File size: 1,736 Bytes
653ce35
7ca5351
454eedf
39489bd
0cbec0b
acf84db
 
 
 
 
 
 
 
 
 
39489bd
454eedf
39489bd
 
 
 
2e78fa3
39489bd
 
454eedf
39489bd
454eedf
 
 
f6be7c6
39489bd
7ca5351
 
 
 
 
 
 
39489bd
7ca5351
39489bd
 
7ca5351
39489bd
7ca5351
0269ee9
 
39489bd
0269ee9
106f93a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import gradio as gr
import os

from huggingface_hub import snapshot_download

model_ids = [
    'runwayml/stable-diffusion-v1-5',
    'lllyasviel/sd-controlnet-depth', 
    'lllyasviel/sd-controlnet-canny', 
    'lllyasviel/sd-controlnet-openpose',
]
for model_id in model_ids:
    model_name = model_id.split('/')[-1]
    snapshot_download(model_id, local_dir=f'checkpoints/{model_name}')

import subprocess

def run_inference(prompt, video_path, condition, video_length):
    command = "python inference.py --prompt prompt --condition condition --video_path video_path --output_path 'outputs/' --video_length video_length --smoother_steps 19 20"
    output = subprocess.check_output(command, shell=True, text=True)
    output = output.strip()  # Remove any leading/trailing whitespace

    # Process the output as needed
    print("Command output:", output)

    return "done"


    

    #return f"{output_path}/{prompt}.mp4"

with gr.Blocks() as demo:
    with gr.Column():
        prompt = gr.Textbox(label="prompt")
        video_path = gr.Video(source="upload", type="filepath")
        condition = gr.Textbox(label="Condition", value="depth")
        video_length = gr.Slider(label="video length", minimum=1, maximum=15, step=1, value=2)
        #seed = gr.Number(label="seed", value=42)
        submit_btn = gr.Button("Submit")
        #video_res = gr.Video(label="result")
        video_res = gr.Textbox(label="result")

    submit_btn.click(fn=run_inference, 
                     inputs=[prompt,
                             video_path,
                             condition,
                             video_length
                            ],
                    outputs=[video_res])

demo.queue(max_size=12).launch()