File size: 2,612 Bytes
653ce35
7ca5351
454eedf
39489bd
0cbec0b
acf84db
 
 
 
 
 
 
 
 
 
39489bd
3a66e37
c05f3f8
3a66e37
12c01c3
c05f3f8
 
12c01c3
 
 
 
c05f3f8
12c01c3
3a66e37
 
454eedf
39489bd
12c01c3
6fcb174
 
6a87ed0
 
 
 
 
 
 
 
89dafb4
eaf8a3c
454eedf
eaf8a3c
6fcb174
eaf8a3c
454eedf
 
f6be7c6
39489bd
7ca5351
 
 
 
 
 
 
39489bd
7ca5351
79917e9
 
12c01c3
 
 
 
39489bd
7ca5351
0269ee9
 
39489bd
0269ee9
eaf8a3c
106f93a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import gradio as gr
import os

from huggingface_hub import snapshot_download

model_ids = [
    'runwayml/stable-diffusion-v1-5',
    'lllyasviel/sd-controlnet-depth', 
    'lllyasviel/sd-controlnet-canny', 
    'lllyasviel/sd-controlnet-openpose',
]
for model_id in model_ids:
    model_name = model_id.split('/')[-1]
    snapshot_download(model_id, local_dir=f'checkpoints/{model_name}')

import subprocess

import cv2

def get_frame_count_in_duration(filepath):
    video = cv2.VideoCapture(filepath)
    fps = video.get(cv2.CAP_PROP_FPS)
    frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    duration = frame_count / fps
    width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
    video.release()
    return gr.update(maximum=frame_count)



def run_inference(prompt, video_path, condition, video_length):
    
    output_path = 'output/'
    os.makedirs(output_path, exist_ok=True)

    # Construct the video path
    video_path_output = os.path.join(output_path, f"{prompt}.mp4")

    # Check if the file already exists
    if os.path.exists(video_path_output):
        # Delete the existing file
        os.remove(video_path_output)
    command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{video_path}' --output_path '{output_path}' --video_length {video_length} --smoother_steps 19 20 --is_long_video"
    subprocess.run(command, shell=True)

    # Construct the video path
    video_path_output = os.path.join(output_path, f"{prompt}.mp4")
    return "done", video_path_output 

    

    #return f"{output_path}/{prompt}.mp4"

with gr.Blocks() as demo:
    with gr.Column():
        prompt = gr.Textbox(label="prompt")
        video_path = gr.Video(source="upload", type="filepath")
        condition = gr.Textbox(label="Condition", value="depth")
        video_length = gr.Slider(label="video length", minimum=1, maximum=15, step=1, value=2)
        #seed = gr.Number(label="seed", value=42)
        submit_btn = gr.Button("Submit")
        video_res = gr.Video(label="result")
        status = gr.Textbox(label="result")
    video_path.change(fn=get_frame_count_in_duration,
                      inputs=[video_path],
                      outputs=[video_length]
                     )
    submit_btn.click(fn=run_inference, 
                     inputs=[prompt,
                             video_path,
                             condition,
                             video_length
                            ],
                    outputs=[status, video_res])

demo.queue(max_size=12).launch()