File size: 1,205 Bytes
a6028c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import cv2
import numpy as np
import torch
import torch.nn as nn

def set_requires_grad(module: nn.Module, requires_grad: bool):
    for p in module.parameters():
        p.requires_grad_(requires_grad)


def compute_distance_transform(mask: torch.Tensor):
    image_size = mask.shape[-1]
    distance_transform = torch.stack([
        torch.from_numpy(cv2.distanceTransform(
            (1 - m), distanceType=cv2.DIST_L2, maskSize=cv2.DIST_MASK_3
        ) / (image_size / 2))
        for m in mask.squeeze(1).detach().cpu().numpy().astype(np.uint8)
    ]).unsqueeze(1).clip(0, 1).to(mask.device)
    return distance_transform


def default(x, d):
    return d if x is None else x

def get_custom_betas(beta_start: float, beta_end: float, warmup_frac: float = 0.3, num_train_timesteps: int = 1000):
    """Custom beta schedule"""
    betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32)
    warmup_frac = 0.3
    warmup_time = int(num_train_timesteps * warmup_frac)
    warmup_steps = np.linspace(beta_start, beta_end, warmup_time, dtype=np.float64)
    warmup_time = min(warmup_time, num_train_timesteps)
    betas[:warmup_time] = warmup_steps[:warmup_time]
    return betas