import gradio as gr import torch import os import shutil import requests import subprocess from subprocess import getoutput import webbrowser from huggingface_hub import snapshot_download, HfApi, create_repo api = HfApi() hf_token = os.environ.get("HF_TOKEN_WITH_WRITE_PERMISSION") is_shared_ui = True if "fffiloni/train-dreambooth-lora-sdxl" in os.environ['SPACE_ID'] else False is_gpu_associated = torch.cuda.is_available() if is_gpu_associated: gpu_info = getoutput('nvidia-smi') if("A10G" in gpu_info): which_gpu = "A10G" elif("T4" in gpu_info): which_gpu = "T4" else: which_gpu = "CPU" def change_training_setup(training_type): if training_type == "style" : return 1000, 500 elif training_type == "concept" : return 2000, 1000 def swap_hardware(hf_token, hardware="cpu-basic"): hardware_url = f"https://huggingface.co/spaces/{os.environ['SPACE_ID']}/hardware" headers = { "authorization" : f"Bearer {hf_token}"} body = {'flavor': hardware} requests.post(hardware_url, json = body, headers=headers) def swap_sleep_time(sleep_time): if sleep_time == "5 minutes": new_sleep_time = 300 elif sleep_time == "15 minutes": new_sleep_time = 900 elif sleep_time == "30 minutes": new_sleep_time = 1800 elif sleep_time == "1 hour": new_sleep_time = 3600 elif sleep_time == "10 hours": new_sleep_time = 36000 elif sleep_time == "24 hours": new_sleep_time = 86400 elif sleep_time == "48 hours": new_sleep_time = 172800 elif sleep_time == "72 hours": new_sleep_time = 259200 elif sleep_time == "1 week": new_sleep_time = 604800 elif sleep_time == "Don't sleep": new_sleep_time = -1 sleep_time_url = f"https://huggingface.co/api/spaces/{os.environ['SPACE_ID']}/sleeptime" headers = { "authorization" : f"Bearer {hf_token}"} body = {'seconds':new_sleep_time} requests.post(sleep_time_url,json=body,headers=headers) def get_sleep_time(): sleep_time_url = f"https://huggingface.co/api/spaces/{os.environ['SPACE_ID']}" headers = { "authorization" : f"Bearer {hf_token}"} response = requests.get(sleep_time_url,headers=headers) try: gcTimeout = response.json()['runtime']['gcTimeout'] except: gcTimeout = None return gcTimeout def check_sleep_time(): sleep_time = get_sleep_time() if sleep_time is None : sleep_time_value = "Don't sleep" return sleep_time_value, gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) elif sleep_time >= 3600: if sleep_time == 3600: sleep_time_value = "1 hour" elif sleep_time == 36000: sleep_time_value = "10 hours" elif sleep_time == 86400: sleep_time_value = "24 hours" elif sleep_time == 172800: sleep_time_value = "48 hours" elif sleep_time == 259200: sleep_time_value = "72 hours" elif sleep_time == 604800: sleep_time_value = "1 week" return sleep_time_value, gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) else : if sleep_time == 300: sleep_time_value = "5 minutes" elif sleep_time == 900: sleep_time_value = "15 minutes" elif sleep_time == 1800: sleep_time_value = "30 minutes" return sleep_time_value, gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) def train_dreambooth_blora_sdxl(instance_data_dir, b_lora_trained_folder, instance_prompt, max_train_steps, checkpoint_steps): script_filename = "train_dreambooth_b-lora_sdxl.py" # Assuming it's in the same folder command = [ "accelerate", "launch", script_filename, # Use the local script "--pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0", f"--instance_data_dir={instance_data_dir}", f"--output_dir={b_lora_trained_folder}", f"--instance_prompt='{instance_prompt}'", #f"--class_prompt={class_prompt}", f"--validation_prompt={instance_prompt} in {instance_prompt} style", "--num_validation_images=1", "--validation_epochs=500", "--resolution=1024", "--rank=64", "--train_batch_size=1", "--learning_rate=5e-5", "--lr_scheduler=constant", "--lr_warmup_steps=0", f"--max_train_steps={max_train_steps}", f"--checkpointing_steps={checkpoint_steps}", "--seed=0", "--gradient_checkpointing", "--use_8bit_adam", "--mixed_precision=fp16", "--push_to_hub", f"--hub_token={hf_token}" ] try: subprocess.run(command, check=True) print("Training is finished!") except subprocess.CalledProcessError as e: print(f"An error occurred: {e}") def clear_directory(directory_path): # Check if the directory exists if os.path.exists(directory_path): # Iterate over all the files and directories inside the specified directory for filename in os.listdir(directory_path): file_path = os.path.join(directory_path, filename) try: # Check if it is a file or a directory and remove accordingly if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path) # Remove the file elif os.path.isdir(file_path): shutil.rmtree(file_path) # Remove the directory except Exception as e: print(f'Failed to delete {file_path}. Reason: {e}') else: print(f'The directory {directory_path} does not exist.') def get_start_info(b_lora_name): your_username = api.whoami(token=hf_token)["name"] return gr.update(visible=True, value=f"https://hf.co/{your_username}/{b_lora_name}"), gr.update(visible=True) def main(image_path, b_lora_trained_folder, instance_prompt, training_type, training_steps): if is_shared_ui: raise gr.Error("This Space only works in duplicated instances") if not is_gpu_associated: raise gr.Error("Please associate a T4 or A10G GPU for this Space") if image_path == None: raise gr.Error("You forgot to specify an image reference") if b_lora_trained_folder == "": raise gr.Error("You forgot to specify a name for you model") if instance_prompt == "": raise gr.Error("You forgot to specify an instance prompt") local_dir = "image_to_train" # Check if the directory exists and create it if necessary if not os.path.exists(local_dir): os.makedirs(local_dir) else : directory_to_clear = local_dir clear_directory(directory_to_clear) shutil.copy(image_path, local_dir) print(f"source image has been copied in {local_dir} directory") if training_type == "style": checkpoint_steps = 500 elif training_type == "concept" : checkpoint_steps = 1000 max_train_steps = training_steps train_dreambooth_blora_sdxl(local_dir, b_lora_trained_folder, instance_prompt, max_train_steps, checkpoint_steps) your_username = api.whoami(token=hf_token)["name"] #swap_hardware(hardware="cpu-basic") swap_sleep_time(300) return f"Done, your trained model has been stored in your models library: {your_username}/{b_lora_trained_folder}" css = """ #col-container {max-width: 780px; margin-left: auto; margin-right: auto;} div#warning-ready { background-color: #ecfdf5; padding: 0 10px 5px; margin: 20px 0; } div#warning-ready > .gr-prose > h2, div#warning-ready > .gr-prose > p { color: #057857!important; } div#warning-duplicate { background-color: #ebf5ff; padding: 0 10px 5px; margin: 20px 0; } div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p { color: #0f4592!important; } div#warning-duplicate strong { color: #0f4592; } p.actions { display: flex; align-items: center; margin: 20px 0; } div#warning-duplicate .actions a { display: inline-block; margin-right: 10px; } div#warning-setgpu { background-color: #fff4eb; padding: 0 10px 5px; margin: 20px 0; } div#warning-setgpu > .gr-prose > h2, div#warning-setgpu > .gr-prose > p { color: #92220f!important; } div#warning-setgpu a, div#warning-setgpu b { color: #91230f; } div#warning-setgpu p.actions > a { display: inline-block; background: #1f1f23; border-radius: 40px; padding: 6px 24px; color: antiquewhite; text-decoration: none; font-weight: 600; font-size: 1.2em; } div#warning-setsleeptime { background-color: #fff4eb; padding: 10px 10px; margin: 0!important; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): if is_shared_ui: top_description = gr.HTML(f''' <div class="gr-prose"> <h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg> Attention: this Space need to be duplicated to work</h2> <p class="main-message"> To make it work, <strong>duplicate the Space</strong> and run it on your own profile using a <strong>private</strong> GPU (T4-small or A10G-small).<br /> A T4 costs <strong>US$0.60/h</strong>, so it should cost < US$1 to train most models. </p> <p class="actions"> <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"> <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" /> </a> to start training your own B-LoRa model </p> </div> ''', elem_id="warning-duplicate") else: if(is_gpu_associated): top_description = gr.HTML(f''' <div class="gr-prose"> <h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg> You have successfully associated a {which_gpu} GPU to the B-LoRa Training Space 🎉</h2> <p> You can now train your model! You will be billed by the minute from when you activated the GPU until when it is turned off. </p> </div> ''', elem_id="warning-ready") else: top_description = gr.HTML(f''' <div class="gr-prose"> <h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg> You have successfully duplicated the B-LoRa Training Space 🎉</h2> <p>There's only one step left before you can train your model: <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a <b>T4-small or A10G-small GPU</b> to it (via the Settings tab)</a> and run the training below. You will be billed by the minute from when you activate the GPU until when it is turned off.</p> <p class="actions"> <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">🔥 Set recommended GPU</a> </p> </div> ''', elem_id="warning-setgpu") gr.Markdown("# B-LoRa Training UI ðŸ’") with gr.Row(): image = gr.Image(label="Image Reference", sources=["upload"], type="filepath") with gr.Column(): sleep_time_message = gr.HTML(''' <div class="gr-prose"> <p>First of all, please make sure your space's sleep time value is set on long enough, so it do not fall asleep during training. </p> <p>Set it to <strong>"Don't sleep"</strong> or <strong>more than 1 hour</strong> to be safe.</p> <p>Don't worry, after training is finished, sleep time will be back to 5 minutes.</p> </div> ''', elem_id="warning-setsleeptime") with gr.Group(): current_sleep_time = gr.Dropdown( label="current space sleep time", choices = [ "Don't sleep", "5 minutes", "15 minutes", "30 minutes", "1 hour", "10 hours", "24 hours", "48 hours", "72 hours", "1 week" ], filterable=False ) training_type = gr.Radio(label="Training type", choices=["style", "concept"], value="style", visible=False) b_lora_name = gr.Textbox(label="Name your B-LoRa model", placeholder="b_lora_trained_folder", visible=False) with gr.Row(): instance_prompt = gr.Textbox(label="Create instance prompt", placeholder="A [v42]", visible=False) #class_prompt = gr.Textbox(label="Specify class prompt", placeholder="style | person | dog ", visible=False) training_steps = gr.Number(label="Training steps", value=1000, interactive=False, visible=False) checkpoint_step = gr.Number(label="checkpoint step", visible=False, value=500) train_btn = gr.Button("Train B-LoRa", visible=False) with gr.Row(): started_info = gr.Textbox( label="Training has started", info="You can open this space's logs to monitor logs training; once training is finished, your model will be available here:", visible=False ) status = gr.Textbox(label="status", visible=False) current_sleep_time.change( fn = swap_sleep_time, inputs = current_sleep_time, outputs = None ) demo.load( fn = check_sleep_time, inputs = None, outputs = [current_sleep_time, sleep_time_message, b_lora_name, instance_prompt, training_type, training_steps, train_btn] ) training_type.change( fn = change_training_setup, inputs = [training_type], outputs = [training_steps, checkpoint_step] ) train_btn.click( fn = get_start_info, inputs = [b_lora_name], outputs = [started_info, status] ).then( fn = main, inputs = [image, b_lora_name, instance_prompt, training_type, training_steps], outputs = [status] ) demo.launch(debug=True)