = ['tests/data/t1.jpg']
+ for img_path in img_paths:
+ img = cv2.imread(img_path)
+
+ for _ in range(1):
+ ta = datetime.datetime.now()
+ #bboxes, kpss = detector.detect(img, 0.5, input_size = (640, 640))
+ bboxes, kpss = detector.detect(img, 0.5)
+ tb = datetime.datetime.now()
+ print('all cost:', (tb-ta).total_seconds()*1000)
+ print(img_path, bboxes.shape)
+ if kpss is not None:
+ print(kpss.shape)
+ for i in range(bboxes.shape[0]):
+ bbox = bboxes[i]
+ x1,y1,x2,y2,score = bbox.astype(np.int)
+ cv2.rectangle(img, (x1,y1) , (x2,y2) , (255,0,0) , 2)
+ if kpss is not None:
+ kps = kpss[i]
+ for kp in kps:
+ kp = kp.astype(np.int)
+ cv2.circle(img, tuple(kp) , 1, (0,0,255) , 2)
+ filename = img_path.split('/')[-1]
+ print('output:', filename)
+ cv2.imwrite('./outputs/%s'%filename, img)
+
diff --git a/src/utils/dependencies/insightface/utils/__init__.py b/src/utils/dependencies/insightface/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..6960431b1bd6db38890e391c4c94dd2182f2e1fd
--- /dev/null
+++ b/src/utils/dependencies/insightface/utils/__init__.py
@@ -0,0 +1,6 @@
+from __future__ import absolute_import
+
+from .storage import download, ensure_available, download_onnx
+from .filesystem import get_model_dir
+from .filesystem import makedirs, try_import_dali
+from .constant import *
diff --git a/src/utils/dependencies/insightface/utils/constant.py b/src/utils/dependencies/insightface/utils/constant.py
new file mode 100644
index 0000000000000000000000000000000000000000..8860ff077ae7227235591edfc84c0cdc227a6432
--- /dev/null
+++ b/src/utils/dependencies/insightface/utils/constant.py
@@ -0,0 +1,3 @@
+
+DEFAULT_MP_NAME = 'buffalo_l'
+
diff --git a/src/utils/dependencies/insightface/utils/download.py b/src/utils/dependencies/insightface/utils/download.py
new file mode 100644
index 0000000000000000000000000000000000000000..5cda84dede45b81dcd99161d87792b6c409fa279
--- /dev/null
+++ b/src/utils/dependencies/insightface/utils/download.py
@@ -0,0 +1,95 @@
+"""
+This code file mainly comes from https://github.com/dmlc/gluon-cv/blob/master/gluoncv/utils/download.py
+"""
+import os
+import hashlib
+import requests
+from tqdm import tqdm
+
+
+def check_sha1(filename, sha1_hash):
+ """Check whether the sha1 hash of the file content matches the expected hash.
+ Parameters
+ ----------
+ filename : str
+ Path to the file.
+ sha1_hash : str
+ Expected sha1 hash in hexadecimal digits.
+ Returns
+ -------
+ bool
+ Whether the file content matches the expected hash.
+ """
+ sha1 = hashlib.sha1()
+ with open(filename, 'rb') as f:
+ while True:
+ data = f.read(1048576)
+ if not data:
+ break
+ sha1.update(data)
+
+ sha1_file = sha1.hexdigest()
+ l = min(len(sha1_file), len(sha1_hash))
+ return sha1.hexdigest()[0:l] == sha1_hash[0:l]
+
+
+def download_file(url, path=None, overwrite=False, sha1_hash=None):
+ """Download an given URL
+ Parameters
+ ----------
+ url : str
+ URL to download
+ path : str, optional
+ Destination path to store downloaded file. By default stores to the
+ current directory with same name as in url.
+ overwrite : bool, optional
+ Whether to overwrite destination file if already exists.
+ sha1_hash : str, optional
+ Expected sha1 hash in hexadecimal digits. Will ignore existing file when hash is specified
+ but doesn't match.
+ Returns
+ -------
+ str
+ The file path of the downloaded file.
+ """
+ if path is None:
+ fname = url.split('/')[-1]
+ else:
+ path = os.path.expanduser(path)
+ if os.path.isdir(path):
+ fname = os.path.join(path, url.split('/')[-1])
+ else:
+ fname = path
+
+ if overwrite or not os.path.exists(fname) or (
+ sha1_hash and not check_sha1(fname, sha1_hash)):
+ dirname = os.path.dirname(os.path.abspath(os.path.expanduser(fname)))
+ if not os.path.exists(dirname):
+ os.makedirs(dirname)
+
+ print('Downloading %s from %s...' % (fname, url))
+ r = requests.get(url, stream=True)
+ if r.status_code != 200:
+ raise RuntimeError("Failed downloading url %s" % url)
+ total_length = r.headers.get('content-length')
+ with open(fname, 'wb') as f:
+ if total_length is None: # no content length header
+ for chunk in r.iter_content(chunk_size=1024):
+ if chunk: # filter out keep-alive new chunks
+ f.write(chunk)
+ else:
+ total_length = int(total_length)
+ for chunk in tqdm(r.iter_content(chunk_size=1024),
+ total=int(total_length / 1024. + 0.5),
+ unit='KB',
+ unit_scale=False,
+ dynamic_ncols=True):
+ f.write(chunk)
+
+ if sha1_hash and not check_sha1(fname, sha1_hash):
+ raise UserWarning('File {} is downloaded but the content hash does not match. ' \
+ 'The repo may be outdated or download may be incomplete. ' \
+ 'If the "repo_url" is overridden, consider switching to ' \
+ 'the default repo.'.format(fname))
+
+ return fname
diff --git a/src/utils/dependencies/insightface/utils/face_align.py b/src/utils/dependencies/insightface/utils/face_align.py
new file mode 100644
index 0000000000000000000000000000000000000000..226628b39cf743947df230feffbb97bf5c585e1d
--- /dev/null
+++ b/src/utils/dependencies/insightface/utils/face_align.py
@@ -0,0 +1,103 @@
+import cv2
+import numpy as np
+from skimage import transform as trans
+
+
+arcface_dst = np.array(
+ [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
+ [41.5493, 92.3655], [70.7299, 92.2041]],
+ dtype=np.float32)
+
+def estimate_norm(lmk, image_size=112,mode='arcface'):
+ assert lmk.shape == (5, 2)
+ assert image_size%112==0 or image_size%128==0
+ if image_size%112==0:
+ ratio = float(image_size)/112.0
+ diff_x = 0
+ else:
+ ratio = float(image_size)/128.0
+ diff_x = 8.0*ratio
+ dst = arcface_dst * ratio
+ dst[:,0] += diff_x
+ tform = trans.SimilarityTransform()
+ tform.estimate(lmk, dst)
+ M = tform.params[0:2, :]
+ return M
+
+def norm_crop(img, landmark, image_size=112, mode='arcface'):
+ M = estimate_norm(landmark, image_size, mode)
+ warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
+ return warped
+
+def norm_crop2(img, landmark, image_size=112, mode='arcface'):
+ M = estimate_norm(landmark, image_size, mode)
+ warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
+ return warped, M
+
+def square_crop(im, S):
+ if im.shape[0] > im.shape[1]:
+ height = S
+ width = int(float(im.shape[1]) / im.shape[0] * S)
+ scale = float(S) / im.shape[0]
+ else:
+ width = S
+ height = int(float(im.shape[0]) / im.shape[1] * S)
+ scale = float(S) / im.shape[1]
+ resized_im = cv2.resize(im, (width, height))
+ det_im = np.zeros((S, S, 3), dtype=np.uint8)
+ det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im
+ return det_im, scale
+
+
+def transform(data, center, output_size, scale, rotation):
+ scale_ratio = scale
+ rot = float(rotation) * np.pi / 180.0
+ #translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
+ t1 = trans.SimilarityTransform(scale=scale_ratio)
+ cx = center[0] * scale_ratio
+ cy = center[1] * scale_ratio
+ t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
+ t3 = trans.SimilarityTransform(rotation=rot)
+ t4 = trans.SimilarityTransform(translation=(output_size / 2,
+ output_size / 2))
+ t = t1 + t2 + t3 + t4
+ M = t.params[0:2]
+ cropped = cv2.warpAffine(data,
+ M, (output_size, output_size),
+ borderValue=0.0)
+ return cropped, M
+
+
+def trans_points2d(pts, M):
+ new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
+ for i in range(pts.shape[0]):
+ pt = pts[i]
+ new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
+ new_pt = np.dot(M, new_pt)
+ #print('new_pt', new_pt.shape, new_pt)
+ new_pts[i] = new_pt[0:2]
+
+ return new_pts
+
+
+def trans_points3d(pts, M):
+ scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
+ #print(scale)
+ new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
+ for i in range(pts.shape[0]):
+ pt = pts[i]
+ new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
+ new_pt = np.dot(M, new_pt)
+ #print('new_pt', new_pt.shape, new_pt)
+ new_pts[i][0:2] = new_pt[0:2]
+ new_pts[i][2] = pts[i][2] * scale
+
+ return new_pts
+
+
+def trans_points(pts, M):
+ if pts.shape[1] == 2:
+ return trans_points2d(pts, M)
+ else:
+ return trans_points3d(pts, M)
+
diff --git a/src/utils/dependencies/insightface/utils/filesystem.py b/src/utils/dependencies/insightface/utils/filesystem.py
new file mode 100644
index 0000000000000000000000000000000000000000..01e3851975bdcbbf7f5eeb7e68e70a36dc040535
--- /dev/null
+++ b/src/utils/dependencies/insightface/utils/filesystem.py
@@ -0,0 +1,157 @@
+"""
+This code file mainly comes from https://github.com/dmlc/gluon-cv/blob/master/gluoncv/utils/filesystem.py
+"""
+import os
+import os.path as osp
+import errno
+
+
+def get_model_dir(name, root='~/.insightface'):
+ root = os.path.expanduser(root)
+ model_dir = osp.join(root, 'models', name)
+ return model_dir
+
+def makedirs(path):
+ """Create directory recursively if not exists.
+ Similar to `makedir -p`, you can skip checking existence before this function.
+
+ Parameters
+ ----------
+ path : str
+ Path of the desired dir
+ """
+ try:
+ os.makedirs(path)
+ except OSError as exc:
+ if exc.errno != errno.EEXIST:
+ raise
+
+
+def try_import(package, message=None):
+ """Try import specified package, with custom message support.
+
+ Parameters
+ ----------
+ package : str
+ The name of the targeting package.
+ message : str, default is None
+ If not None, this function will raise customized error message when import error is found.
+
+
+ Returns
+ -------
+ module if found, raise ImportError otherwise
+
+ """
+ try:
+ return __import__(package)
+ except ImportError as e:
+ if not message:
+ raise e
+ raise ImportError(message)
+
+
+def try_import_cv2():
+ """Try import cv2 at runtime.
+
+ Returns
+ -------
+ cv2 module if found. Raise ImportError otherwise
+
+ """
+ msg = "cv2 is required, you can install by package manager, e.g. 'apt-get', \
+ or `pip install opencv-python --user` (note that this is unofficial PYPI package)."
+
+ return try_import('cv2', msg)
+
+
+def try_import_mmcv():
+ """Try import mmcv at runtime.
+
+ Returns
+ -------
+ mmcv module if found. Raise ImportError otherwise
+
+ """
+ msg = "mmcv is required, you can install by first `pip install Cython --user` \
+ and then `pip install mmcv --user` (note that this is unofficial PYPI package)."
+
+ return try_import('mmcv', msg)
+
+
+def try_import_rarfile():
+ """Try import rarfile at runtime.
+
+ Returns
+ -------
+ rarfile module if found. Raise ImportError otherwise
+
+ """
+ msg = "rarfile is required, you can install by first `sudo apt-get install unrar` \
+ and then `pip install rarfile --user` (note that this is unofficial PYPI package)."
+
+ return try_import('rarfile', msg)
+
+
+def import_try_install(package, extern_url=None):
+ """Try import the specified package.
+ If the package not installed, try use pip to install and import if success.
+
+ Parameters
+ ----------
+ package : str
+ The name of the package trying to import.
+ extern_url : str or None, optional
+ The external url if package is not hosted on PyPI.
+ For example, you can install a package using:
+ "pip install git+http://github.com/user/repo/tarball/master/egginfo=xxx".
+ In this case, you can pass the url to the extern_url.
+
+ Returns
+ -------
+
+ The imported python module.
+
+ """
+ try:
+ return __import__(package)
+ except ImportError:
+ try:
+ from pip import main as pipmain
+ except ImportError:
+ from pip._internal import main as pipmain
+
+ # trying to install package
+ url = package if extern_url is None else extern_url
+ pipmain(['install', '--user',
+ url]) # will raise SystemExit Error if fails
+
+ # trying to load again
+ try:
+ return __import__(package)
+ except ImportError:
+ import sys
+ import site
+ user_site = site.getusersitepackages()
+ if user_site not in sys.path:
+ sys.path.append(user_site)
+ return __import__(package)
+ return __import__(package)
+
+
+def try_import_dali():
+ """Try import NVIDIA DALI at runtime.
+ """
+ try:
+ dali = __import__('nvidia.dali', fromlist=['pipeline', 'ops', 'types'])
+ dali.Pipeline = dali.pipeline.Pipeline
+ except ImportError:
+
+ class dali:
+ class Pipeline:
+ def __init__(self):
+ raise NotImplementedError(
+ "DALI not found, please check if you installed it correctly."
+ )
+
+ return dali
diff --git a/src/utils/dependencies/insightface/utils/storage.py b/src/utils/dependencies/insightface/utils/storage.py
new file mode 100644
index 0000000000000000000000000000000000000000..5bf37e2d17b28dee2a8839484778815f87fc4a9c
--- /dev/null
+++ b/src/utils/dependencies/insightface/utils/storage.py
@@ -0,0 +1,52 @@
+
+import os
+import os.path as osp
+import zipfile
+from .download import download_file
+
+BASE_REPO_URL = 'https://github.com/deepinsight/insightface/releases/download/v0.7'
+
+def download(sub_dir, name, force=False, root='~/.insightface'):
+ _root = os.path.expanduser(root)
+ dir_path = os.path.join(_root, sub_dir, name)
+ if osp.exists(dir_path) and not force:
+ return dir_path
+ print('download_path:', dir_path)
+ zip_file_path = os.path.join(_root, sub_dir, name + '.zip')
+ model_url = "%s/%s.zip"%(BASE_REPO_URL, name)
+ download_file(model_url,
+ path=zip_file_path,
+ overwrite=True)
+ if not os.path.exists(dir_path):
+ os.makedirs(dir_path)
+ with zipfile.ZipFile(zip_file_path) as zf:
+ zf.extractall(dir_path)
+ #os.remove(zip_file_path)
+ return dir_path
+
+def ensure_available(sub_dir, name, root='~/.insightface'):
+ return download(sub_dir, name, force=False, root=root)
+
+def download_onnx(sub_dir, model_file, force=False, root='~/.insightface', download_zip=False):
+ _root = os.path.expanduser(root)
+ model_root = osp.join(_root, sub_dir)
+ new_model_file = osp.join(model_root, model_file)
+ if osp.exists(new_model_file) and not force:
+ return new_model_file
+ if not osp.exists(model_root):
+ os.makedirs(model_root)
+ print('download_path:', new_model_file)
+ if not download_zip:
+ model_url = "%s/%s"%(BASE_REPO_URL, model_file)
+ download_file(model_url,
+ path=new_model_file,
+ overwrite=True)
+ else:
+ model_url = "%s/%s.zip"%(BASE_REPO_URL, model_file)
+ zip_file_path = new_model_file+".zip"
+ download_file(model_url,
+ path=zip_file_path,
+ overwrite=True)
+ with zipfile.ZipFile(zip_file_path) as zf:
+ zf.extractall(model_root)
+ return new_model_file
diff --git a/src/utils/dependencies/insightface/utils/transform.py b/src/utils/dependencies/insightface/utils/transform.py
new file mode 100644
index 0000000000000000000000000000000000000000..06531d257b694211a0b9a09c9d741b9b2ff53bfe
--- /dev/null
+++ b/src/utils/dependencies/insightface/utils/transform.py
@@ -0,0 +1,116 @@
+import cv2
+import math
+import numpy as np
+from skimage import transform as trans
+
+
+def transform(data, center, output_size, scale, rotation):
+ scale_ratio = scale
+ rot = float(rotation) * np.pi / 180.0
+ #translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
+ t1 = trans.SimilarityTransform(scale=scale_ratio)
+ cx = center[0] * scale_ratio
+ cy = center[1] * scale_ratio
+ t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
+ t3 = trans.SimilarityTransform(rotation=rot)
+ t4 = trans.SimilarityTransform(translation=(output_size / 2,
+ output_size / 2))
+ t = t1 + t2 + t3 + t4
+ M = t.params[0:2]
+ cropped = cv2.warpAffine(data,
+ M, (output_size, output_size),
+ borderValue=0.0)
+ return cropped, M
+
+
+def trans_points2d(pts, M):
+ new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
+ for i in range(pts.shape[0]):
+ pt = pts[i]
+ new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
+ new_pt = np.dot(M, new_pt)
+ #print('new_pt', new_pt.shape, new_pt)
+ new_pts[i] = new_pt[0:2]
+
+ return new_pts
+
+
+def trans_points3d(pts, M):
+ scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
+ #print(scale)
+ new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
+ for i in range(pts.shape[0]):
+ pt = pts[i]
+ new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
+ new_pt = np.dot(M, new_pt)
+ #print('new_pt', new_pt.shape, new_pt)
+ new_pts[i][0:2] = new_pt[0:2]
+ new_pts[i][2] = pts[i][2] * scale
+
+ return new_pts
+
+
+def trans_points(pts, M):
+ if pts.shape[1] == 2:
+ return trans_points2d(pts, M)
+ else:
+ return trans_points3d(pts, M)
+
+def estimate_affine_matrix_3d23d(X, Y):
+ ''' Using least-squares solution
+ Args:
+ X: [n, 3]. 3d points(fixed)
+ Y: [n, 3]. corresponding 3d points(moving). Y = PX
+ Returns:
+ P_Affine: (3, 4). Affine camera matrix (the third row is [0, 0, 0, 1]).
+ '''
+ X_homo = np.hstack((X, np.ones([X.shape[0],1]))) #n x 4
+ P = np.linalg.lstsq(X_homo, Y)[0].T # Affine matrix. 3 x 4
+ return P
+
+def P2sRt(P):
+ ''' decompositing camera matrix P
+ Args:
+ P: (3, 4). Affine Camera Matrix.
+ Returns:
+ s: scale factor.
+ R: (3, 3). rotation matrix.
+ t: (3,). translation.
+ '''
+ t = P[:, 3]
+ R1 = P[0:1, :3]
+ R2 = P[1:2, :3]
+ s = (np.linalg.norm(R1) + np.linalg.norm(R2))/2.0
+ r1 = R1/np.linalg.norm(R1)
+ r2 = R2/np.linalg.norm(R2)
+ r3 = np.cross(r1, r2)
+
+ R = np.concatenate((r1, r2, r3), 0)
+ return s, R, t
+
+def matrix2angle(R):
+ ''' get three Euler angles from Rotation Matrix
+ Args:
+ R: (3,3). rotation matrix
+ Returns:
+ x: pitch
+ y: yaw
+ z: roll
+ '''
+ sy = math.sqrt(R[0,0] * R[0,0] + R[1,0] * R[1,0])
+
+ singular = sy < 1e-6
+
+ if not singular :
+ x = math.atan2(R[2,1] , R[2,2])
+ y = math.atan2(-R[2,0], sy)
+ z = math.atan2(R[1,0], R[0,0])
+ else :
+ x = math.atan2(-R[1,2], R[1,1])
+ y = math.atan2(-R[2,0], sy)
+ z = 0
+
+ # rx, ry, rz = np.rad2deg(x), np.rad2deg(y), np.rad2deg(z)
+ rx, ry, rz = x*180/np.pi, y*180/np.pi, z*180/np.pi
+ return rx, ry, rz
+
diff --git a/src/utils/face_analysis_diy.py b/src/utils/face_analysis_diy.py
new file mode 100644
index 0000000000000000000000000000000000000000..f13a659134216958da3c7273aabf3b0f96fb320d
--- /dev/null
+++ b/src/utils/face_analysis_diy.py
@@ -0,0 +1,79 @@
+# coding: utf-8
+
+"""
+face detectoin and alignment using InsightFace
+"""
+
+import numpy as np
+from .rprint import rlog as log
+from .dependencies.insightface.app import FaceAnalysis
+from .dependencies.insightface.app.common import Face
+from .timer import Timer
+
+
+def sort_by_direction(faces, direction: str = 'large-small', face_center=None):
+ if len(faces) <= 0:
+ return faces
+
+ if direction == 'left-right':
+ return sorted(faces, key=lambda face: face['bbox'][0])
+ if direction == 'right-left':
+ return sorted(faces, key=lambda face: face['bbox'][0], reverse=True)
+ if direction == 'top-bottom':
+ return sorted(faces, key=lambda face: face['bbox'][1])
+ if direction == 'bottom-top':
+ return sorted(faces, key=lambda face: face['bbox'][1], reverse=True)
+ if direction == 'small-large':
+ return sorted(faces, key=lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1]))
+ if direction == 'large-small':
+ return sorted(faces, key=lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1]), reverse=True)
+ if direction == 'distance-from-retarget-face':
+ return sorted(faces, key=lambda face: (((face['bbox'][2]+face['bbox'][0])/2-face_center[0])**2+((face['bbox'][3]+face['bbox'][1])/2-face_center[1])**2)**0.5)
+ return faces
+
+
+class FaceAnalysisDIY(FaceAnalysis):
+ def __init__(self, name='buffalo_l', root='~/.insightface', allowed_modules=None, **kwargs):
+ super().__init__(name=name, root=root, allowed_modules=allowed_modules, **kwargs)
+
+ self.timer = Timer()
+
+ def get(self, img_bgr, **kwargs):
+ max_num = kwargs.get('max_face_num', 0) # the number of the detected faces, 0 means no limit
+ flag_do_landmark_2d_106 = kwargs.get('flag_do_landmark_2d_106', True) # whether to do 106-point detection
+ direction = kwargs.get('direction', 'large-small') # sorting direction
+ face_center = None
+
+ bboxes, kpss = self.det_model.detect(img_bgr, max_num=max_num, metric='default')
+ if bboxes.shape[0] == 0:
+ return []
+ ret = []
+ for i in range(bboxes.shape[0]):
+ bbox = bboxes[i, 0:4]
+ det_score = bboxes[i, 4]
+ kps = None
+ if kpss is not None:
+ kps = kpss[i]
+ face = Face(bbox=bbox, kps=kps, det_score=det_score)
+ for taskname, model in self.models.items():
+ if taskname == 'detection':
+ continue
+
+ if (not flag_do_landmark_2d_106) and taskname == 'landmark_2d_106':
+ continue
+
+ # print(f'taskname: {taskname}')
+ model.get(img_bgr, face)
+ ret.append(face)
+
+ ret = sort_by_direction(ret, direction, face_center)
+ return ret
+
+ def warmup(self):
+ self.timer.tic()
+
+ img_bgr = np.zeros((512, 512, 3), dtype=np.uint8)
+ self.get(img_bgr)
+
+ elapse = self.timer.toc()
+ log(f'FaceAnalysisDIY warmup time: {elapse:.3f}s')
diff --git a/src/utils/helper.py b/src/utils/helper.py
new file mode 100644
index 0000000000000000000000000000000000000000..0e2af94e137b6447c88ec4df3c7c2c1b1bd94b8a
--- /dev/null
+++ b/src/utils/helper.py
@@ -0,0 +1,145 @@
+# coding: utf-8
+
+"""
+utility functions and classes to handle feature extraction and model loading
+"""
+
+import os
+import os.path as osp
+import torch
+from collections import OrderedDict
+
+from ..modules.spade_generator import SPADEDecoder
+from ..modules.warping_network import WarpingNetwork
+from ..modules.motion_extractor import MotionExtractor
+from ..modules.appearance_feature_extractor import AppearanceFeatureExtractor
+from ..modules.stitching_retargeting_network import StitchingRetargetingNetwork
+
+
+def suffix(filename):
+ """a.jpg -> jpg"""
+ pos = filename.rfind(".")
+ if pos == -1:
+ return ""
+ return filename[pos + 1:]
+
+
+def prefix(filename):
+ """a.jpg -> a"""
+ pos = filename.rfind(".")
+ if pos == -1:
+ return filename
+ return filename[:pos]
+
+
+def basename(filename):
+ """a/b/c.jpg -> c"""
+ return prefix(osp.basename(filename))
+
+
+def remove_suffix(filepath):
+ """a/b/c.jpg -> a/b/c"""
+ return osp.join(osp.dirname(filepath), basename(filepath))
+
+
+def is_video(file_path):
+ if file_path.lower().endswith((".mp4", ".mov", ".avi", ".webm")) or osp.isdir(file_path):
+ return True
+ return False
+
+
+def is_template(file_path):
+ if file_path.endswith(".pkl"):
+ return True
+ return False
+
+
+def mkdir(d, log=False):
+ # return self-assined `d`, for one line code
+ if not osp.exists(d):
+ os.makedirs(d, exist_ok=True)
+ if log:
+ print(f"Make dir: {d}")
+ return d
+
+
+def squeeze_tensor_to_numpy(tensor):
+ out = tensor.data.squeeze(0).cpu().numpy()
+ return out
+
+
+def dct2device(dct: dict, device):
+ for key in dct:
+ dct[key] = torch.tensor(dct[key]).to(device)
+ return dct
+
+
+def concat_feat(kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
+ """
+ kp_source: (bs, k, 3)
+ kp_driving: (bs, k, 3)
+ Return: (bs, 2k*3)
+ """
+ bs_src = kp_source.shape[0]
+ bs_dri = kp_driving.shape[0]
+ assert bs_src == bs_dri, 'batch size must be equal'
+
+ feat = torch.cat([kp_source.view(bs_src, -1), kp_driving.view(bs_dri, -1)], dim=1)
+ return feat
+
+
+def remove_ddp_dumplicate_key(state_dict):
+ state_dict_new = OrderedDict()
+ for key in state_dict.keys():
+ state_dict_new[key.replace('module.', '')] = state_dict[key]
+ return state_dict_new
+
+
+def load_model(ckpt_path, model_config, device, model_type):
+ model_params = model_config['model_params'][f'{model_type}_params']
+
+ if model_type == 'appearance_feature_extractor':
+ model = AppearanceFeatureExtractor(**model_params).to(device)
+ elif model_type == 'motion_extractor':
+ model = MotionExtractor(**model_params).to(device)
+ elif model_type == 'warping_module':
+ model = WarpingNetwork(**model_params).to(device)
+ elif model_type == 'spade_generator':
+ model = SPADEDecoder(**model_params).to(device)
+ elif model_type == 'stitching_retargeting_module':
+ # Special handling for stitching and retargeting module
+ config = model_config['model_params']['stitching_retargeting_module_params']
+ checkpoint = torch.load(ckpt_path, map_location=lambda storage, loc: storage)
+
+ stitcher = StitchingRetargetingNetwork(**config.get('stitching'))
+ stitcher.load_state_dict(remove_ddp_dumplicate_key(checkpoint['retarget_shoulder']))
+ stitcher = stitcher.to(device)
+ stitcher.eval()
+
+ retargetor_lip = StitchingRetargetingNetwork(**config.get('lip'))
+ retargetor_lip.load_state_dict(remove_ddp_dumplicate_key(checkpoint['retarget_mouth']))
+ retargetor_lip = retargetor_lip.to(device)
+ retargetor_lip.eval()
+
+ retargetor_eye = StitchingRetargetingNetwork(**config.get('eye'))
+ retargetor_eye.load_state_dict(remove_ddp_dumplicate_key(checkpoint['retarget_eye']))
+ retargetor_eye = retargetor_eye.to(device)
+ retargetor_eye.eval()
+
+ return {
+ 'stitching': stitcher,
+ 'lip': retargetor_lip,
+ 'eye': retargetor_eye
+ }
+ else:
+ raise ValueError(f"Unknown model type: {model_type}")
+
+ model.load_state_dict(torch.load(ckpt_path, map_location=lambda storage, loc: storage))
+ model.eval()
+ return model
+
+
+def load_description(fp):
+ with open(fp, 'r', encoding='utf-8') as f:
+ content = f.read()
+ return content
diff --git a/src/utils/hparams.py b/src/utils/hparams.py
new file mode 100644
index 0000000000000000000000000000000000000000..743c5c7d5a5a9e686f1ccd6fb3c2fb5cb382d62b
--- /dev/null
+++ b/src/utils/hparams.py
@@ -0,0 +1,160 @@
+from glob import glob
+import os
+
+class HParams:
+ def __init__(self, **kwargs):
+ self.data = {}
+
+ for key, value in kwargs.items():
+ self.data[key] = value
+
+ def __getattr__(self, key):
+ if key not in self.data:
+ raise AttributeError("'HParams' object has no attribute %s" % key)
+ return self.data[key]
+
+ def set_hparam(self, key, value):
+ self.data[key] = value
+
+
+# Default hyperparameters
+hparams = HParams(
+ num_mels=80, # Number of mel-spectrogram channels and local conditioning dimensionality
+ # network
+ rescale=True, # Whether to rescale audio prior to preprocessing
+ rescaling_max=0.9, # Rescaling value
+
+ # Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction
+ # It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder
+ # Does not work if n_ffit is not multiple of hop_size!!
+ use_lws=False,
+
+ n_fft=800, # Extra window size is filled with 0 paddings to match this parameter
+ hop_size=200, # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate)
+ win_size=800, # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate)
+ sample_rate=16000, # 16000Hz (corresponding to librispeech) (sox --i )
+
+ frame_shift_ms=None, # Can replace hop_size parameter. (Recommended: 12.5)
+
+ # Mel and Linear spectrograms normalization/scaling and clipping
+ signal_normalization=True,
+ # Whether to normalize mel spectrograms to some predefined range (following below parameters)
+ allow_clipping_in_normalization=True, # Only relevant if mel_normalization = True
+ symmetric_mels=True,
+ # Whether to scale the data to be symmetric around 0. (Also multiplies the output range by 2,
+ # faster and cleaner convergence)
+ max_abs_value=4.,
+ # max absolute value of data. If symmetric, data will be [-max, max] else [0, max] (Must not
+ # be too big to avoid gradient explosion,
+ # not too small for fast convergence)
+ # Contribution by @begeekmyfriend
+ # Spectrogram Pre-Emphasis (Lfilter: Reduce spectrogram noise and helps model certitude
+ # levels. Also allows for better G&L phase reconstruction)
+ preemphasize=True, # whether to apply filter
+ preemphasis=0.97, # filter coefficient.
+
+ # Limits
+ min_level_db=-100,
+ ref_level_db=20,
+ fmin=55,
+ # Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To
+ # test depending on dataset. Pitch info: male~[65, 260], female~[100, 525])
+ fmax=7600, # To be increased/reduced depending on data.
+
+ ###################### Our training parameters #################################
+ img_size=96,
+ fps=25,
+
+ batch_size=16,
+ initial_learning_rate=1e-4,
+ nepochs=300000, ### ctrl + c, stop whenever eval loss is consistently greater than train loss for ~10 epochs
+ num_workers=20,
+ checkpoint_interval=3000,
+ eval_interval=3000,
+ writer_interval=300,
+ save_optimizer_state=True,
+
+ syncnet_wt=0.0, # is initially zero, will be set automatically to 0.03 later. Leads to faster convergence.
+ syncnet_batch_size=64,
+ syncnet_lr=1e-4,
+ syncnet_eval_interval=1000,
+ syncnet_checkpoint_interval=10000,
+
+ disc_wt=0.07,
+ disc_initial_learning_rate=1e-4,
+)
+
+
+
+# Default hyperparameters
+hparamsdebug = HParams(
+ num_mels=80, # Number of mel-spectrogram channels and local conditioning dimensionality
+ # network
+ rescale=True, # Whether to rescale audio prior to preprocessing
+ rescaling_max=0.9, # Rescaling value
+
+ # Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction
+ # It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder
+ # Does not work if n_ffit is not multiple of hop_size!!
+ use_lws=False,
+
+ n_fft=800, # Extra window size is filled with 0 paddings to match this parameter
+ hop_size=200, # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate)
+ win_size=800, # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate)
+ sample_rate=16000, # 16000Hz (corresponding to librispeech) (sox --i )
+
+ frame_shift_ms=None, # Can replace hop_size parameter. (Recommended: 12.5)
+
+ # Mel and Linear spectrograms normalization/scaling and clipping
+ signal_normalization=True,
+ # Whether to normalize mel spectrograms to some predefined range (following below parameters)
+ allow_clipping_in_normalization=True, # Only relevant if mel_normalization = True
+ symmetric_mels=True,
+ # Whether to scale the data to be symmetric around 0. (Also multiplies the output range by 2,
+ # faster and cleaner convergence)
+ max_abs_value=4.,
+ # max absolute value of data. If symmetric, data will be [-max, max] else [0, max] (Must not
+ # be too big to avoid gradient explosion,
+ # not too small for fast convergence)
+ # Contribution by @begeekmyfriend
+ # Spectrogram Pre-Emphasis (Lfilter: Reduce spectrogram noise and helps model certitude
+ # levels. Also allows for better G&L phase reconstruction)
+ preemphasize=True, # whether to apply filter
+ preemphasis=0.97, # filter coefficient.
+
+ # Limits
+ min_level_db=-100,
+ ref_level_db=20,
+ fmin=55,
+ # Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To
+ # test depending on dataset. Pitch info: male~[65, 260], female~[100, 525])
+ fmax=7600, # To be increased/reduced depending on data.
+
+ ###################### Our training parameters #################################
+ img_size=96,
+ fps=25,
+
+ batch_size=2,
+ initial_learning_rate=1e-3,
+ nepochs=100000, ### ctrl + c, stop whenever eval loss is consistently greater than train loss for ~10 epochs
+ num_workers=0,
+ checkpoint_interval=10000,
+ eval_interval=10,
+ writer_interval=5,
+ save_optimizer_state=True,
+
+ syncnet_wt=0.0, # is initially zero, will be set automatically to 0.03 later. Leads to faster convergence.
+ syncnet_batch_size=64,
+ syncnet_lr=1e-4,
+ syncnet_eval_interval=10000,
+ syncnet_checkpoint_interval=10000,
+
+ disc_wt=0.07,
+ disc_initial_learning_rate=1e-4,
+)
+
+
+def hparams_debug_string():
+ values = hparams.values()
+ hp = [" %s: %s" % (name, values[name]) for name in sorted(values) if name != "sentences"]
+ return "Hyperparameters:\n" + "\n".join(hp)
diff --git a/src/utils/io.py b/src/utils/io.py
new file mode 100644
index 0000000000000000000000000000000000000000..28c2d99f09421fc9eb1f6475419cb1c6e6dcd028
--- /dev/null
+++ b/src/utils/io.py
@@ -0,0 +1,125 @@
+# coding: utf-8
+
+import os
+from glob import glob
+import os.path as osp
+import imageio
+import numpy as np
+import pickle
+import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
+
+from .helper import mkdir, suffix
+
+
+def load_image_rgb(image_path: str):
+ if not osp.exists(image_path):
+ raise FileNotFoundError(f"Image not found: {image_path}")
+ img = cv2.imread(image_path, cv2.IMREAD_COLOR)
+ return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
+
+
+def load_driving_info(driving_info):
+ driving_video_ori = []
+
+ def load_images_from_directory(directory):
+ image_paths = sorted(glob(osp.join(directory, '*.png')) + glob(osp.join(directory, '*.jpg')))
+ return [load_image_rgb(im_path) for im_path in image_paths]
+
+ def load_images_from_video(file_path):
+ reader = imageio.get_reader(file_path, "ffmpeg")
+ return [image for _, image in enumerate(reader)]
+
+ if osp.isdir(driving_info):
+ driving_video_ori = load_images_from_directory(driving_info)
+ elif osp.isfile(driving_info):
+ driving_video_ori = load_images_from_video(driving_info)
+
+ return driving_video_ori
+
+
+def contiguous(obj):
+ if not obj.flags.c_contiguous:
+ obj = obj.copy(order="C")
+ return obj
+
+
+def resize_to_limit(img: np.ndarray, max_dim=1920, division=2):
+ """
+ ajust the size of the image so that the maximum dimension does not exceed max_dim, and the width and the height of the image are multiples of n.
+ :param img: the image to be processed.
+ :param max_dim: the maximum dimension constraint.
+ :param n: the number that needs to be multiples of.
+ :return: the adjusted image.
+ """
+ h, w = img.shape[:2]
+
+ # ajust the size of the image according to the maximum dimension
+ if max_dim > 0 and max(h, w) > max_dim:
+ if h > w:
+ new_h = max_dim
+ new_w = int(w * (max_dim / h))
+ else:
+ new_w = max_dim
+ new_h = int(h * (max_dim / w))
+ img = cv2.resize(img, (new_w, new_h))
+
+ # ensure that the image dimensions are multiples of n
+ division = max(division, 1)
+ new_h = img.shape[0] - (img.shape[0] % division)
+ new_w = img.shape[1] - (img.shape[1] % division)
+
+ if new_h == 0 or new_w == 0:
+ # when the width or height is less than n, no need to process
+ return img
+
+ if new_h != img.shape[0] or new_w != img.shape[1]:
+ img = img[:new_h, :new_w]
+
+ return img
+
+
+def load_img_online(obj, mode="bgr", **kwargs):
+ max_dim = kwargs.get("max_dim", 1920)
+ n = kwargs.get("n", 2)
+ if isinstance(obj, str):
+ if mode.lower() == "gray":
+ img = cv2.imread(obj, cv2.IMREAD_GRAYSCALE)
+ else:
+ img = cv2.imread(obj, cv2.IMREAD_COLOR)
+ else:
+ img = obj
+
+ # Resize image to satisfy constraints
+ img = resize_to_limit(img, max_dim=max_dim, division=n)
+
+ if mode.lower() == "bgr":
+ return contiguous(img)
+ elif mode.lower() == "rgb":
+ return contiguous(img[..., ::-1])
+ else:
+ raise Exception(f"Unknown mode {mode}")
+
+
+def load(fp):
+ suffix_ = suffix(fp)
+
+ if suffix_ == "npy":
+ return np.load(fp)
+ elif suffix_ == "pkl":
+ return pickle.load(open(fp, "rb"))
+ else:
+ raise Exception(f"Unknown type: {suffix}")
+
+
+def dump(wfp, obj):
+ wd = osp.split(wfp)[0]
+ if wd != "" and not osp.exists(wd):
+ mkdir(wd)
+
+ _suffix = suffix(wfp)
+ if _suffix == "npy":
+ np.save(wfp, obj)
+ elif _suffix == "pkl":
+ pickle.dump(obj, open(wfp, "wb"))
+ else:
+ raise Exception("Unknown type: {}".format(_suffix))
diff --git a/src/utils/landmark_runner.py b/src/utils/landmark_runner.py
new file mode 100644
index 0000000000000000000000000000000000000000..7680a2c4a65ebe7f4dadbafc4a35603ab9f90be6
--- /dev/null
+++ b/src/utils/landmark_runner.py
@@ -0,0 +1,89 @@
+# coding: utf-8
+
+import os.path as osp
+import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
+import torch
+import numpy as np
+import onnxruntime
+from .timer import Timer
+from .rprint import rlog
+from .crop import crop_image, _transform_pts
+
+
+def make_abs_path(fn):
+ return osp.join(osp.dirname(osp.realpath(__file__)), fn)
+
+
+def to_ndarray(obj):
+ if isinstance(obj, torch.Tensor):
+ return obj.cpu().numpy()
+ elif isinstance(obj, np.ndarray):
+ return obj
+ else:
+ return np.array(obj)
+
+
+class LandmarkRunner(object):
+ """landmark runner"""
+
+ def __init__(self, **kwargs):
+ ckpt_path = kwargs.get('ckpt_path')
+ onnx_provider = kwargs.get('onnx_provider', 'cuda') # 默认用cuda
+ device_id = kwargs.get('device_id', 0)
+ self.dsize = kwargs.get('dsize', 224)
+ self.timer = Timer()
+
+ if onnx_provider.lower() == 'cuda':
+ self.session = onnxruntime.InferenceSession(
+ ckpt_path, providers=[
+ ('CUDAExecutionProvider', {'device_id': device_id})
+ ]
+ )
+ else:
+ opts = onnxruntime.SessionOptions()
+ opts.intra_op_num_threads = 4 # 默认线程数为 4
+ self.session = onnxruntime.InferenceSession(
+ ckpt_path, providers=['CPUExecutionProvider'],
+ sess_options=opts
+ )
+
+ def _run(self, inp):
+ out = self.session.run(None, {'input': inp})
+ return out
+
+ def run(self, img_rgb: np.ndarray, lmk=None):
+ if lmk is not None:
+ crop_dct = crop_image(img_rgb, lmk, dsize=self.dsize, scale=1.5, vy_ratio=-0.1)
+ img_crop_rgb = crop_dct['img_crop']
+ else:
+ # NOTE: force resize to 224x224, NOT RECOMMEND!
+ img_crop_rgb = cv2.resize(img_rgb, (self.dsize, self.dsize))
+ scale = max(img_rgb.shape[:2]) / self.dsize
+ crop_dct = {
+ 'M_c2o': np.array([
+ [scale, 0., 0.],
+ [0., scale, 0.],
+ [0., 0., 1.],
+ ], dtype=np.float32),
+ }
+
+ inp = (img_crop_rgb.astype(np.float32) / 255.).transpose(2, 0, 1)[None, ...] # HxWx3 (BGR) -> 1x3xHxW (RGB!)
+
+ out_lst = self._run(inp)
+ out_pts = out_lst[2]
+
+ # 2d landmarks 203 points
+ lmk = to_ndarray(out_pts[0]).reshape(-1, 2) * self.dsize # scale to 0-224
+ lmk = _transform_pts(lmk, M=crop_dct['M_c2o'])
+
+ return lmk
+
+ def warmup(self):
+ self.timer.tic()
+
+ dummy_image = np.zeros((1, 3, self.dsize, self.dsize), dtype=np.float32)
+
+ _ = self._run(dummy_image)
+
+ elapse = self.timer.toc()
+ rlog(f'LandmarkRunner warmup time: {elapse:.3f}s')
diff --git a/src/utils/resources/mask_template.png b/src/utils/resources/mask_template.png
new file mode 100644
index 0000000000000000000000000000000000000000..bca6ca5977ba820d0d2c05b3793c6231cc82e715
Binary files /dev/null and b/src/utils/resources/mask_template.png differ
diff --git a/src/utils/retargeting_utils.py b/src/utils/retargeting_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..ae2e5f52effe8107503586c9f5a24f39dfdbbbcf
--- /dev/null
+++ b/src/utils/retargeting_utils.py
@@ -0,0 +1,24 @@
+
+"""
+Functions to compute distance ratios between specific pairs of facial landmarks
+"""
+
+import numpy as np
+
+
+def calculate_distance_ratio(lmk: np.ndarray, idx1: int, idx2: int, idx3: int, idx4: int, eps: float = 1e-6) -> np.ndarray:
+ return (np.linalg.norm(lmk[:, idx1] - lmk[:, idx2], axis=1, keepdims=True) /
+ (np.linalg.norm(lmk[:, idx3] - lmk[:, idx4], axis=1, keepdims=True) + eps))
+
+
+def calc_eye_close_ratio(lmk: np.ndarray, target_eye_ratio: np.ndarray = None) -> np.ndarray:
+ lefteye_close_ratio = calculate_distance_ratio(lmk, 6, 18, 0, 12)
+ righteye_close_ratio = calculate_distance_ratio(lmk, 30, 42, 24, 36)
+ if target_eye_ratio is not None:
+ return np.concatenate([lefteye_close_ratio, righteye_close_ratio, target_eye_ratio], axis=1)
+ else:
+ return np.concatenate([lefteye_close_ratio, righteye_close_ratio], axis=1)
+
+
+def calc_lip_close_ratio(lmk: np.ndarray) -> np.ndarray:
+ return calculate_distance_ratio(lmk, 90, 102, 48, 66)
diff --git a/src/utils/rprint.py b/src/utils/rprint.py
new file mode 100644
index 0000000000000000000000000000000000000000..c43a42f9855bbb019725e6c2b6c6c50e6fa4d0c5
--- /dev/null
+++ b/src/utils/rprint.py
@@ -0,0 +1,16 @@
+# coding: utf-8
+
+"""
+custom print and log functions
+"""
+
+__all__ = ['rprint', 'rlog']
+
+try:
+ from rich.console import Console
+ console = Console()
+ rprint = console.print
+ rlog = console.log
+except:
+ rprint = print
+ rlog = print
diff --git a/src/utils/timer.py b/src/utils/timer.py
new file mode 100644
index 0000000000000000000000000000000000000000..3570fa45d3ff36376471b82a5b3c02efe46eed98
--- /dev/null
+++ b/src/utils/timer.py
@@ -0,0 +1,29 @@
+# coding: utf-8
+
+"""
+tools to measure elapsed time
+"""
+
+import time
+
+class Timer(object):
+ """A simple timer."""
+
+ def __init__(self):
+ self.total_time = 0.
+ self.calls = 0
+ self.start_time = 0.
+ self.diff = 0.
+
+ def tic(self):
+ # using time.time instead of time.clock because time time.clock
+ # does not normalize for multithreading
+ self.start_time = time.time()
+
+ def toc(self, average=True):
+ self.diff = time.time() - self.start_time
+ return self.diff
+
+ def clear(self):
+ self.start_time = 0.
+ self.diff = 0.
diff --git a/src/utils/video.py b/src/utils/video.py
new file mode 100644
index 0000000000000000000000000000000000000000..c62729049e0349c02fb92bdd3149ac21dade294b
--- /dev/null
+++ b/src/utils/video.py
@@ -0,0 +1,211 @@
+# coding: utf-8
+
+"""
+Functions for processing video
+
+ATTENTION: you need to install ffmpeg and ffprobe in your env!
+"""
+
+import os.path as osp
+import numpy as np
+import subprocess
+import imageio
+import cv2
+from rich.progress import track
+
+from .rprint import rlog as log
+from .rprint import rprint as print
+from .helper import prefix
+
+
+def exec_cmd(cmd):
+ return subprocess.run(cmd, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
+
+
+def images2video(images, wfp, **kwargs):
+ fps = kwargs.get('fps', 25)
+ video_format = kwargs.get('format', 'mp4') # default is mp4 format
+ codec = kwargs.get('codec', 'libx264') # default is libx264 encoding
+ quality = kwargs.get('quality') # video quality
+ pixelformat = kwargs.get('pixelformat', 'yuv420p') # video pixel format
+ image_mode = kwargs.get('image_mode', 'rgb')
+ macro_block_size = kwargs.get('macro_block_size', 2)
+ ffmpeg_params = ['-crf', str(kwargs.get('crf', 18))]
+
+ writer = imageio.get_writer(
+ wfp, fps=fps, format=video_format,
+ codec=codec, quality=quality, ffmpeg_params=ffmpeg_params, pixelformat=pixelformat, macro_block_size=macro_block_size
+ )
+
+ n = len(images)
+ for i in track(range(n), description='Writing', transient=True):
+ if image_mode.lower() == 'bgr':
+ writer.append_data(images[i][..., ::-1])
+ else:
+ writer.append_data(images[i])
+
+ writer.close()
+
+
+def video2gif(video_fp, fps=30, size=256):
+ if osp.exists(video_fp):
+ d = osp.split(video_fp)[0]
+ fn = prefix(osp.basename(video_fp))
+ palette_wfp = osp.join(d, 'palette.png')
+ gif_wfp = osp.join(d, f'{fn}.gif')
+ # generate the palette
+ cmd = f'ffmpeg -i "{video_fp}" -vf "fps={fps},scale={size}:-1:flags=lanczos,palettegen" "{palette_wfp}" -y'
+ exec_cmd(cmd)
+ # use the palette to generate the gif
+ cmd = f'ffmpeg -i "{video_fp}" -i "{palette_wfp}" -filter_complex "fps={fps},scale={size}:-1:flags=lanczos[x];[x][1:v]paletteuse" "{gif_wfp}" -y'
+ exec_cmd(cmd)
+ else:
+ print(f'video_fp: {video_fp} not exists!')
+
+
+def merge_audio_video(video_fp, audio_fp, wfp):
+ if osp.exists(video_fp) and osp.exists(audio_fp):
+ cmd = f'ffmpeg -i "{video_fp}" -i "{audio_fp}" -c:v copy -c:a aac "{wfp}" -y'
+ exec_cmd(cmd)
+ print(f'merge {video_fp} and {audio_fp} to {wfp}')
+ else:
+ print(f'video_fp: {video_fp} or audio_fp: {audio_fp} not exists!')
+
+
+def blend(img: np.ndarray, mask: np.ndarray, background_color=(255, 255, 255)):
+ mask_float = mask.astype(np.float32) / 255.
+ background_color = np.array(background_color).reshape([1, 1, 3])
+ bg = np.ones_like(img) * background_color
+ img = np.clip(mask_float * img + (1 - mask_float) * bg, 0, 255).astype(np.uint8)
+ return img
+
+
+def concat_frames(driving_image_lst, source_image, I_p_lst):
+ # TODO: add more concat style, e.g., left-down corner driving
+ out_lst = []
+ h, w, _ = I_p_lst[0].shape
+
+ for idx, _ in track(enumerate(I_p_lst), total=len(I_p_lst), description='Concatenating result...'):
+ I_p = I_p_lst[idx]
+ source_image_resized = cv2.resize(source_image, (w, h))
+
+ if driving_image_lst is None:
+ out = np.hstack((source_image_resized, I_p))
+ else:
+ driving_image = driving_image_lst[idx]
+ driving_image_resized = cv2.resize(driving_image, (w, h))
+ out = np.hstack((driving_image_resized, source_image_resized, I_p))
+
+ out_lst.append(out)
+ return out_lst
+
+
+class VideoWriter:
+ def __init__(self, **kwargs):
+ self.fps = kwargs.get('fps', 30)
+ self.wfp = kwargs.get('wfp', 'video.mp4')
+ self.video_format = kwargs.get('format', 'mp4')
+ self.codec = kwargs.get('codec', 'libx264')
+ self.quality = kwargs.get('quality')
+ self.pixelformat = kwargs.get('pixelformat', 'yuv420p')
+ self.image_mode = kwargs.get('image_mode', 'rgb')
+ self.ffmpeg_params = kwargs.get('ffmpeg_params')
+
+ self.writer = imageio.get_writer(
+ self.wfp, fps=self.fps, format=self.video_format,
+ codec=self.codec, quality=self.quality,
+ ffmpeg_params=self.ffmpeg_params, pixelformat=self.pixelformat
+ )
+
+ def write(self, image):
+ if self.image_mode.lower() == 'bgr':
+ self.writer.append_data(image[..., ::-1])
+ else:
+ self.writer.append_data(image)
+
+ def close(self):
+ if self.writer is not None:
+ self.writer.close()
+
+
+def change_video_fps(input_file, output_file, fps=20, codec='libx264', crf=12):
+ cmd = f'ffmpeg -i "{input_file}" -c:v {codec} -crf {crf} -r {fps} "{output_file}" -y'
+ exec_cmd(cmd)
+
+
+def get_fps(filepath, default_fps=25):
+ try:
+ fps = cv2.VideoCapture(filepath).get(cv2.CAP_PROP_FPS)
+
+ if fps in (0, None):
+ fps = default_fps
+ except Exception as e:
+ log(e)
+ fps = default_fps
+
+ return fps
+
+
+def has_audio_stream(video_path: str) -> bool:
+ """
+ Check if the video file contains an audio stream.
+
+ :param video_path: Path to the video file
+ :return: True if the video contains an audio stream, False otherwise
+ """
+ if osp.isdir(video_path):
+ return False
+
+ cmd = [
+ 'ffprobe',
+ '-v', 'error',
+ '-select_streams', 'a',
+ '-show_entries', 'stream=codec_type',
+ '-of', 'default=noprint_wrappers=1:nokey=1',
+ f'"{video_path}"'
+ ]
+
+ try:
+ # result = subprocess.run(cmd, capture_output=True, text=True)
+ result = exec_cmd(' '.join(cmd))
+ if result.returncode != 0:
+ log(f"Error occurred while probing video: {result.stderr}")
+ return False
+
+ # Check if there is any output from ffprobe command
+ return bool(result.stdout.strip())
+ except Exception as e:
+ log(f"Error occurred while probing video: {video_path}, you may need to install ffprobe! Now set audio to false!", style="bold red")
+ return False
+
+
+def add_audio_to_video(silent_video_path: str, audio_video_path: str, output_video_path: str):
+ cmd = [
+ 'ffmpeg',
+ '-y',
+ '-i', f'"{silent_video_path}"',
+ '-i', f'"{audio_video_path}"',
+ '-map', '0:v',
+ '-map', '1:a',
+ '-c:v', 'copy',
+ '-shortest',
+ f'"{output_video_path}"'
+ ]
+
+ try:
+ exec_cmd(' '.join(cmd))
+ log(f"Video with audio generated successfully: {output_video_path}")
+ except subprocess.CalledProcessError as e:
+ log(f"Error occurred: {e}")
+
+
+def bb_intersection_over_union(boxA, boxB):
+ xA = max(boxA[0], boxB[0])
+ yA = max(boxA[1], boxB[1])
+ xB = min(boxA[2], boxB[2])
+ yB = min(boxA[3], boxB[3])
+ interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1)
+ boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
+ boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)
+ iou = interArea / float(boxAArea + boxBArea - interArea)
+ return iou
diff --git a/src/utils/viz.py b/src/utils/viz.py
new file mode 100644
index 0000000000000000000000000000000000000000..59443cbf207f3395bee241f63c7acb95b9402530
--- /dev/null
+++ b/src/utils/viz.py
@@ -0,0 +1,19 @@
+# coding: utf-8
+
+import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
+
+
+def viz_lmk(img_, vps, **kwargs):
+ """可视化点"""
+ lineType = kwargs.get("lineType", cv2.LINE_8) # cv2.LINE_AA
+ img_for_viz = img_.copy()
+ for pt in vps:
+ cv2.circle(
+ img_for_viz,
+ (int(pt[0]), int(pt[1])),
+ radius=kwargs.get("radius", 1),
+ color=(0, 255, 0),
+ thickness=kwargs.get("thickness", 1),
+ lineType=lineType,
+ )
+ return img_for_viz