File size: 15,376 Bytes
a6028c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
# -*- coding: UTF-8 -*-
import os
os.environ['HYDRA_FULL_ERROR']='1'
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import argparse
import shutil
import uuid
import os
import numpy as np
from tqdm import tqdm
import cv2
from rich.progress import track
import tyro
from PIL import Image
import time
import torch
import torch.nn.functional as F
from torch import nn
import imageio
from pydub import AudioSegment
from pykalman import KalmanFilter
from src.config.argument_config import ArgumentConfig
from src.config.inference_config import InferenceConfig
from src.config.crop_config import CropConfig
from src.live_portrait_pipeline import LivePortraitPipeline
from src.utils.camera import get_rotation_matrix
from dataset_process import audio
from dataset_process.croper import Croper
def parse_audio_length(audio_length, sr, fps):
bit_per_frames = sr / fps
num_frames = int(audio_length / bit_per_frames)
audio_length = int(num_frames * bit_per_frames)
return audio_length, num_frames
def crop_pad_audio(wav, audio_length):
if len(wav) > audio_length:
wav = wav[:audio_length]
elif len(wav) < audio_length:
wav = np.pad(wav, [0, audio_length - len(wav)], mode='constant', constant_values=0)
return wav
class Conv2d(nn.Module):
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, use_act=True, *args, **kwargs):
super().__init__(*args, **kwargs)
self.conv_block = nn.Sequential(
nn.Conv2d(cin, cout, kernel_size, stride, padding),
nn.BatchNorm2d(cout)
)
self.act = nn.ReLU()
self.residual = residual
self.use_act = use_act
def forward(self, x):
out = self.conv_block(x)
if self.residual:
out += x
if self.use_act:
return self.act(out)
else:
return out
class AudioEncoder(nn.Module):
def __init__(self, wav2lip_checkpoint, device):
super(AudioEncoder, self).__init__()
self.audio_encoder = nn.Sequential(
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
Conv2d(512, 512, kernel_size=1, stride=1, padding=0),)
#### load the pre-trained audio_encoder
wav2lip_state_dict = torch.load(wav2lip_checkpoint, map_location=torch.device(device))['state_dict']
state_dict = self.audio_encoder.state_dict()
for k,v in wav2lip_state_dict.items():
if 'audio_encoder' in k:
state_dict[k.replace('module.audio_encoder.', '')] = v
self.audio_encoder.load_state_dict(state_dict)
def forward(self, audio_sequences):
B = audio_sequences.size(0)
audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
audio_embedding = self.audio_encoder(audio_sequences) # B, 512, 1, 1
dim = audio_embedding.shape[1]
audio_embedding = audio_embedding.reshape((B, -1, dim, 1, 1))
return audio_embedding.squeeze(-1).squeeze(-1) #B seq_len+1 512
def partial_fields(target_class, kwargs):
return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)})
def dct2device(dct: dict, device):
for key in dct:
dct[key] = torch.tensor(dct[key]).to(device)
return dct
def save_video_with_watermark(video, audio, save_path):
temp_file = str(uuid.uuid4())+'.mp4'
cmd = r'ffmpeg -y -i "%s" -i "%s" -vcodec copy "%s"' % (video, audio, temp_file)
os.system(cmd)
shutil.move(temp_file, save_path)
class Inferencer(object):
def __init__(self):
st=time.time()
print('#'*25+'Start initialization'+'#'*25)
self.device = 'cuda'
from model import get_model
self.point_diffusion = get_model()
ckpt = torch.load('KDTalker.pth')
self.point_diffusion.load_state_dict(ckpt['model'])
self.point_diffusion.eval()
self.point_diffusion.to(self.device)
lm_croper_checkpoint = 'ckpts/shape_predictor_68_face_landmarks.dat'
self.croper = Croper(lm_croper_checkpoint)
self.norm_info = dict(np.load('dataset_process/norm.npz'))
wav2lip_checkpoint = 'ckpts/wav2lip.pth'
self.wav2lip_model = AudioEncoder(wav2lip_checkpoint, 'cuda')
self.wav2lip_model.cuda()
self.wav2lip_model.eval()
# set tyro theme
tyro.extras.set_accent_color("bright_cyan")
args = tyro.cli(ArgumentConfig)
# specify configs for inference
self.inf_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig
self.crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig
self.live_portrait_pipeline = LivePortraitPipeline(inference_cfg=self.inf_cfg, crop_cfg=self.crop_cfg)
def _norm(self, data_dict):
for k in data_dict.keys():
if k in ['yaw', 'pitch', 'roll', 't', 'exp', 'scale', 'kp', ]:
v=data_dict[k]
data_dict[k] = (v - self.norm_info[k+'_mean'])/self.norm_info[k+'_std']
return data_dict
def _denorm(self, data_dict):
for k in data_dict.keys():
if k in ['yaw', 'pitch', 'roll', 't', 'exp', 'scale', 'kp']:
v=data_dict[k]
data_dict[k] = v * self.norm_info[k+'_std'] + self.norm_info[k+'_mean']
return data_dict
def output_to_dict(self, data):
output = {}
output['scale'] = data[:, 0]
output['yaw'] = data[:, 1, None]
output['pitch'] = data[:, 2, None]
output['roll'] = data[:, 3, None]
output['t'] = data[:, 4:7]
output['exp'] = data[:, 7:]
return output
def extract_mel_from_audio(self, audio_file_path):
syncnet_mel_step_size = 16
fps = 25
wav = audio.load_wav(audio_file_path, 16000)
wav_length, num_frames = parse_audio_length(len(wav), 16000, 25)
wav = crop_pad_audio(wav, wav_length)
orig_mel = audio.melspectrogram(wav).T
spec = orig_mel.copy()
indiv_mels = []
for i in tqdm(range(num_frames), 'mel:'):
start_frame_num = i - 2
start_idx = int(80. * (start_frame_num / float(fps)))
end_idx = start_idx + syncnet_mel_step_size
seq = list(range(start_idx, end_idx))
seq = [min(max(item, 0), orig_mel.shape[0] - 1) for item in seq]
m = spec[seq, :]
indiv_mels.append(m.T)
indiv_mels = np.asarray(indiv_mels) # T 80 16
return indiv_mels
def extract_wav2lip_from_audio(self, audio_file_path):
asd_mel = self.extract_mel_from_audio(audio_file_path)
asd_mel = torch.FloatTensor(asd_mel).cuda().unsqueeze(0).unsqueeze(2)
with torch.no_grad():
hidden = self.wav2lip_model(asd_mel)
return hidden[0].cpu().detach().numpy()
def headpose_pred_to_degree(self, pred):
device = pred.device
idx_tensor = [idx for idx in range(66)]
idx_tensor = torch.FloatTensor(idx_tensor).to(device)
pred = F.softmax(pred)
degree = torch.sum(pred * idx_tensor, 1) * 3 - 99
return degree
@torch.no_grad()
def generate_with_audio_img(self, image_path, audio_path, save_path):
image = np.array(Image.open(image_path).convert('RGB'))
cropped_image, crop, quad = self.croper.crop([image], still=False, xsize=512)
input_image = cv2.resize(cropped_image[0], (256, 256))
I_s = torch.FloatTensor(input_image.transpose((2, 0, 1))).unsqueeze(0).cuda() / 255
x_s_info = self.live_portrait_pipeline.live_portrait_wrapper.get_kp_info(I_s)
x_c_s = x_s_info['kp'].reshape(1, 21, -1)
R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
f_s = self.live_portrait_pipeline.live_portrait_wrapper.extract_feature_3d(I_s)
x_s = self.live_portrait_pipeline.live_portrait_wrapper.transform_keypoint(x_s_info)
######## process driving info ########
kp_info = {}
for k in x_s_info.keys():
kp_info[k] = x_s_info[k].cpu().numpy()
kp_info = self._norm(kp_info)
ori_kp = torch.cat([torch.zeros([1, 7]), torch.Tensor(kp_info['kp'])], -1).cuda()
input_x = np.concatenate([kp_info[k] for k in ['scale', 'yaw', 'pitch', 'roll', 't', 'exp']], 1)
input_x = np.expand_dims(input_x, -1)
input_x = np.expand_dims(input_x, 0)
input_x = np.concatenate([input_x, input_x, input_x], -1)
aud_feat = self.extract_wav2lip_from_audio(audio_path)
sample_frame = 64
padding_size = (sample_frame - aud_feat.shape[0] % sample_frame) % sample_frame
if padding_size > 0:
aud_feat = np.concatenate((aud_feat, aud_feat[:padding_size, :]), axis=0)
else:
aud_feat = aud_feat
outputs = [input_x]
sample_frame = 64
for i in range(0, aud_feat.shape[0] - 1, sample_frame):
input_mel = torch.Tensor(aud_feat[i: i + sample_frame]).unsqueeze(0).cuda()
kp0 = torch.Tensor(outputs[-1])[:, -1].cuda()
pred_kp = self.point_diffusion.forward_sample(70, ref_kps=kp0, ori_kps=ori_kp, aud_feat=input_mel,
scheduler='ddim', num_inference_steps=50)
outputs.append(pred_kp.cpu().numpy())
outputs = np.mean(np.concatenate(outputs, 1)[0, 1:aud_feat.shape[0] - padding_size + 1], -1)
output_dict = self.output_to_dict(outputs)
output_dict = self._denorm(output_dict)
num_frame = output_dict['yaw'].shape[0]
x_d_info = {}
for key in output_dict:
x_d_info[key] = torch.tensor(output_dict[key]).cuda()
# smooth
def smooth(sequence, n_dim_state=1):
kf = KalmanFilter(initial_state_mean=sequence[0],
transition_covariance=0.05 * np.eye(n_dim_state),
observation_covariance=0.001 * np.eye(n_dim_state))
state_means, _ = kf.smooth(sequence)
return state_means
yaw_data = x_d_info['yaw'].cpu().numpy()
pitch_data = x_d_info['pitch'].cpu().numpy()
roll_data = x_d_info['roll'].cpu().numpy()
t_data = x_d_info['t'].cpu().numpy()
exp_data = x_d_info['exp'].cpu().numpy()
smoothed_pitch = smooth(pitch_data, n_dim_state=1)
smoothed_yaw = smooth(yaw_data, n_dim_state=1)
smoothed_roll = smooth(roll_data, n_dim_state=1)
smoothed_t = smooth(t_data, n_dim_state=3)
smoothed_exp = smooth(exp_data, n_dim_state=63)
x_d_info['pitch'] = torch.Tensor(smoothed_pitch).cuda()
x_d_info['yaw'] = torch.Tensor(smoothed_yaw).cuda()
x_d_info['roll'] = torch.Tensor(smoothed_roll).cuda()
x_d_info['t'] = torch.Tensor(smoothed_t).cuda()
x_d_info['exp'] = torch.Tensor(smoothed_exp).cuda()
template_dct = {'motion': [], 'c_d_eyes_lst': [], 'c_d_lip_lst': []}
for i in track(range(num_frame), description='Making motion templates...', total=num_frame):
x_d_i_info = x_d_info
R_d_i = get_rotation_matrix(x_d_i_info['pitch'][i], x_d_i_info['yaw'][i], x_d_i_info['roll'][i])
item_dct = {
'scale': x_d_i_info['scale'][i].cpu().numpy().astype(np.float32),
'R_d': R_d_i.cpu().numpy().astype(np.float32),
'exp': x_d_i_info['exp'][i].reshape(1, 21, -1).cpu().numpy().astype(np.float32),
't': x_d_i_info['t'][i].cpu().numpy().astype(np.float32),
}
template_dct['motion'].append(item_dct)
I_p_lst = []
R_d_0, x_d_0_info = None, None
for i in track(range(num_frame), description='🚀Animating...', total=num_frame):
x_d_i_info = template_dct['motion'][i]
for key in x_d_i_info:
x_d_i_info[key] = torch.tensor(x_d_i_info[key]).cuda()
R_d_i = x_d_i_info['R_d']
if i == 0:
R_d_0 = R_d_i
x_d_0_info = x_d_i_info
if self.inf_cfg.flag_relative_motion:
R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s
delta_new = x_s_info['exp'].reshape(1, 21, -1) + (x_d_i_info['exp'] - x_d_0_info['exp'])
scale_new = x_s_info['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
t_new = x_s_info['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
else:
R_new = R_d_i
delta_new = x_d_i_info['exp']
scale_new = x_s_info['scale']
t_new = x_d_i_info['t']
t_new[..., 2].fill_(0)
x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new
out = self.live_portrait_pipeline.live_portrait_wrapper.warp_decode(f_s, x_s, x_d_i_new)
I_p_i = self.live_portrait_pipeline.live_portrait_wrapper.parse_output(out['out'])[0]
I_p_lst.append(I_p_i)
video_name = save_path.split('/')[-1]
video_save_dir = os.path.dirname(save_path)
path = os.path.join(video_save_dir, 'temp_' + video_name)
imageio.mimsave(path, I_p_lst, fps=float(25))
audio_name = audio_path.split('/')[-1]
new_audio_path = os.path.join(video_save_dir, audio_name)
start_time = 0
sound = AudioSegment.from_file(audio_path)
end_time = start_time + num_frame * 1 / 25 * 1000
word1 = sound.set_frame_rate(16000)
word = word1[start_time:end_time]
word.export(new_audio_path, format="wav")
save_video_with_watermark(path, new_audio_path, save_path, watermark=False)
print(f'The generated video is named {video_save_dir}/{video_name}')
os.remove(path)
os.remove(new_audio_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("-source_image", type=str, default="example/source_image/WDA_BenCardin1_000.png",
help="source image")
parser.add_argument("-driven_audio", type=str, default="example/driven_audio/WDA_BenCardin1_000.wav",
help="driving audio")
parser.add_argument("-output", type=str, default="results/output.mp4", help="output video file name", )
args = parser.parse_args()
Infer = Inferencer()
Infer.generate_with_audio_img(args.source_image, args.driven_audio, args.output) |