import gradio as gr import os import subprocess import cv2 from moviepy.editor import VideoFileClip, concatenate_videoclips import math from huggingface_hub import snapshot_download model_ids = [ 'runwayml/stable-diffusion-v1-5', 'lllyasviel/sd-controlnet-depth', 'lllyasviel/sd-controlnet-canny', 'lllyasviel/sd-controlnet-openpose', ] for model_id in model_ids: model_name = model_id.split('/')[-1] snapshot_download(model_id, local_dir=f'checkpoints/{model_name}') def get_frame_count_in_duration(filepath): video = cv2.VideoCapture(filepath) fps = video.get(cv2.CAP_PROP_FPS) frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) duration = frame_count / fps width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) video.release() return gr.update(visible=False), gr.update(visible=True), gr.update(maximum=frame_count) def get_video_dimension(filepath): video = cv2.VideoCapture(filepath) width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = int(video.get(cv2.CAP_PROP_FPS)) frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) video.release() return width, height, fps, frame_count def adjust_to_multiple_of_12(number): remainder = number % 12 if remainder != 0: adjustment = 12 - remainder number += adjustment return number def resize_video(input_file): # Load the video clip clip = VideoFileClip(input_file) print(f"WIDTH TARGET: 512") # Calculate the aspect ratio ratio = 512 / clip.size[0] new_height = int(clip.size[1] * ratio) new_height_adjusted = adjust_to_multiple_of_12(new_height) new_width_adjusted = adjust_to_multiple_of_12(512) print(f"OLD H: {new_height} | NEW H: {new_height_adjusted}") print(f"OLD W: 512 | NEW W: {new_width_adjusted}") # Resize the video clip resized_clip = clip.resize(width=new_width_adjusted, height=new_height_adjusted) # Check if the file already exists if os.path.exists('video_resized.mp4'): # Delete the existing file os.remove('video_resized.mp4') # Write the resized video to a file resized_clip.write_videofile('video_resized.mp4', codec="libx264") # Close the video clip clip.close() #final_video_resized = os.path.join(temp_output_path, 'video_resized.mp4') test_w, test_h, fps, frame_count = get_video_dimension('video_resized.mp4') print(f"resized clip dims : {test_w}, {test_h}, {fps}") return 'video_resized.mp4', gr.update(maximum=frame_count) def run_inference(prompt, video_path, condition, video_length): # Specify the input and output paths input_vid = video_path # Call the function to resize the video resized_video_path = resize_video(input_vid) print(f"PATH TO RESIZED: {resized_video_path}") width, height, fps = get_video_dimension(resized_video_path) print(f"{width} x {height} | {fps}") output_path = 'output/' os.makedirs(output_path, exist_ok=True) # Construct the final video path video_path_output = os.path.join(output_path, f"{prompt}.mp4") # Check if the file already exists if os.path.exists(video_path_output): # Delete the existing file os.remove(video_path_output) if video_length > 12: command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{resized_video_path}' --output_path '{output_path}' --width {width} --height {height} --fps {fps} --video_length {video_length} --is_long_video" else: command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{resized_video_path}' --output_path '{output_path}' --width {width} --height {height} --fps {fps} --video_length {video_length}" subprocess.run(command, shell=True) # Construct the video path video_path_output = os.path.join(output_path, f"{prompt}.mp4") return "done", video_path_output def run_inference_chunks(prompt, video_path, condition, video_length): # Specify the input and output paths input_vid = video_path resized_vid = 'resized.mp4' # Call the function to resize the video video_path = resize_video(input_vid, resized_vid, width=512) width, height, fps = get_video_dimension(video_path) print(f"{width} x {height} | {fps}") # Split the video into chunks mp4 of 12 frames at video fps # Store chunks as mp4 paths in an array # For each mp4 chunks in chunks arrays, run command # store video result in processed chunks array output_path = 'output/' os.makedirs(output_path, exist_ok=True) # Construct the final video path video_path_output = os.path.join(output_path, f"{prompt}.mp4") # Check if the file already exists if os.path.exists(video_path_output): # Delete the existing file os.remove(video_path_output) if video_length > 12: command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{video_path}' --output_path '{output_path}' --width {width} --height {height} --fps {fps} --video_length {video_length} --is_long_video" else: command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{video_path}' --output_path '{output_path}' --width {width} --height {height} --fps {fps} --video_length {video_length}" subprocess.run(command, shell=True) # Construct the video path video_path_output = os.path.join(output_path, f"{prompt}.mp4") return "done", video_path_output css=""" #col-container {max-width: 810px; margin-left: auto; margin-right: auto;} """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("""

ControlVideo

""") with gr.Row(): with gr.Column(): video_in = gr.Video(source="upload", type="filepath", visible=True) video_path = gr.Video(source="upload", type="filepath", visible=False) prompt = gr.Textbox(label="prompt") with gr.Row(): condition = gr.Dropdown(label="Condition", choices=["depth", "canny", "pose"], value="depth") video_length = gr.Slider(label="Video length", info="How many frames do you want to process ?", minimum=1, maximum=12, step=1, value=2) #seed = gr.Number(label="seed", value=42) submit_btn = gr.Button("Submit") with gr.Column(): video_res = gr.Video(label="result") status = gr.Textbox(label="result") video_in.change(fn=resize_video, inputs=[video_in], outputs=[video_in, video_path, video_length] ) submit_btn.click(fn=run_inference, inputs=[prompt, video_path, condition, video_length ], outputs=[status, video_res]) demo.queue(max_size=12).launch()