File size: 8,349 Bytes
a6028c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import inspect
from typing import Optional
from einops import rearrange
import torch
import torch.nn.functional as F
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
from diffusers.schedulers.scheduling_ddim import DDIMScheduler
from diffusers.schedulers.scheduling_pndm import PNDMScheduler

from torch import Tensor
from tqdm import tqdm
from diffusers import ModelMixin
from .model_utils import get_custom_betas
from .point_model import PointModel
import copy
import torch.nn as nn

class TemporalSmoothnessLoss(nn.Module):
    def __init__(self):
        super(TemporalSmoothnessLoss, self).__init__()

    def forward(self, input):
        # Calculate the difference between consecutive frames
        diff = input[:, 1:, :] - input[:, :-1, :]

        # Compute the L2 norm (squared) of the differences
        smoothness_loss = torch.mean(torch.sum(diff ** 2, dim=2))

        return smoothness_loss

class ConditionalPointCloudDiffusionModel(ModelMixin):
    def __init__(
        self,
        beta_start: float = 1e-5,
        beta_end: float = 8e-3,
        beta_schedule: str = 'linear',
        point_cloud_model: str = 'simple',
        point_cloud_model_embed_dim: int = 64,
    ):
        super().__init__()
        self.in_channels = 70  # 3 for 3D point positions
        self.out_channels = 70

        # Checks
        # Create diffusion model schedulers which define the sampling timesteps
        scheduler_kwargs = {}
        if beta_schedule == 'custom':
            scheduler_kwargs.update(dict(trained_betas=get_custom_betas(beta_start=beta_start, beta_end=beta_end)))
        else:
            scheduler_kwargs.update(dict(beta_start=beta_start, beta_end=beta_end, beta_schedule=beta_schedule))
        self.schedulers_map = {
            'ddpm': DDPMScheduler(**scheduler_kwargs, clip_sample=False),
            'ddim': DDIMScheduler(**scheduler_kwargs, clip_sample=False), 
            'pndm': PNDMScheduler(**scheduler_kwargs), 
        }
        self.scheduler = self.schedulers_map['ddim']  # this can be changed for inference

        # Create point cloud model for processing point cloud at each diffusion step
        self.point_model = PointModel(
            model_type=point_cloud_model,
            embed_dim=point_cloud_model_embed_dim,
            in_channels=self.in_channels,
            out_channels=self.out_channels,
        )

    def forward_train(
        self,
        pc: Optional[Tensor],
        ref_kps: Optional[Tensor],
        ori_kps: Optional[Tensor],
        aud_feat: Optional[Tensor],
        mode: str = 'train',
        return_intermediate_steps: bool = False
    ):

        # Normalize colors and convert to tensor
        x_0 = pc
        B, Nf, Np, D = x_0.shape# batch, nums of frames, nums of points, 3


        x_0=x_0[:,:,:,0]# batch, nums of frames, 70

        # Sample random noise
        noise = torch.randn_like(x_0)

        # Sample random timesteps for each point_cloud
        timestep = torch.randint(0, self.scheduler.num_train_timesteps, (B,),
            device=self.device, dtype=torch.long)

        # Add noise to points
        x_t = self.scheduler.add_noise(x_0, noise, timestep)

        # Conditioning
        ref_kps = ref_kps[:, :, 0]

        x_t_input = torch.cat([ori_kps.unsqueeze(1), ref_kps.unsqueeze(1), x_t], dim=1)

        aud_feat = torch.cat([torch.zeros(B, 2, 512).cuda(), aud_feat], 1)

        # Augmentation for audio feature
        if mode in 'train':
            if torch.rand(1) > 0.3:
                mean = torch.mean(aud_feat)
                std = torch.std(aud_feat)
                sample = torch.normal(mean=torch.full(aud_feat.shape, mean), std=torch.full(aud_feat.shape, std)).cuda()
                aud_feat = sample + aud_feat
            else:
                pass
        else:
            pass

        # Forward
        noise_pred = self.point_model(x_t_input, timestep, context=aud_feat)    #torch.cat([mel_feat,style_embed],-1))
        noise_pred = noise_pred[:, 2:]

        # Check
        if not noise_pred.shape == noise.shape:
            raise ValueError(f'{noise_pred.shape=} and {noise.shape=}')

        loss = F.mse_loss(noise_pred, noise)

        loss_pose = F.mse_loss(noise_pred[:, :, 1:7], noise[:, :, 1:7])
        loss_exp = F.mse_loss(noise_pred[:, :, 7:], noise[:, :, 7:])


        # Whether to return intermediate steps
        if return_intermediate_steps:
            return loss, (x_0, x_t, noise, noise_pred)

        return loss, loss_exp, loss_pose

    @torch.no_grad()
    def forward_sample(
        self,
        num_points: int,
        ref_kps: Optional[Tensor],
        ori_kps: Optional[Tensor],
        aud_feat: Optional[Tensor],
        # Optional overrides
        scheduler: Optional[str] = 'ddpm',
        # Inference parameters
        num_inference_steps: Optional[int] = 50,
        eta: Optional[float] = 0.0,  # for DDIM
        # Whether to return all the intermediate steps in generation
        return_sample_every_n_steps: int = -1,
        # Whether to disable tqdm
        disable_tqdm: bool = False,
    ):

        # Get scheduler from mapping, or use self.scheduler if None
        scheduler = self.scheduler if scheduler is None else self.schedulers_map[scheduler]

        # Get the size of the noise
        Np = num_points
        Nf = aud_feat.size(1)
        B = 1
        D = 3
        device = self.device

        # Sample noise
        x_t = torch.randn(B, Nf, Np, D, device=device)

        x_t = x_t[:, :, :, 0]

        ref_kps = ref_kps[:,:,0]

        # Set timesteps
        accepts_offset = "offset" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        extra_set_kwargs = {"offset": 1} if accepts_offset else {}
        scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)

        accepts_eta = "eta" in set(inspect.signature(scheduler.step).parameters.keys())
        extra_step_kwargs = {"eta": eta} if accepts_eta else {}

        # Loop over timesteps
        all_outputs = []
        return_all_outputs = (return_sample_every_n_steps > 0)
        progress_bar = tqdm(scheduler.timesteps.to(device), desc=f'Sampling ({x_t.shape})', disable=disable_tqdm)

        aud_feat = torch.cat([torch.zeros(B, 2, 512).cuda(), aud_feat], 1)

        for i, t in enumerate(progress_bar):
            x_t_input = torch.cat([ori_kps.unsqueeze(1).detach(),ref_kps.unsqueeze(1).detach(), x_t], dim=1)

            # Forward
            noise_pred = self.point_model(x_t_input, t.reshape(1).expand(B), context=aud_feat)[:, 2:]

            # Step
            x_t = scheduler.step(noise_pred, t, x_t, **extra_step_kwargs).prev_sample

            # Append to output list if desired
            if (return_all_outputs and (i % return_sample_every_n_steps == 0 or i == len(scheduler.timesteps) - 1)):
                all_outputs.append(x_t)

        # Convert output back into a point cloud, undoing normalization and scaling
        output = x_t
        output = torch.stack([output,output,output],-1)
        if return_all_outputs:
            all_outputs = torch.stack(all_outputs, dim=1)  # (B, sample_steps, N, D)
        return (output, all_outputs) if return_all_outputs else output

    def forward(self, batch: dict, mode: str = 'train', **kwargs):
        """A wrapper around the forward method for training and inference"""

        if mode == 'train':
            return self.forward_train(
                pc=batch['sequence_keypoints'],
                ref_kps=batch['ref_keypoint'],
                ori_kps=batch['ori_keypoint'],
                aud_feat=batch['aud_feat'],
                mode='train',
                **kwargs)
        elif mode == 'val':
            return self.forward_train(
                pc=batch['sequence_keypoints'],
                ref_kps=batch['ref_keypoint'],
                ori_kps=batch['ori_keypoint'],
                aud_feat=batch['aud_feat'],
                mode='val',
                **kwargs)
        elif mode == 'sample':
            num_points = 70
            return self.forward_sample(
                num_points=num_points,
                ref_kps=batch['ref_keypoint'],
                ori_kps=batch['ori_keypoint'],
                aud_feat=batch['aud_feat'],
                **kwargs) 
        else:
            raise NotImplementedError()