import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import PIL.Image
from einops import rearrange, repeat
from dataclasses import dataclass
import copy
import torch
import torch.nn.functional as F
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection

from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, ImageProjection
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
    USE_PEFT_BACKEND,
    deprecate,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
    BaseOutput
)
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    UniPCMultistepScheduler,
)

from libs.unet_2d_condition import UNet2DConditionModel
from libs.brushnet_CA import BrushNetModel


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    **kwargs,
):
    """
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used,
            `timesteps` must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
                must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps

def get_frames_context_swap(total_frames=192, overlap=4, num_frames_per_clip=24):
    if total_frames<num_frames_per_clip:
        num_frames_per_clip = total_frames
    context_list = []
    context_list_swap = []
    for i in range(1, 2):  # i=1
        sample_interval = np.array(range(0,total_frames,i))
        n = len(sample_interval)
        if n>num_frames_per_clip:
            ## [0,num_frames_per_clip-1], [num_frames_per_clip, 2*num_frames_per_clip-1]....
            for k in range(0,n-num_frames_per_clip,num_frames_per_clip-overlap):
                context_list.append(sample_interval[k:k+num_frames_per_clip])
            if k+num_frames_per_clip < n and i==1:
                context_list.append(sample_interval[n-num_frames_per_clip:n])
            context_list_swap.append(sample_interval[0:num_frames_per_clip])
            for k in range(num_frames_per_clip//2, n-num_frames_per_clip, num_frames_per_clip-overlap):
                context_list_swap.append(sample_interval[k:k+num_frames_per_clip])
            if k+num_frames_per_clip < n and i==1:
                context_list_swap.append(sample_interval[n-num_frames_per_clip:n])
        if n==num_frames_per_clip:
            context_list.append(sample_interval[n-num_frames_per_clip:n])
            context_list_swap.append(sample_interval[n-num_frames_per_clip:n])
    return context_list, context_list_swap

@dataclass
class DiffuEraserPipelineOutput(BaseOutput):
    frames: Union[torch.Tensor, np.ndarray]
    latents: Union[torch.Tensor, np.ndarray]

class StableDiffusionDiffuEraserPipeline(
    DiffusionPipeline,
    StableDiffusionMixin,
    TextualInversionLoaderMixin,
    LoraLoaderMixin,
    IPAdapterMixin,
    FromSingleFileMixin,
):
    r"""
    Pipeline for video inpainting using Video Diffusion Model with BrushNet guidance.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
        brushnet ([`BrushNetModel`]`):
            Provides additional conditioning to the `unet` during the denoising process.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
            about a model's potential harms.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
    """

    model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
    _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
    _exclude_from_cpu_offload = ["safety_checker"]
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        brushnet: BrushNetModel,
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
        image_encoder: CLIPVisionModelWithProjection = None,
        requires_safety_checker: bool = True,
    ):
        super().__init__()

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            brushnet=brushnet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
        self.register_to_config(requires_safety_checker=requires_safety_checker)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        lora_scale: Optional[float] = None,
        **kwargs,
    ):
        deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
        deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)

        prompt_embeds_tuple = self.encode_prompt(
            prompt=prompt,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
            **kwargs,
        )

        # concatenate for backwards comp
        prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])

        return prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
    def encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        lora_scale: Optional[float] = None,
        clip_skip: Optional[int] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            lora_scale (`float`, *optional*):
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
        """
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if not USE_PEFT_BACKEND:
                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
            else:
                scale_lora_layers(self.text_encoder, lora_scale)

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None

            if clip_skip is None:
                prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)

        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(self.text_encoder, lora_scale)

        return prompt_embeds, negative_prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
    def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
        dtype = next(self.image_encoder.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.feature_extractor(image, return_tensors="pt").pixel_values

        image = image.to(device=device, dtype=dtype)
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(
                torch.zeros_like(image), output_hidden_states=True
            ).hidden_states[-2]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image).image_embeds
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = torch.zeros_like(image_embeds)

            return image_embeds, uncond_image_embeds
        
    def decode_latents(self, latents, weight_dtype):
        latents = 1 / self.vae.config.scaling_factor * latents
        video = []
        for t in range(latents.shape[0]):
            video.append(self.vae.decode(latents[t:t+1, ...].to(weight_dtype)).sample)
        video = torch.concat(video, dim=0)
        
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        video = video.float()
        return video

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
    def prepare_ip_adapter_image_embeds(
        self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
    ):
        if ip_adapter_image_embeds is None:
            if not isinstance(ip_adapter_image, list):
                ip_adapter_image = [ip_adapter_image]

            if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
                raise ValueError(
                    f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
                )

            image_embeds = []
            for single_ip_adapter_image, image_proj_layer in zip(
                ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
            ):
                output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
                single_image_embeds, single_negative_image_embeds = self.encode_image(
                    single_ip_adapter_image, device, 1, output_hidden_state
                )
                single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
                single_negative_image_embeds = torch.stack(
                    [single_negative_image_embeds] * num_images_per_prompt, dim=0
                )

                if do_classifier_free_guidance:
                    single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
                    single_image_embeds = single_image_embeds.to(device)

                image_embeds.append(single_image_embeds)
        else:
            repeat_dims = [1]
            image_embeds = []
            for single_image_embeds in ip_adapter_image_embeds:
                if do_classifier_free_guidance:
                    single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
                    single_image_embeds = single_image_embeds.repeat(
                        num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
                    )
                    single_negative_image_embeds = single_negative_image_embeds.repeat(
                        num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
                    )
                    single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
                else:
                    single_image_embeds = single_image_embeds.repeat(
                        num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
                    )
                image_embeds.append(single_image_embeds)

        return image_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
    def run_safety_checker(self, image, device, dtype):
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if torch.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
            )
        return image, has_nsfw_concept

    # Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
    def decode_latents(self, latents, weight_dtype):
        latents = 1 / self.vae.config.scaling_factor * latents
        video = []
        for t in range(latents.shape[0]):
            video.append(self.vae.decode(latents[t:t+1, ...].to(weight_dtype)).sample)
        video = torch.concat(video, dim=0)
        
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        video = video.float()
        return video

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        images,
        masks,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        ip_adapter_image=None,
        ip_adapter_image_embeds=None,
        brushnet_conditioning_scale=1.0,
        control_guidance_start=0.0,
        control_guidance_end=1.0,
        callback_on_step_end_tensor_inputs=None,
    ):
        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        # Check `image`
        is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
            self.brushnet, torch._dynamo.eval_frame.OptimizedModule
        )
        if (
            isinstance(self.brushnet, BrushNetModel)
            or is_compiled
            and isinstance(self.brushnet._orig_mod, BrushNetModel)
        ):
            self.check_image(images, masks, prompt, prompt_embeds)
        else:
            assert False

        # Check `brushnet_conditioning_scale`
        if (
            isinstance(self.brushnet, BrushNetModel)
            or is_compiled
            and isinstance(self.brushnet._orig_mod, BrushNetModel)
        ):
            if not isinstance(brushnet_conditioning_scale, float):
                raise TypeError("For single brushnet: `brushnet_conditioning_scale` must be type `float`.")
        else:
            assert False

        if not isinstance(control_guidance_start, (tuple, list)):
            control_guidance_start = [control_guidance_start]

        if not isinstance(control_guidance_end, (tuple, list)):
            control_guidance_end = [control_guidance_end]

        if len(control_guidance_start) != len(control_guidance_end):
            raise ValueError(
                f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
            )

        for start, end in zip(control_guidance_start, control_guidance_end):
            if start >= end:
                raise ValueError(
                    f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
                )
            if start < 0.0:
                raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
            if end > 1.0:
                raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")

        if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
            raise ValueError(
                "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
            )

        if ip_adapter_image_embeds is not None:
            if not isinstance(ip_adapter_image_embeds, list):
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
                )
            elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
                )

    def check_image(self, images, masks, prompt, prompt_embeds):
        for image in images:
            image_is_pil = isinstance(image, PIL.Image.Image)
            image_is_tensor = isinstance(image, torch.Tensor)
            image_is_np = isinstance(image, np.ndarray)
            image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
            image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
            image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)

            if (
                not image_is_pil
                and not image_is_tensor
                and not image_is_np
                and not image_is_pil_list
                and not image_is_tensor_list
                and not image_is_np_list
            ):
                raise TypeError(
                    f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
                )
        for mask in masks:
            mask_is_pil = isinstance(mask, PIL.Image.Image)
            mask_is_tensor = isinstance(mask, torch.Tensor)
            mask_is_np = isinstance(mask, np.ndarray)
            mask_is_pil_list = isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image)
            mask_is_tensor_list = isinstance(mask, list) and isinstance(mask[0], torch.Tensor)
            mask_is_np_list = isinstance(mask, list) and isinstance(mask[0], np.ndarray)

            if (
                not mask_is_pil
                and not mask_is_tensor
                and not mask_is_np
                and not mask_is_pil_list
                and not mask_is_tensor_list
                and not mask_is_np_list
            ):
                raise TypeError(
                    f"mask must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(mask)}"
                )

        if image_is_pil:
            image_batch_size = 1
        else:
            image_batch_size = len(image)

        if prompt is not None and isinstance(prompt, str):
            prompt_batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            prompt_batch_size = len(prompt)
        elif prompt_embeds is not None:
            prompt_batch_size = prompt_embeds.shape[0]

        if image_batch_size != 1 and image_batch_size != prompt_batch_size:
            raise ValueError(
                f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
            )

    def prepare_image(
        self,
        images,
        width,
        height,
        batch_size,
        num_images_per_prompt,
        device,
        dtype,
        do_classifier_free_guidance=False,
        guess_mode=False,
    ):
        images_new = []
        for image in images:
            image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
            image_batch_size = image.shape[0]

            if image_batch_size == 1:
                repeat_by = batch_size
            else:
                # image batch size is the same as prompt batch size
                repeat_by = num_images_per_prompt

            image = image.repeat_interleave(repeat_by, dim=0)

            image = image.to(device=device, dtype=dtype)

            # if do_classifier_free_guidance and not guess_mode:
            #     image = torch.cat([image] * 2)
            images_new.append(image)

        return images_new

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None):
        # shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
        #b,c,n,h,w
        shape = (
            batch_size,
            num_channels_latents,
            num_frames,
            height // self.vae_scale_factor, 
            width // self.vae_scale_factor
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            # noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
            noise = rearrange(randn_tensor(shape, generator=generator, device=device, dtype=dtype), "b c t h w -> (b t) c h w")
        else:
            noise = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = noise * self.scheduler.init_noise_sigma
        return latents, noise
    
    @staticmethod
    def temp_blend(a, b, overlap):
        factor = torch.arange(overlap).to(b.device).view(overlap, 1, 1, 1) / (overlap - 1)
        a[:overlap, ...] = (1 - factor) * a[:overlap, ...] + factor * b[:overlap, ...]
        a[overlap:, ...] = b[overlap:, ...]
        return a

    # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
    def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
        """
        See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298

        Args:
            timesteps (`torch.Tensor`):
                generate embedding vectors at these timesteps
            embedding_dim (`int`, *optional*, defaults to 512):
                dimension of the embeddings to generate
            dtype:
                data type of the generated embeddings

        Returns:
            `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
        """
        assert len(w.shape) == 1
        w = w * 1000.0

        half_dim = embedding_dim // 2
        emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
        emb = w.to(dtype)[:, None] * emb[None, :]
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
        if embedding_dim % 2 == 1:  # zero pad
            emb = torch.nn.functional.pad(emb, (0, 1))
        assert emb.shape == (w.shape[0], embedding_dim)
        return emb

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

    # based on BrushNet: https://github.com/TencentARC/BrushNet/blob/main/src/diffusers/pipelines/brushnet/pipeline_brushnet.py
    @torch.no_grad()
    def __call__(
        self,
        num_frames: Optional[int] = 24,
        prompt: Union[str, List[str]] = None,
        images: PipelineImageInput = None, ##masked images
        masks: PipelineImageInput = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        timesteps: List[int] = None,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        ip_adapter_image: Optional[PipelineImageInput] = None,
        ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        brushnet_conditioning_scale: Union[float, List[float]] = 1.0,
        guess_mode: bool = False,
        control_guidance_start: Union[float, List[float]] = 0.0,
        control_guidance_end: Union[float, List[float]] = 1.0,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
                    `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
                The BrushNet branch input condition to provide guidance to the `unet` for generation. 
            mask (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
                    `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
                The BrushNet branch input condition to provide guidance to the `unet` for generation. 
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
                passed will be used. Must be in descending order.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
            ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
                Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
                if `do_classifier_free_guidance` is set to `True`.
                If not provided, embeddings are computed from the `ip_adapter_image` input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that calls every `callback_steps` steps during inference. The function is called with the
                following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function is called. If not specified, the callback is called at
                every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            brushnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
                The outputs of the BrushNet are multiplied by `brushnet_conditioning_scale` before they are added
                to the residual in the original `unet`. If multiple BrushNets are specified in `init`, you can set
                the corresponding scale as a list.
            guess_mode (`bool`, *optional*, defaults to `False`):
                The BrushNet encoder tries to recognize the content of the input image even if you remove all
                prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
            control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
                The percentage of total steps at which the BrushNet starts applying.
            control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
                The percentage of total steps at which the BrushNet stops applying.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeine class.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
        """

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )

        brushnet = self.brushnet._orig_mod if is_compiled_module(self.brushnet) else self.brushnet

        # align format for control guidance
        if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
            control_guidance_start = len(control_guidance_end) * [control_guidance_start]
        elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
            control_guidance_end = len(control_guidance_start) * [control_guidance_end]
        elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
            control_guidance_start, control_guidance_end = (
                [control_guidance_start],
                [control_guidance_end],
            )

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            images,
            masks,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            ip_adapter_image,
            ip_adapter_image_embeds,
            brushnet_conditioning_scale,
            control_guidance_start,
            control_guidance_end,
            callback_on_step_end_tensor_inputs,
        )

        self._guidance_scale = guidance_scale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        global_pool_conditions = (
            brushnet.config.global_pool_conditions
            if isinstance(brushnet, BrushNetModel)
            else brushnet.nets[0].config.global_pool_conditions
        )
        guess_mode = guess_mode or global_pool_conditions
        video_length = len(images)

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
        )
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            self.do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
            clip_skip=self.clip_skip,
        )
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                ip_adapter_image_embeds,
                device,
                batch_size * num_images_per_prompt,
                self.do_classifier_free_guidance,
            )

        # 4. Prepare image
        if isinstance(brushnet, BrushNetModel):
            images = self.prepare_image(
                images=images,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                device=device,
                dtype=brushnet.dtype,
                do_classifier_free_guidance=self.do_classifier_free_guidance,
                guess_mode=guess_mode,
            )
            original_masks = self.prepare_image(
                images=masks,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                device=device,
                dtype=brushnet.dtype,
                do_classifier_free_guidance=self.do_classifier_free_guidance,
                guess_mode=guess_mode,
            )
            original_masks_new = []
            for original_mask in original_masks:
                original_mask=(original_mask.sum(1)[:,None,:,:] < 0).to(images[0].dtype) 
                original_masks_new.append(original_mask)
            original_masks = original_masks_new
            
            height, width = images[0].shape[-2:]
        else:
            assert False

        # 5. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
        self._num_timesteps = len(timesteps)

        # 6. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents, noise = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            num_frames,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6.1 prepare condition latents
        images = torch.cat(images)
        images = images.to(dtype=images[0].dtype)
        conditioning_latents = []
        num=4
        for i in range(0, images.shape[0], num):
            conditioning_latents.append(self.vae.encode(images[i : i + num]).latent_dist.sample())
        conditioning_latents = torch.cat(conditioning_latents, dim=0)

        conditioning_latents = conditioning_latents * self.vae.config.scaling_factor  #[(f c h w],c2=4

        original_masks = torch.cat(original_masks) 
        masks = torch.nn.functional.interpolate(
            original_masks, 
            size=(
                latents.shape[-2], 
                latents.shape[-1]
            )
        ) ##[ f c h w],c=1

        conditioning_latents=torch.concat([conditioning_latents,masks],1)

        # 6.5 Optionally get Guidance Scale Embedding
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)

        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7.1 Add image embeds for IP-Adapter
        added_cond_kwargs = (
            {"image_embeds": image_embeds}
            if ip_adapter_image is not None or ip_adapter_image_embeds is not None
            else None
        )

        # 7.2 Create tensor stating which brushnets to keep
        brushnet_keep = []
        for i in range(len(timesteps)):
            keeps = [
                1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
                for s, e in zip(control_guidance_start, control_guidance_end)
            ]
            brushnet_keep.append(keeps[0] if isinstance(brushnet, BrushNetModel) else keeps)


        overlap = num_frames//4
        context_list, context_list_swap = get_frames_context_swap(video_length, overlap=overlap, num_frames_per_clip=num_frames)
        scheduler_status = [copy.deepcopy(self.scheduler.__dict__)] * len(context_list)
        scheduler_status_swap = [copy.deepcopy(self.scheduler.__dict__)] * len(context_list_swap)
        count = torch.zeros_like(latents)
        value = torch.zeros_like(latents)
        

        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        is_unet_compiled = is_compiled_module(self.unet)
        is_brushnet_compiled = is_compiled_module(self.brushnet)
        is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                
                count.zero_()
                value.zero_()
                ## swap
                if (i%2==1):
                    context_list_choose = context_list_swap
                    scheduler_status_choose = scheduler_status_swap
                else:
                    context_list_choose = context_list
                    scheduler_status_choose = scheduler_status


                for j, context in enumerate(context_list_choose):
                    self.scheduler.__dict__.update(scheduler_status_choose[j])

                    latents_j = latents[context, :, :, :]

                    # Relevant thread:
                    # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
                    if (is_unet_compiled and is_brushnet_compiled) and is_torch_higher_equal_2_1:
                        torch._inductor.cudagraph_mark_step_begin()
                    # expand the latents if we are doing classifier free guidance
                    latent_model_input = torch.cat([latents_j] * 2) if self.do_classifier_free_guidance else latents_j
                    latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                    # brushnet(s) inference
                    if guess_mode and self.do_classifier_free_guidance:
                        # Infer BrushNet only for the conditional batch.
                        control_model_input = latents_j
                        control_model_input = self.scheduler.scale_model_input(control_model_input, t)
                        brushnet_prompt_embeds = prompt_embeds.chunk(2)[1]
                        brushnet_prompt_embeds = rearrange(repeat(brushnet_prompt_embeds, "b c d -> b t c d", t=num_frames), 'b t c d -> (b t) c d')
                    else:
                        control_model_input = latent_model_input
                        brushnet_prompt_embeds = prompt_embeds
                        if self.do_classifier_free_guidance:
                            neg_brushnet_prompt_embeds, brushnet_prompt_embeds = brushnet_prompt_embeds.chunk(2)
                            brushnet_prompt_embeds = rearrange(repeat(brushnet_prompt_embeds, "b c d -> b t c d", t=num_frames), 'b t c d -> (b t) c d')
                            neg_brushnet_prompt_embeds = rearrange(repeat(neg_brushnet_prompt_embeds, "b c d -> b t c d", t=num_frames), 'b t c d -> (b t) c d')
                            brushnet_prompt_embeds = torch.cat([neg_brushnet_prompt_embeds, brushnet_prompt_embeds])
                        else:
                            brushnet_prompt_embeds = rearrange(repeat(brushnet_prompt_embeds, "b c d -> b t c d", t=num_frames), 'b t c d -> (b t) c d')

                    if isinstance(brushnet_keep[i], list):
                        cond_scale = [c * s for c, s in zip(brushnet_conditioning_scale, brushnet_keep[i])]
                    else:
                        brushnet_cond_scale = brushnet_conditioning_scale
                        if isinstance(brushnet_cond_scale, list):
                            brushnet_cond_scale = brushnet_cond_scale[0]
                        cond_scale = brushnet_cond_scale * brushnet_keep[i]


                    down_block_res_samples, mid_block_res_sample, up_block_res_samples = self.brushnet(
                        control_model_input,
                        t,
                        encoder_hidden_states=brushnet_prompt_embeds,
                        brushnet_cond=torch.cat([conditioning_latents[context, :, :, :]]*2) if self.do_classifier_free_guidance else conditioning_latents[context, :, :, :],
                        conditioning_scale=cond_scale,
                        guess_mode=guess_mode,
                        return_dict=False,
                    )

                    if guess_mode and self.do_classifier_free_guidance:
                        # Infered BrushNet only for the conditional batch.
                        # To apply the output of BrushNet to both the unconditional and conditional batches,
                        # add 0 to the unconditional batch to keep it unchanged.
                        down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
                        mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
                        up_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in up_block_res_samples]

                    # predict the noise residual
                    noise_pred = self.unet(
                        latent_model_input,
                        t,
                        encoder_hidden_states=prompt_embeds,
                        timestep_cond=timestep_cond,
                        cross_attention_kwargs=self.cross_attention_kwargs,
                        down_block_add_samples=down_block_res_samples,
                        mid_block_add_sample=mid_block_res_sample,
                        up_block_add_samples=up_block_res_samples,
                        added_cond_kwargs=added_cond_kwargs,
                        return_dict=False,
                        num_frames=num_frames,
                    )[0]

                    # perform guidance
                    if self.do_classifier_free_guidance:
                        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                        noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

                    # compute the previous noisy sample x_t -> x_t-1
                    latents_j = self.scheduler.step(noise_pred, t, latents_j, **extra_step_kwargs, return_dict=False)[0]

                    count[context, ...] += 1

                    if j==0:
                        value[context, ...] += latents_j
                    else:
                        overlap_index_list = [index for index, value in enumerate(count[context, 0, 0, 0]) if value > 1]
                        overlap_cur = len(overlap_index_list)
                        ratio_next = torch.linspace(0, 1, overlap_cur+2)[1:-1]
                        ratio_pre = 1-ratio_next
                        for i_overlap in overlap_index_list:
                            value[context[i_overlap], ...] = value[context[i_overlap], ...]*ratio_pre[i_overlap] + latents_j[i_overlap, ...]*ratio_next[i_overlap]
                        value[context[i_overlap:num_frames], ...] = latents_j[i_overlap:num_frames, ...]

                latents = value.clone()

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)


        # If we do sequential model offloading, let's offload unet and brushnet
        # manually for max memory savings
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.unet.to("cpu")
            self.brushnet.to("cpu")
            torch.cuda.empty_cache()

        if  output_type == "latent":
            image = latents
            has_nsfw_concept = None
            return DiffuEraserPipelineOutput(frames=image, nsfw_content_detected=has_nsfw_concept)

        video_tensor = self.decode_latents(latents, weight_dtype=prompt_embeds.dtype)

        if output_type == "pt":
            video = video_tensor
        else:
            video = self.image_processor.postprocess(video_tensor, output_type=output_type)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (video, has_nsfw_concept)

        return DiffuEraserPipelineOutput(frames=video, latents=latents)