File size: 1,677 Bytes
653ce35
7ca5351
454eedf
39489bd
0cbec0b
acf84db
 
 
 
 
 
 
 
 
 
39489bd
454eedf
39489bd
3bda188
e59e841
3bda188
b59f63e
79917e9
aa6cde4
79917e9
454eedf
 
 
f6be7c6
39489bd
7ca5351
 
 
 
 
 
 
39489bd
7ca5351
79917e9
 
7ca5351
39489bd
7ca5351
0269ee9
 
39489bd
0269ee9
79917e9
106f93a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import gradio as gr
import os

from huggingface_hub import snapshot_download

model_ids = [
    'runwayml/stable-diffusion-v1-5',
    'lllyasviel/sd-controlnet-depth', 
    'lllyasviel/sd-controlnet-canny', 
    'lllyasviel/sd-controlnet-openpose',
]
for model_id in model_ids:
    model_name = model_id.split('/')[-1]
    snapshot_download(model_id, local_dir=f'checkpoints/{model_name}')

import subprocess

def run_inference(prompt, video_path, condition, video_length):
    print(video_length)
    video_length = int(video_length)
    print(video_length)
    command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{video_path}' --output_path 'outputs/' --video_length {video_length} --smoother_steps 19 20"
    
    output = f"outputs/{prompt}.mp4"
    return "done", output


    

    #return f"{output_path}/{prompt}.mp4"

with gr.Blocks() as demo:
    with gr.Column():
        prompt = gr.Textbox(label="prompt")
        video_path = gr.Video(source="upload", type="filepath")
        condition = gr.Textbox(label="Condition", value="depth")
        video_length = gr.Slider(label="video length", minimum=1, maximum=15, step=1, value=2)
        #seed = gr.Number(label="seed", value=42)
        submit_btn = gr.Button("Submit")
        video_res = gr.Video(label="result")
        status = gr.Textbox(label="result")

    submit_btn.click(fn=run_inference, 
                     inputs=[prompt,
                             video_path,
                             condition,
                             video_length
                            ],
                    outputs=[stauts, video_res])

demo.queue(max_size=12).launch()