from share_btn import community_icon_html, loading_icon_html, share_js import os, subprocess def setup(): install_cmds = [ ['pip', 'install', 'ftfy', 'gradio', 'regex', 'tqdm', 'transformers==4.21.2', 'timm', 'fairscale', 'requests'], ['pip', 'install', 'open_clip_torch'], ['pip', 'install', '-e', 'git+https://github.com/pharmapsychotic/BLIP.git@lib#egg=blip'], ['git', 'clone', '-b', 'open-clip', 'https://github.com/pharmapsychotic/clip-interrogator.git'] ] for cmd in install_cmds: print(subprocess.run(cmd, stdout=subprocess.PIPE).stdout.decode('utf-8')) setup() # download cache files print("Download preprocessed cache files...") CACHE_URLS = [ 'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_artists.pkl', 'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_flavors.pkl', 'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_mediums.pkl', 'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_movements.pkl', 'https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_trendings.pkl', ] os.makedirs('cache', exist_ok=True) for url in CACHE_URLS: print(subprocess.run(['wget', url, '-P', 'cache'], stdout=subprocess.PIPE).stdout.decode('utf-8')) import sys sys.path.append('src/blip') sys.path.append('clip-interrogator') import gradio as gr from clip_interrogator import Config, Interrogator config = Config() config.blip_offload = True config.chunk_size = 2048 config.flavor_intermediate_count = 512 config.blip_num_beams = 64 ci = Interrogator(config) def inference(image, mode, best_max_flavors): image = image.convert('RGB') if mode == 'best': prompt_result = ci.interrogate(image, max_flavors=int(best_max_flavors)) print("mode best: " + prompt_result) return prompt_result, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) elif mode == 'classic': prompt_result = ci.interrogate_classic(image) print("mode classic: " + prompt_result) return prompt_result, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) else: prompt_result = ci.interrogate_fast(image) print("mode fast: " + prompt_result) return prompt_result, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) title = """ <div style="text-align: center; max-width: 500px; margin: 0 auto;"> <div style=" display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem; margin-bottom: 10px; " > <h1 style="font-weight: 600; margin-bottom: 7px;"> CLIP Interrogator 2.1 </h1> </div> <p style="margin-bottom: 10px;font-size: 94%;font-weight: 100;line-height: 1.5em;"> Want to figure out what a good prompt might be to create new images like an existing one? <br />The CLIP Interrogator is here to get you answers! <br />This version is specialized for producing nice prompts for use with Stable Diffusion 2.0 using the ViT-H-14 OpenCLIP model! </p> </div> """ article = """ <div style="text-align: center; max-width: 500px; margin: 0 auto;font-size: 94%;"> <p> Server busy? You can also run on <a href="https://colab.research.google.com/github/pharmapsychotic/clip-interrogator/blob/open-clip/clip_interrogator.ipynb">Google Colab</a> </p> <p> Has this been helpful to you? Follow Pharma on twitter <a href="https://twitter.com/pharmapsychotic">@pharmapsychotic</a> and check out more tools at his <a href="https://pharmapsychotic.com/tools.html">Ai generative art tools list</a> </p> </div> """ css = ''' #col-container {max-width: 700px; margin-left: auto; margin-right: auto;} a {text-decoration-line: underline; font-weight: 600;} .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } ''' with gr.Blocks(css=css) as block: with gr.Column(elem_id="col-container"): gr.HTML(title) input_image = gr.Image(type='pil', elem_id="input-img") mode_input = gr.Radio(['best', 'classic', 'fast'], label='', value='best') flavor_input = gr.Number(value=4, label='best mode max flavors') submit_btn = gr.Button("Submit") output_text = gr.Textbox(label="Output", elem_id="output-txt") with gr.Group(elem_id="share-btn-container"): community_icon = gr.HTML(community_icon_html, visible=False) loading_icon = gr.HTML(loading_icon_html, visible=False) share_button = gr.Button("Share to community", elem_id="share-btn", visible=False) examples=[['27E894C4-9375-48A1-A95D-CB2425416B4B.png', "best",4], ['DB362F56-BA98-4CA1-A999-A25AA94B723B.png',"fast",4]] ex = gr.Examples(examples=examples, fn=inference, inputs=[input_image, mode_input, flavor_input], outputs=[output_text, share_button, community_icon, loading_icon], cache_examples=True, run_on_click=True) ex.dataset.headers = [""] gr.HTML(article) submit_btn.click(fn=inference, inputs=[input_image,mode_input,flavor_input], outputs=[output_text, share_button, community_icon, loading_icon]) share_button.click(None, [], [], _js=share_js) block.queue(max_size=32,concurrency_count=20).launch(show_api=False)