Spaces:
Restarting
on
Zero
Restarting
on
Zero
import inspect | |
from typing import Optional | |
from einops import rearrange | |
import torch | |
import torch.nn.functional as F | |
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler | |
from diffusers.schedulers.scheduling_ddim import DDIMScheduler | |
from diffusers.schedulers.scheduling_pndm import PNDMScheduler | |
from torch import Tensor | |
from tqdm import tqdm | |
from diffusers import ModelMixin | |
from .model_utils import get_custom_betas | |
from .point_model import PointModel | |
import copy | |
import torch.nn as nn | |
class TemporalSmoothnessLoss(nn.Module): | |
def __init__(self): | |
super(TemporalSmoothnessLoss, self).__init__() | |
def forward(self, input): | |
# Calculate the difference between consecutive frames | |
diff = input[:, 1:, :] - input[:, :-1, :] | |
# Compute the L2 norm (squared) of the differences | |
smoothness_loss = torch.mean(torch.sum(diff ** 2, dim=2)) | |
return smoothness_loss | |
class ConditionalPointCloudDiffusionModel(ModelMixin): | |
def __init__( | |
self, | |
beta_start: float = 1e-5, | |
beta_end: float = 8e-3, | |
beta_schedule: str = 'linear', | |
point_cloud_model: str = 'simple', | |
point_cloud_model_embed_dim: int = 64, | |
): | |
super().__init__() | |
self.in_channels = 70 # 3 for 3D point positions | |
self.out_channels = 70 | |
# Checks | |
# Create diffusion model schedulers which define the sampling timesteps | |
scheduler_kwargs = {} | |
if beta_schedule == 'custom': | |
scheduler_kwargs.update(dict(trained_betas=get_custom_betas(beta_start=beta_start, beta_end=beta_end))) | |
else: | |
scheduler_kwargs.update(dict(beta_start=beta_start, beta_end=beta_end, beta_schedule=beta_schedule)) | |
self.schedulers_map = { | |
'ddpm': DDPMScheduler(**scheduler_kwargs, clip_sample=False), | |
'ddim': DDIMScheduler(**scheduler_kwargs, clip_sample=False), | |
'pndm': PNDMScheduler(**scheduler_kwargs), | |
} | |
self.scheduler = self.schedulers_map['ddim'] # this can be changed for inference | |
# Create point cloud model for processing point cloud at each diffusion step | |
self.point_model = PointModel( | |
model_type=point_cloud_model, | |
embed_dim=point_cloud_model_embed_dim, | |
in_channels=self.in_channels, | |
out_channels=self.out_channels, | |
) | |
def forward_train( | |
self, | |
pc: Optional[Tensor], | |
ref_kps: Optional[Tensor], | |
ori_kps: Optional[Tensor], | |
aud_feat: Optional[Tensor], | |
mode: str = 'train', | |
return_intermediate_steps: bool = False | |
): | |
# Normalize colors and convert to tensor | |
x_0 = pc | |
B, Nf, Np, D = x_0.shape# batch, nums of frames, nums of points, 3 | |
x_0=x_0[:,:,:,0]# batch, nums of frames, 70 | |
# Sample random noise | |
noise = torch.randn_like(x_0) | |
# Sample random timesteps for each point_cloud | |
timestep = torch.randint(0, self.scheduler.num_train_timesteps, (B,), | |
device=self.device, dtype=torch.long) | |
# Add noise to points | |
x_t = self.scheduler.add_noise(x_0, noise, timestep) | |
# Conditioning | |
ref_kps = ref_kps[:, :, 0] | |
x_t_input = torch.cat([ori_kps.unsqueeze(1), ref_kps.unsqueeze(1), x_t], dim=1) | |
aud_feat = torch.cat([torch.zeros(B, 2, 512).cuda(), aud_feat], 1) | |
# Augmentation for audio feature | |
if mode in 'train': | |
if torch.rand(1) > 0.3: | |
mean = torch.mean(aud_feat) | |
std = torch.std(aud_feat) | |
sample = torch.normal(mean=torch.full(aud_feat.shape, mean), std=torch.full(aud_feat.shape, std)).cuda() | |
aud_feat = sample + aud_feat | |
else: | |
pass | |
else: | |
pass | |
# Forward | |
noise_pred = self.point_model(x_t_input, timestep, context=aud_feat) #torch.cat([mel_feat,style_embed],-1)) | |
noise_pred = noise_pred[:, 2:] | |
# Check | |
if not noise_pred.shape == noise.shape: | |
raise ValueError(f'{noise_pred.shape=} and {noise.shape=}') | |
loss = F.mse_loss(noise_pred, noise) | |
loss_pose = F.mse_loss(noise_pred[:, :, 1:7], noise[:, :, 1:7]) | |
loss_exp = F.mse_loss(noise_pred[:, :, 7:], noise[:, :, 7:]) | |
# Whether to return intermediate steps | |
if return_intermediate_steps: | |
return loss, (x_0, x_t, noise, noise_pred) | |
return loss, loss_exp, loss_pose | |
def forward_sample( | |
self, | |
num_points: int, | |
ref_kps: Optional[Tensor], | |
ori_kps: Optional[Tensor], | |
aud_feat: Optional[Tensor], | |
# Optional overrides | |
scheduler: Optional[str] = 'ddpm', | |
# Inference parameters | |
num_inference_steps: Optional[int] = 50, | |
eta: Optional[float] = 0.0, # for DDIM | |
# Whether to return all the intermediate steps in generation | |
return_sample_every_n_steps: int = -1, | |
# Whether to disable tqdm | |
disable_tqdm: bool = False, | |
): | |
# Get scheduler from mapping, or use self.scheduler if None | |
scheduler = self.scheduler if scheduler is None else self.schedulers_map[scheduler] | |
# Get the size of the noise | |
Np = num_points | |
Nf = aud_feat.size(1) | |
B = 1 | |
D = 3 | |
device = self.device | |
# Sample noise | |
x_t = torch.randn(B, Nf, Np, D, device=device) | |
x_t = x_t[:, :, :, 0] | |
ref_kps = ref_kps[:,:,0] | |
# Set timesteps | |
accepts_offset = "offset" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
extra_set_kwargs = {"offset": 1} if accepts_offset else {} | |
scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) | |
accepts_eta = "eta" in set(inspect.signature(scheduler.step).parameters.keys()) | |
extra_step_kwargs = {"eta": eta} if accepts_eta else {} | |
# Loop over timesteps | |
all_outputs = [] | |
return_all_outputs = (return_sample_every_n_steps > 0) | |
progress_bar = tqdm(scheduler.timesteps.to(device), desc=f'Sampling ({x_t.shape})', disable=disable_tqdm) | |
aud_feat = torch.cat([torch.zeros(B, 2, 512).cuda(), aud_feat], 1) | |
for i, t in enumerate(progress_bar): | |
x_t_input = torch.cat([ori_kps.unsqueeze(1).detach(),ref_kps.unsqueeze(1).detach(), x_t], dim=1) | |
# Forward | |
noise_pred = self.point_model(x_t_input, t.reshape(1).expand(B), context=aud_feat)[:, 2:] | |
# Step | |
x_t = scheduler.step(noise_pred, t, x_t, **extra_step_kwargs).prev_sample | |
# Append to output list if desired | |
if (return_all_outputs and (i % return_sample_every_n_steps == 0 or i == len(scheduler.timesteps) - 1)): | |
all_outputs.append(x_t) | |
# Convert output back into a point cloud, undoing normalization and scaling | |
output = x_t | |
output = torch.stack([output,output,output],-1) | |
if return_all_outputs: | |
all_outputs = torch.stack(all_outputs, dim=1) # (B, sample_steps, N, D) | |
return (output, all_outputs) if return_all_outputs else output | |
def forward(self, batch: dict, mode: str = 'train', **kwargs): | |
"""A wrapper around the forward method for training and inference""" | |
if mode == 'train': | |
return self.forward_train( | |
pc=batch['sequence_keypoints'], | |
ref_kps=batch['ref_keypoint'], | |
ori_kps=batch['ori_keypoint'], | |
aud_feat=batch['aud_feat'], | |
mode='train', | |
**kwargs) | |
elif mode == 'val': | |
return self.forward_train( | |
pc=batch['sequence_keypoints'], | |
ref_kps=batch['ref_keypoint'], | |
ori_kps=batch['ori_keypoint'], | |
aud_feat=batch['aud_feat'], | |
mode='val', | |
**kwargs) | |
elif mode == 'sample': | |
num_points = 70 | |
return self.forward_sample( | |
num_points=num_points, | |
ref_kps=batch['ref_keypoint'], | |
ori_kps=batch['ori_keypoint'], | |
aud_feat=batch['aud_feat'], | |
**kwargs) | |
else: | |
raise NotImplementedError() |