File size: 16,975 Bytes
3cbfa4c
 
 
 
 
3b88a56
 
 
 
 
 
 
 
3cbfa4c
 
 
 
 
 
 
 
 
 
3b88a56
3cbfa4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19554e3
3cbfa4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aee76a
3cbfa4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
613498c
3cbfa4c
 
 
 
 
19554e3
3b88a56
cd10782
 
 
 
 
3cbfa4c
1222ca5
3b88a56
 
 
 
 
 
85c77fb
 
 
 
 
 
 
 
 
 
 
 
 
 
3b88a56
 
 
 
 
00c6ce0
3b88a56
 
c3d7a4d
 
834994d
8662aa2
 
2f99004
5b51506
c3d7a4d
 
3b88a56
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
# -*- coding: UTF-8 -*-
import os
os.environ['HYDRA_FULL_ERROR']='1'
os.environ['CUDA_VISIBLE_DEVICES'] = '0'

from huggingface_hub import snapshot_download 

# Download weights
snapshot_download(
    repo_id = "ChaolongYang/KDTalker",
    local_dir = "./"
)

import argparse
import shutil
import uuid
import os
import numpy as np
from tqdm import tqdm
import cv2
from rich.progress import track
import tyro

import gradio as gr 
from PIL import Image
import time
import torch
import torch.nn.functional as F
from torch import nn
import imageio
from pydub import AudioSegment
from pykalman import KalmanFilter


from src.config.argument_config import ArgumentConfig
from src.config.inference_config import InferenceConfig
from src.config.crop_config import CropConfig
from src.live_portrait_pipeline import LivePortraitPipeline
from src.utils.camera import get_rotation_matrix
from dataset_process import audio

from dataset_process.croper import Croper

import spaces

def parse_audio_length(audio_length, sr, fps):
    bit_per_frames = sr / fps
    num_frames = int(audio_length / bit_per_frames)
    audio_length = int(num_frames * bit_per_frames)
    return audio_length, num_frames

def crop_pad_audio(wav, audio_length):
    if len(wav) > audio_length:
        wav = wav[:audio_length]
    elif len(wav) < audio_length:
        wav = np.pad(wav, [0, audio_length - len(wav)], mode='constant', constant_values=0)
    return wav

class Conv2d(nn.Module):
    def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, use_act=True, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.conv_block = nn.Sequential(
            nn.Conv2d(cin, cout, kernel_size, stride, padding),
            nn.BatchNorm2d(cout)
        )
        self.act = nn.ReLU()
        self.residual = residual
        self.use_act = use_act

    def forward(self, x):
        out = self.conv_block(x)
        if self.residual:
            out += x

        if self.use_act:
            return self.act(out)
        else:
            return out

class AudioEncoder(nn.Module):
    def __init__(self, wav2lip_checkpoint, device):
        super(AudioEncoder, self).__init__()

        self.audio_encoder = nn.Sequential(
            Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
            Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
            Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),

            Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
            Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
            Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),

            Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
            Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
            Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),

            Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
            Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),

            Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
            Conv2d(512, 512, kernel_size=1, stride=1, padding=0),)

        #### load the pre-trained audio_encoder
        wav2lip_state_dict = torch.load(wav2lip_checkpoint, map_location=torch.device(device))['state_dict']
        state_dict = self.audio_encoder.state_dict()

        for k,v in wav2lip_state_dict.items():
            if 'audio_encoder' in k:
                state_dict[k.replace('module.audio_encoder.', '')] = v
        self.audio_encoder.load_state_dict(state_dict)

    def forward(self, audio_sequences):
        B = audio_sequences.size(0)

        audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)

        audio_embedding = self.audio_encoder(audio_sequences) # B, 512, 1, 1
        dim = audio_embedding.shape[1]
        audio_embedding = audio_embedding.reshape((B, -1, dim, 1, 1))

        return audio_embedding.squeeze(-1).squeeze(-1) #B seq_len+1 512

def partial_fields(target_class, kwargs):
    return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)})

def dct2device(dct: dict, device):
    for key in dct:
        dct[key] = torch.tensor(dct[key]).to(device)
    return dct

def save_video_with_watermark(video, audio, save_path):
    temp_file = str(uuid.uuid4())+'.mp4'
    cmd = r'ffmpeg -y -i "%s" -i "%s" -vcodec copy "%s"' % (video, audio, temp_file)
    os.system(cmd)
    shutil.move(temp_file, save_path)

class Inferencer(object):
    def __init__(self):
        st=time.time()
        print('#'*25+'Start initialization'+'#'*25)
        self.device = 'cuda'

        from model import get_model
        self.point_diffusion = get_model()
        ckpt = torch.load('ckpts/KDTalker.pth')

        self.point_diffusion.load_state_dict(ckpt['model'])
        self.point_diffusion.eval()
        self.point_diffusion.to(self.device)

        lm_croper_checkpoint = 'ckpts/shape_predictor_68_face_landmarks.dat'
        self.croper = Croper(lm_croper_checkpoint)

        self.norm_info = dict(np.load('dataset_process/norm.npz'))

        wav2lip_checkpoint = 'ckpts/wav2lip.pth'
        self.wav2lip_model = AudioEncoder(wav2lip_checkpoint, 'cuda')
        self.wav2lip_model.cuda()
        self.wav2lip_model.eval()

        # set tyro theme
        tyro.extras.set_accent_color("bright_cyan")
        args = tyro.cli(ArgumentConfig)

        # specify configs for inference
        self.inf_cfg = partial_fields(InferenceConfig, args.__dict__)  # use attribute of args to initial InferenceConfig
        self.crop_cfg = partial_fields(CropConfig, args.__dict__)  # use attribute of args to initial CropConfig

        self.live_portrait_pipeline = LivePortraitPipeline(inference_cfg=self.inf_cfg, crop_cfg=self.crop_cfg)

    def _norm(self, data_dict):
        for k in data_dict.keys():
            if k in ['yaw', 'pitch', 'roll', 't', 'exp', 'scale', 'kp', ]:
                v=data_dict[k]
                data_dict[k] = (v - self.norm_info[k+'_mean'])/self.norm_info[k+'_std']
        return data_dict

    def _denorm(self, data_dict):
        for k in data_dict.keys():
            if k in ['yaw', 'pitch', 'roll', 't', 'exp', 'scale', 'kp']:
                v=data_dict[k]
                data_dict[k] = v * self.norm_info[k+'_std'] + self.norm_info[k+'_mean']
        return data_dict

    def output_to_dict(self, data):
        output = {}
        output['scale'] = data[:, 0]
        output['yaw'] = data[:, 1, None]
        output['pitch'] = data[:, 2, None]
        output['roll'] = data[:, 3, None]
        output['t'] = data[:, 4:7]
        output['exp'] = data[:, 7:]
        return output

    def extract_mel_from_audio(self, audio_file_path):
        syncnet_mel_step_size = 16
        fps = 25
        wav = audio.load_wav(audio_file_path, 16000)
        wav_length, num_frames = parse_audio_length(len(wav), 16000, 25)
        wav = crop_pad_audio(wav, wav_length)
        orig_mel = audio.melspectrogram(wav).T
        spec = orig_mel.copy()
        indiv_mels = []

        for i in tqdm(range(num_frames), 'mel:'):
            start_frame_num = i - 2
            start_idx = int(80. * (start_frame_num / float(fps)))
            end_idx = start_idx + syncnet_mel_step_size
            seq = list(range(start_idx, end_idx))
            seq = [min(max(item, 0), orig_mel.shape[0] - 1) for item in seq]
            m = spec[seq, :]
            indiv_mels.append(m.T)
        indiv_mels = np.asarray(indiv_mels)  # T 80 16
        return indiv_mels

    def extract_wav2lip_from_audio(self, audio_file_path):
        asd_mel = self.extract_mel_from_audio(audio_file_path)
        asd_mel = torch.FloatTensor(asd_mel).cuda().unsqueeze(0).unsqueeze(2)
        with torch.no_grad():
            hidden = self.wav2lip_model(asd_mel)
        return hidden[0].cpu().detach().numpy()

    def headpose_pred_to_degree(self, pred):
        device = pred.device
        idx_tensor = [idx for idx in range(66)]
        idx_tensor = torch.FloatTensor(idx_tensor).to(device)
        pred = F.softmax(pred)
        degree = torch.sum(pred * idx_tensor, 1) * 3 - 99
        return degree

    @torch.no_grad()
    def generate_with_audio_img(self, image_path, audio_path, save_path):
        image = np.array(Image.open(image_path).convert('RGB'))
        cropped_image, crop, quad = self.croper.crop([image], still=False, xsize=512)
        input_image = cv2.resize(cropped_image[0], (256, 256))

        I_s = torch.FloatTensor(input_image.transpose((2, 0, 1))).unsqueeze(0).cuda() / 255

        x_s_info = self.live_portrait_pipeline.live_portrait_wrapper.get_kp_info(I_s)
        x_c_s = x_s_info['kp'].reshape(1, 21, -1)
        R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
        f_s = self.live_portrait_pipeline.live_portrait_wrapper.extract_feature_3d(I_s)
        x_s = self.live_portrait_pipeline.live_portrait_wrapper.transform_keypoint(x_s_info)

        ######## process driving info ########
        kp_info = {}
        for k in x_s_info.keys():
            kp_info[k] = x_s_info[k].cpu().numpy()

        kp_info = self._norm(kp_info)

        ori_kp = torch.cat([torch.zeros([1, 7]), torch.Tensor(kp_info['kp'])], -1).cuda()

        input_x = np.concatenate([kp_info[k] for k in ['scale', 'yaw', 'pitch', 'roll', 't', 'exp']], 1)
        input_x = np.expand_dims(input_x, -1)
        input_x = np.expand_dims(input_x, 0)
        input_x = np.concatenate([input_x, input_x, input_x], -1)

        aud_feat = self.extract_wav2lip_from_audio(audio_path)

        sample_frame = 64
        padding_size = (sample_frame - aud_feat.shape[0] % sample_frame) % sample_frame

        if padding_size > 0:
            aud_feat = np.concatenate((aud_feat, aud_feat[:padding_size, :]), axis=0)
        else:
            aud_feat = aud_feat

        outputs = [input_x]

        sample_frame = 64
        for i in range(0, aud_feat.shape[0] - 1, sample_frame):
            input_mel = torch.Tensor(aud_feat[i: i + sample_frame]).unsqueeze(0).cuda()
            kp0 = torch.Tensor(outputs[-1])[:, -1].cuda()
            pred_kp = self.point_diffusion.forward_sample(70, ref_kps=kp0, ori_kps=ori_kp, aud_feat=input_mel,
                                                          scheduler='ddim', num_inference_steps=50)
            outputs.append(pred_kp.cpu().numpy())

        outputs = np.mean(np.concatenate(outputs, 1)[0, 1:aud_feat.shape[0] - padding_size + 1], -1)
        output_dict = self.output_to_dict(outputs)
        output_dict = self._denorm(output_dict)

        num_frame = output_dict['yaw'].shape[0]
        x_d_info = {}
        for key in output_dict:
            x_d_info[key] = torch.tensor(output_dict[key]).cuda()

        # smooth
        def smooth(sequence, n_dim_state=1):
            kf = KalmanFilter(initial_state_mean=sequence[0],
                              transition_covariance=0.05 * np.eye(n_dim_state),
                              observation_covariance=0.001 * np.eye(n_dim_state))
            state_means, _ = kf.smooth(sequence)
            return state_means

        yaw_data = x_d_info['yaw'].cpu().numpy()
        pitch_data = x_d_info['pitch'].cpu().numpy()
        roll_data = x_d_info['roll'].cpu().numpy()
        t_data = x_d_info['t'].cpu().numpy()
        exp_data = x_d_info['exp'].cpu().numpy()

        smoothed_pitch = smooth(pitch_data, n_dim_state=1)
        smoothed_yaw = smooth(yaw_data, n_dim_state=1)
        smoothed_roll = smooth(roll_data, n_dim_state=1)
        smoothed_t = smooth(t_data, n_dim_state=3)
        smoothed_exp = smooth(exp_data, n_dim_state=63)

        x_d_info['pitch'] = torch.Tensor(smoothed_pitch).cuda()
        x_d_info['yaw'] = torch.Tensor(smoothed_yaw).cuda()
        x_d_info['roll'] = torch.Tensor(smoothed_roll).cuda()
        x_d_info['t'] = torch.Tensor(smoothed_t).cuda()
        x_d_info['exp'] = torch.Tensor(smoothed_exp).cuda()

        template_dct = {'motion': [], 'c_d_eyes_lst': [], 'c_d_lip_lst': []}
        for i in track(range(num_frame), description='Making motion templates...', total=num_frame):
            x_d_i_info = x_d_info
            R_d_i = get_rotation_matrix(x_d_i_info['pitch'][i], x_d_i_info['yaw'][i], x_d_i_info['roll'][i])

            item_dct = {
                'scale': x_d_i_info['scale'][i].cpu().numpy().astype(np.float32),
                'R_d': R_d_i.cpu().numpy().astype(np.float32),
                'exp': x_d_i_info['exp'][i].reshape(1, 21, -1).cpu().numpy().astype(np.float32),
                't': x_d_i_info['t'][i].cpu().numpy().astype(np.float32),
            }

            template_dct['motion'].append(item_dct)

        I_p_lst = []
        R_d_0, x_d_0_info = None, None

        for i in track(range(num_frame), description='🚀Animating...', total=num_frame):
            x_d_i_info = template_dct['motion'][i]
            for key in x_d_i_info:
                x_d_i_info[key] = torch.tensor(x_d_i_info[key]).cuda()
            R_d_i = x_d_i_info['R_d']

            if i == 0:
                R_d_0 = R_d_i
                x_d_0_info = x_d_i_info

            if self.inf_cfg.flag_relative_motion:
                R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s
                delta_new = x_s_info['exp'].reshape(1, 21, -1) + (x_d_i_info['exp'] - x_d_0_info['exp'])
                scale_new = x_s_info['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
                t_new = x_s_info['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
            else:
                R_new = R_d_i
                delta_new = x_d_i_info['exp']
                scale_new = x_s_info['scale']
                t_new = x_d_i_info['t']

            t_new[..., 2].fill_(0)
            x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new

            out = self.live_portrait_pipeline.live_portrait_wrapper.warp_decode(f_s, x_s, x_d_i_new)
            I_p_i = self.live_portrait_pipeline.live_portrait_wrapper.parse_output(out['out'])[0]
            I_p_lst.append(I_p_i)

        video_name = save_path.split('/')[-1]
        video_save_dir = os.path.dirname(save_path)
        path = os.path.join(video_save_dir, 'temp_' + video_name)

        imageio.mimsave(path, I_p_lst, fps=float(25))

        audio_name = audio_path.split('/')[-1]
        new_audio_path = os.path.join(video_save_dir, audio_name)
        start_time = 0
        sound = AudioSegment.from_file(audio_path)
        end_time = start_time + num_frame * 1 / 25 * 1000
        word1 = sound.set_frame_rate(16000)
        word = word1[start_time:end_time]
        word.export(new_audio_path, format="wav")

        save_video_with_watermark(path, new_audio_path, save_path)
        print(f'The generated video is named {video_save_dir}/{video_name}')

        os.remove(path)
        os.remove(new_audio_path)

@spaces.GPU()
def gradio_infer(source_image, driven_audio):
    
    import tempfile
    temp_dir = tempfile.mkdtemp()
    output_path = f"{temp_dir}/output.mp4"
    
    Infer = Inferencer()
    Infer.generate_with_audio_img(source_image, driven_audio, output_path)

    return output_path

with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("# KDTalker")
        gr.Markdown("Unlock Pose Diversity: Accurate and Efficient Implicit Keypoint-based Spatiotemporal Diffusion for Audio-driven Talking Portrait")
        gr.HTML("""
        <div style="display:flex;column-gap:4px;">
            <a href="https://github.com/chaolongy/KDTalker">
                <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
            </a> 
            <a href="https://arxiv.org/abs/2503.12963">
                <img src='https://img.shields.io/badge/ArXiv-Paper-red'>
            </a>
            <a href="https://huggingface.co/spaces/fffiloni/KDTalker?duplicate=true">
                <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
            </a>
        </div>
        """)

        with gr.Row():

            with gr.Column():
                source_image = gr.Image(label="Source Image", type="filepath")
                driven_audio = gr.Audio(label="Driven Audio", type="filepath")
                submit_btn = gr.Button("Submit")

                gr.Examples(
                    examples = [
                        ["example/source_image/WDA_BenCardin1_000.png", "example/audio_driven/WDA_BenCardin1_000.wav"],
                        
                    ],
                    inputs = [source_image, driven_audio],
                    cache_examples = False
                )

            with gr.Column():
                output_video = gr.Video(label="Output Video")

    submit_btn.click(
        fn = gradio_infer,
        inputs = [source_image, driven_audio],
        outputs = [output_video]
    )

demo.launch()