import gradio as gr import os import subprocess import cv2 from moviepy.editor import VideoFileClip, concatenate_videoclips import math from huggingface_hub import snapshot_download model_ids = [ 'runwayml/stable-diffusion-v1-5', 'lllyasviel/sd-controlnet-depth', 'lllyasviel/sd-controlnet-canny', 'lllyasviel/sd-controlnet-openpose', ] for model_id in model_ids: model_name = model_id.split('/')[-1] snapshot_download(model_id, local_dir=f'checkpoints/{model_name}') def get_frame_count_in_duration(filepath): video = cv2.VideoCapture(filepath) fps = video.get(cv2.CAP_PROP_FPS) frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) duration = frame_count / fps width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) video.release() return gr.update(maximum=frame_count) def run_inference(prompt, video_path, condition, video_length): output_path = 'output/' os.makedirs(output_path, exist_ok=True) # Construct the final video path video_path_output = os.path.join(output_path, f"{prompt}.mp4") # Check if the file already exists if os.path.exists(video_path_output): # Delete the existing file os.remove(video_path_output) if video_length > 12: command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{video_path}' --output_path '{output_path}' --video_length {video_length} --is_long_video" else: command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{video_path}' --output_path '{output_path}' --video_length {video_length}" subprocess.run(command, shell=True) # Construct the video path video_path_output = os.path.join(output_path, f"{prompt}.mp4") return "done", video_path_output with gr.Blocks() as demo: with gr.Column(): prompt = gr.Textbox(label="prompt") video_path = gr.Video(source="upload", type="filepath") condition = gr.Textbox(label="Condition", value="depth") video_length = gr.Slider(label="video length", minimum=1, maximum=15, step=1, value=2) #seed = gr.Number(label="seed", value=42) submit_btn = gr.Button("Submit") video_res = gr.Video(label="result") status = gr.Textbox(label="result") video_path.change(fn=get_frame_count_in_duration, inputs=[video_path], outputs=[video_length] ) submit_btn.click(fn=run_inference, inputs=[prompt, video_path, condition, video_length ], outputs=[status, video_res]) demo.queue(max_size=12).launch()