fffiloni's picture
Migrated from GitHub
a6028c9 verified
import cv2
"""
brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset)
author: lzhbrian (https://lzhbrian.me)
date: 2020.1.5
note: code is heavily borrowed from
https://github.com/NVlabs/ffhq-dataset
http://dlib.net/face_landmark_detection.py.html
requirements:
apt install cmake
conda install Pillow numpy scipy
pip install dlib
# download face landmark model from:
# http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
"""
import numpy as np
from PIL import Image
import dlib
class Croper:
def __init__(self, path_of_lm):
# download model from: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
self.predictor = dlib.shape_predictor(path_of_lm)
def get_landmark(self, img_np):
"""get landmark with dlib
:return: np.array shape=(68, 2)
"""
detector = dlib.get_frontal_face_detector()
dets = detector(img_np, 1)
# print("Number of faces detected: {}".format(len(dets)))
# for k, d in enumerate(dets):
if len(dets) == 0:
return None
d = dets[0]
# Get the landmarks/parts for the face in box d.
shape = self.predictor(img_np, d)
# print("Part 0: {}, Part 1: {} ...".format(shape.part(0), shape.part(1)))
t = list(shape.parts())
a = []
for tt in t:
a.append([tt.x, tt.y])
lm = np.array(a)
# lm is a shape=(68,2) np.array
return lm
def align_face(self, img, lm, output_size=1024):
"""
:param filepath: str
:return: PIL Image
"""
lm_chin = lm[0: 17] # left-right
lm_eyebrow_left = lm[17: 22] # left-right
lm_eyebrow_right = lm[22: 27] # left-right
lm_nose = lm[27: 31] # top-down
lm_nostrils = lm[31: 36] # top-down
lm_eye_left = lm[36: 42] # left-clockwise
lm_eye_right = lm[42: 48] # left-clockwise
lm_mouth_outer = lm[48: 60] # left-clockwise
lm_mouth_inner = lm[60: 68] # left-clockwise
# Calculate auxiliary vectors.
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
mouth_left = lm_mouth_outer[0]
mouth_right = lm_mouth_outer[6]
mouth_avg = (mouth_left + mouth_right) * 0.5
eye_to_mouth = mouth_avg - eye_avg
# Choose oriented crop rectangle.
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] # Addition of binocular difference and double mouth difference
x /= np.hypot(*x)
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
y = np.flipud(x) * [-1, 1]
c = eye_avg + eye_to_mouth * 0.1
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
qsize = np.hypot(*x) * 2
# Shrink.
shrink = int(np.floor(qsize / output_size * 0.5))
if shrink > 1:
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
img = img.resize(rsize, Image.ANTIALIAS)
quad /= shrink
qsize /= shrink
else:
rsize = (int(np.rint(float(img.size[0]))), int(np.rint(float(img.size[1]))))
# Crop.
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
min(crop[3] + border, img.size[1]))
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
# img = img.crop(crop)
quad -= crop[0:2]
# Pad.
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
max(pad[3] - img.size[1] + border, 0))
# if enable_padding and max(pad) > border - 4:
# pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
# img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
# h, w, _ = img.shape
# y, x, _ = np.ogrid[:h, :w, :1]
# mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
# 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
# blur = qsize * 0.02
# img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
# img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
# img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
# quad += pad[:2]
# Transform.
quad = (quad + 0.5).flatten()
lx = max(min(quad[0], quad[2]), 0)
ly = max(min(quad[1], quad[7]), 0)
rx = min(max(quad[4], quad[6]), img.size[0])
ry = min(max(quad[3], quad[5]), img.size[0])
# img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(),
# Image.BILINEAR)
# if output_size < transform_size:
# img = img.resize((output_size, output_size), Image.ANTIALIAS)
# Save aligned image.
return rsize, crop, [lx, ly, rx, ry]
def crop(self, img_np_list, still=False, xsize=512): # first frame for all video
img_np = img_np_list[0]
lm = self.get_landmark(img_np)
if lm is None:
raise 'can not detect the landmark from source image'
rsize, crop, quad = self.align_face(img=Image.fromarray(img_np), lm=lm, output_size=xsize)
clx, cly, crx, cry = crop
lx, ly, rx, ry = quad
lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry)
for _i in range(len(img_np_list)):
_inp = img_np_list[_i]
_inp = cv2.resize(_inp, (rsize[0], rsize[1]))
_inp = _inp[cly:cry, clx:crx]
# cv2.imwrite('test1.jpg', _inp)
if not still:
_inp = _inp[ly:ry, lx:rx]
# cv2.imwrite('test2.jpg', _inp)
img_np_list[_i] = _inp
return img_np_list, crop, quad