File size: 14,241 Bytes
a6028c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# coding: utf-8

"""
Pipeline of LivePortrait
"""

import torch
torch.backends.cudnn.benchmark = True # disable CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR warning

import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
import numpy as np
import os
import os.path as osp
from rich.progress import track

from .config.argument_config import ArgumentConfig
from .config.inference_config import InferenceConfig
from .config.crop_config import CropConfig
from .utils.cropper import Cropper
from .utils.camera import get_rotation_matrix
from .utils.video import images2video, concat_frames, get_fps, add_audio_to_video, has_audio_stream
from .utils.crop import  prepare_paste_back, paste_back
from .utils.io import load_image_rgb, load_driving_info, resize_to_limit, dump, load
from .utils.helper import mkdir, basename, dct2device, is_video, is_template, remove_suffix
from .utils.rprint import rlog as log
# from .utils.viz import viz_lmk
from .live_portrait_wrapper import LivePortraitWrapper


def make_abs_path(fn):
    return osp.join(osp.dirname(osp.realpath(__file__)), fn)


class LivePortraitPipeline(object):

    def __init__(self, inference_cfg: InferenceConfig, crop_cfg: CropConfig):
        self.live_portrait_wrapper: LivePortraitWrapper = LivePortraitWrapper(inference_cfg=inference_cfg)
        self.cropper: Cropper = Cropper(crop_cfg=crop_cfg)

    def execute(self, args: ArgumentConfig):
        # for convenience
        inf_cfg = self.live_portrait_wrapper.inference_cfg
        device = self.live_portrait_wrapper.device
        crop_cfg = self.cropper.crop_cfg

        ######## process source portrait ########
        img_rgb = load_image_rgb(args.source_image)
        img_rgb = resize_to_limit(img_rgb, inf_cfg.source_max_dim, inf_cfg.source_division)
        log(f"Load source image from {args.source_image}")

        crop_info = self.cropper.crop_source_image(img_rgb, crop_cfg)
        if crop_info is None:
            raise Exception("No face detected in the source image!")
        source_lmk = crop_info['lmk_crop']
        img_crop, img_crop_256x256 = crop_info['img_crop'], crop_info['img_crop_256x256']

        if inf_cfg.flag_do_crop:
            I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
        else:
            img_crop_256x256 = cv2.resize(img_rgb, (256, 256))  # force to resize to 256x256
            I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
        x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
        x_c_s = x_s_info['kp']
        R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
        f_s = self.live_portrait_wrapper.extract_feature_3d(I_s)
        x_s = self.live_portrait_wrapper.transform_keypoint(x_s_info)

        flag_lip_zero = inf_cfg.flag_lip_zero  # not overwrite
        if flag_lip_zero:
            # let lip-open scalar to be 0 at first
            c_d_lip_before_animation = [0.]
            combined_lip_ratio_tensor_before_animation = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_before_animation, source_lmk)
            if combined_lip_ratio_tensor_before_animation[0][0] < inf_cfg.lip_zero_threshold:
                flag_lip_zero = False
            else:
                lip_delta_before_animation = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor_before_animation)
        ############################################

        ######## process driving info ########
        flag_load_from_template = is_template(args.driving_info)
        driving_rgb_crop_256x256_lst = None
        wfp_template = None

        if flag_load_from_template:
            # NOTE: load from template, it is fast, but the cropping video is None
            log(f"Load from template: {args.driving_info}, NOT the video, so the cropping video and audio are both NULL.", style='bold green')
            template_dct = load(args.driving_info)
            n_frames = template_dct['n_frames']

            # set output_fps
            output_fps = template_dct.get('output_fps', inf_cfg.output_fps)
            log(f'The FPS of template: {output_fps}')

            if args.flag_crop_driving_video:
                log("Warning: flag_crop_driving_video is True, but the driving info is a template, so it is ignored.")

        elif osp.exists(args.driving_info) and is_video(args.driving_info):
            # load from video file, AND make motion template
            log(f"Load video: {args.driving_info}")
            if osp.isdir(args.driving_info):
                output_fps = inf_cfg.output_fps
            else:
                output_fps = int(get_fps(args.driving_info))
                log(f'The FPS of {args.driving_info} is: {output_fps}')

            log(f"Load video file (mp4 mov avi etc...): {args.driving_info}")
            driving_rgb_lst = load_driving_info(args.driving_info)

            ######## make motion template ########
            log("Start making motion template...")
            if inf_cfg.flag_crop_driving_video:
                ret = self.cropper.crop_driving_video(driving_rgb_lst)
                log(f'Driving video is cropped, {len(ret["frame_crop_lst"])} frames are processed.')
                driving_rgb_crop_lst, driving_lmk_crop_lst = ret['frame_crop_lst'], ret['lmk_crop_lst']
                driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_crop_lst]
            else:
                driving_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(driving_rgb_lst)
                driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_lst]  # force to resize to 256x256

            c_d_eyes_lst, c_d_lip_lst = self.live_portrait_wrapper.calc_driving_ratio(driving_lmk_crop_lst)
            # save the motion template
            I_d_lst = self.live_portrait_wrapper.prepare_driving_videos(driving_rgb_crop_256x256_lst)
            template_dct = self.make_motion_template(I_d_lst, c_d_eyes_lst, c_d_lip_lst, output_fps=output_fps)

            wfp_template = remove_suffix(args.driving_info) + '.pkl'
            dump(wfp_template, template_dct)
            log(f"Dump motion template to {wfp_template}")

            n_frames = I_d_lst.shape[0]
        else:
            raise Exception(f"{args.driving_info} not exists or unsupported driving info types!")
        #########################################

        ######## prepare for pasteback ########
        I_p_pstbk_lst = None
        if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
            mask_ori_float = prepare_paste_back(inf_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0]))
            I_p_pstbk_lst = []
            log("Prepared pasteback mask done.")
        #########################################

        I_p_lst = []
        R_d_0, x_d_0_info = None, None

        for i in track(range(n_frames), description='🚀Animating...', total=n_frames):
            x_d_i_info = template_dct['motion'][i]
            x_d_i_info = dct2device(x_d_i_info, device)
            R_d_i = x_d_i_info['R_d']

            if i == 0:
                R_d_0 = R_d_i
                x_d_0_info = x_d_i_info

            if inf_cfg.flag_relative_motion:
                R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s
                delta_new = x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp'])
                scale_new = x_s_info['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
                t_new = x_s_info['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
            else:
                R_new = R_d_i
                delta_new = x_d_i_info['exp']
                scale_new = x_s_info['scale']
                t_new = x_d_i_info['t']

            t_new[..., 2].fill_(0)  # zero tz
            x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new

            # Algorithm 1:
            if not inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
                # without stitching or retargeting
                if flag_lip_zero:
                    x_d_i_new += lip_delta_before_animation.reshape(-1, x_s.shape[1], 3)
                else:
                    pass
            elif inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
                # with stitching and without retargeting
                if flag_lip_zero:
                    x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new) + lip_delta_before_animation.reshape(-1, x_s.shape[1], 3)
                else:
                    x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new)
            else:
                eyes_delta, lip_delta = None, None
                if inf_cfg.flag_eye_retargeting:
                    c_d_eyes_i = c_d_eyes_lst[i]
                    combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio(c_d_eyes_i, source_lmk)
                    # ∆_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
                    eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s, combined_eye_ratio_tensor)
                if inf_cfg.flag_lip_retargeting:
                    c_d_lip_i = c_d_lip_lst[i]
                    combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_i, source_lmk)
                    # ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
                    lip_delta = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor)

                if inf_cfg.flag_relative_motion:  # use x_s
                    x_d_i_new = x_s + \
                        (eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \
                        (lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0)
                else:  # use x_d,i
                    x_d_i_new = x_d_i_new + \
                        (eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \
                        (lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0)

                if inf_cfg.flag_stitching:
                    x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new)

            out = self.live_portrait_wrapper.warp_decode(f_s, x_s, x_d_i_new)
            I_p_i = self.live_portrait_wrapper.parse_output(out['out'])[0]
            I_p_lst.append(I_p_i)

            if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
                # TODO: pasteback is slow, considering optimize it using multi-threading or GPU
                I_p_pstbk = paste_back(I_p_i, crop_info['M_c2o'], img_rgb, mask_ori_float)
                I_p_pstbk_lst.append(I_p_pstbk)

        mkdir(args.output_dir)
        wfp_concat = None
        flag_has_audio = (not flag_load_from_template) and has_audio_stream(args.driving_info)

        ######### build final concact result #########
        # driving frame | source image | generation, or source image | generation
        frames_concatenated = concat_frames(driving_rgb_crop_256x256_lst, img_crop_256x256, I_p_lst)
        wfp_concat = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_concat.mp4')
        images2video(frames_concatenated, wfp=wfp_concat, fps=output_fps)

        if flag_has_audio:
            # final result with concact
            wfp_concat_with_audio = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_concat_with_audio.mp4')
            add_audio_to_video(wfp_concat, args.driving_info, wfp_concat_with_audio)
            os.replace(wfp_concat_with_audio, wfp_concat)
            log(f"Replace {wfp_concat} with {wfp_concat_with_audio}")

        # save drived result
        wfp = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}.mp4')
        if I_p_pstbk_lst is not None and len(I_p_pstbk_lst) > 0:
            images2video(I_p_pstbk_lst, wfp=wfp, fps=output_fps)
        else:
            images2video(I_p_lst, wfp=wfp, fps=output_fps)

        ######### build final result #########
        if flag_has_audio:
            wfp_with_audio = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_with_audio.mp4')
            add_audio_to_video(wfp, args.driving_info, wfp_with_audio)
            os.replace(wfp_with_audio, wfp)
            log(f"Replace {wfp} with {wfp_with_audio}")

        # final log
        if wfp_template not in (None, ''):
            log(f'Animated template: {wfp_template}, you can specify `-d` argument with this template path next time to avoid cropping video, motion making and protecting privacy.', style='bold green')
        log(f'Animated video: {wfp}')
        log(f'Animated video with concact: {wfp_concat}')

        return wfp, wfp_concat

    def make_motion_template(self, I_d_lst, c_d_eyes_lst, c_d_lip_lst, **kwargs):
        n_frames = I_d_lst.shape[0]
        template_dct = {
            'n_frames': n_frames,
            'output_fps': kwargs.get('output_fps', 25),
            'motion': [],
            'c_d_eyes_lst': [],
            'c_d_lip_lst': [],
        }

        for i in track(range(n_frames), description='Making motion templates...', total=n_frames):
            # collect s_d, R_d, δ_d and t_d for inference
            I_d_i = I_d_lst[i]
            x_d_i_info = self.live_portrait_wrapper.get_kp_info(I_d_i)
            R_d_i = get_rotation_matrix(x_d_i_info['pitch'], x_d_i_info['yaw'], x_d_i_info['roll'])

            item_dct = {
                'scale': x_d_i_info['scale'].cpu().numpy().astype(np.float32),
                'R_d': R_d_i.cpu().numpy().astype(np.float32),
                'exp': x_d_i_info['exp'].cpu().numpy().astype(np.float32),
                't': x_d_i_info['t'].cpu().numpy().astype(np.float32),
            }

            template_dct['motion'].append(item_dct)

            c_d_eyes = c_d_eyes_lst[i].astype(np.float32)
            template_dct['c_d_eyes_lst'].append(c_d_eyes)

            c_d_lip = c_d_lip_lst[i].astype(np.float32)
            template_dct['c_d_lip_lst'].append(c_d_lip)

        return template_dct