File size: 14,400 Bytes
6c4222e
 
 
 
 
 
 
 
 
 
 
 
 
3d7e17e
 
 
 
 
 
 
 
 
 
 
 
 
5e08dc0
 
 
 
 
 
5ada086
 
 
 
 
b6a069c
070c3b5
 
5bc1fa1
 
b6a069c
 
 
 
 
070c3b5
5bc1fa1
b6a069c
 
 
 
 
 
 
5bc1fa1
b6a069c
39188ef
5bc1fa1
 
 
 
 
 
5ada086
e6047f1
6c4222e
 
 
 
 
 
 
 
 
 
00ac9d6
e6047f1
65ba024
dc9d88e
65ba024
6c4222e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4387a40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6047f1
3d7e17e
 
 
 
 
 
3c5a551
 
 
 
 
 
 
 
 
b6a069c
8cb54a5
 
fc9467c
6c4222e
 
 
 
 
4387a40
 
 
6c4222e
 
 
5239a5d
 
 
 
 
c8d8aaa
 
6c4222e
e6047f1
6c4222e
 
5ada086
5bc1fa1
 
6c4222e
 
 
1025a0e
 
4ab6125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1025a0e
6c4222e
 
3d7e17e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f96f689
 
ea21b12
f96f689
 
5bc1fa1
46f0366
5bc1fa1
 
 
 
39188ef
5bc1fa1
 
 
39188ef
f0b828d
46f0366
5bc1fa1
 
 
6c4222e
5e08dc0
5bc1fa1
 
 
 
 
f0b828d
46f0366
 
 
 
 
6c4222e
 
 
e6047f1
6c4222e
 
5bc1fa1
6c4222e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import gradio as gr
import torch
import os
import shutil
import requests
import subprocess
from subprocess import getoutput
from huggingface_hub import snapshot_download, HfApi, create_repo

api = HfApi()

hf_token = os.environ.get("HF_TOKEN_WITH_WRITE_PERMISSION")

is_shared_ui = True if "fffiloni/train-dreambooth-lora-sdxl" in os.environ['SPACE_ID'] else False

is_gpu_associated = torch.cuda.is_available()

if is_gpu_associated:
    gpu_info = getoutput('nvidia-smi')
    if("A10G" in gpu_info):
        which_gpu = "A10G"
    elif("T4" in gpu_info):
        which_gpu = "T4"
    else:
        which_gpu = "CPU"

def change_training_setup(training_type):
    if training_type == "style" :
        return 1000, 500
    elif training_type == "concept" :
        return 2000, 1000

def swap_hardware(hf_token, hardware="cpu-basic"):
    hardware_url = f"https://huggingface.co/spaces/{os.environ['SPACE_ID']}/hardware"
    headers = { "authorization" : f"Bearer {hf_token}"}
    body = {'flavor': hardware}
    requests.post(hardware_url, json = body, headers=headers)




def swap_sleep_time(sleep_time):
    sleep_time_url = f"https://huggingface.co/api/spaces/{os.environ['SPACE_ID']}/sleeptime"
    headers = { "authorization" : f"Bearer {hf_token}"}
    body = {'seconds':sleep_time}
    requests.post(sleep_time_url,json=body,headers=headers)


def get_sleep_time():
    sleep_time_url = f"https://huggingface.co/api/spaces/{os.environ['SPACE_ID']}"
    headers = { "authorization" : f"Bearer {hf_token}"}
    response = requests.get(sleep_time_url,headers=headers)
    try:
        gcTimeout = response.json()['runtime']['gcTimeout']
    except:
        gcTimeout = None
    
    return gcTimeout

def check_sleep_time():
    sleep_time = get_sleep_time()
    if sleep_time is None :
        return sleep_time, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
    else :
        return sleep_time, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
    
def train_dreambooth_blora_sdxl(instance_data_dir, b_lora_trained_folder, instance_prompt, class_prompt, max_train_steps, checkpoint_steps):
    
    script_filename = "train_dreambooth_b-lora_sdxl.py"  # Assuming it's in the same folder

    command = [
        "accelerate",
        "launch",
        script_filename,  # Use the local script
        "--pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0",
        f"--instance_data_dir={instance_data_dir}",
        f"--output_dir={b_lora_trained_folder}",
        f"--instance_prompt='{instance_prompt}'",
        f"--class_prompt={class_prompt}",
        #f"--validation_prompt=a teddy bear in {instance_prompt} style",
        "--num_validation_images=1",
        "--validation_epochs=500",
        "--resolution=1024",
        "--rank=64",
        "--train_batch_size=1",
        "--learning_rate=5e-5",
        "--lr_scheduler=constant",
        "--lr_warmup_steps=0",
        f"--max_train_steps={max_train_steps}",
        f"--checkpointing_steps={checkpoint_steps}",
        "--seed=0",
        "--gradient_checkpointing",
        "--use_8bit_adam",
        "--mixed_precision=fp16",
        "--push_to_hub",
        f"--hub_token={hf_token}"
    ]

    try:
        subprocess.run(command, check=True)
        print("Training is finished!")
    
    except subprocess.CalledProcessError as e:
        print(f"An error occurred: {e}")


def clear_directory(directory_path):
    # Check if the directory exists
    if os.path.exists(directory_path):
        # Iterate over all the files and directories inside the specified directory
        for filename in os.listdir(directory_path):
            file_path = os.path.join(directory_path, filename)
            try:
                # Check if it is a file or a directory and remove accordingly
                if os.path.isfile(file_path) or os.path.islink(file_path):
                    os.unlink(file_path)  # Remove the file
                elif os.path.isdir(file_path):
                    shutil.rmtree(file_path)  # Remove the directory
            except Exception as e:
                print(f'Failed to delete {file_path}. Reason: {e}')
    else:
        print(f'The directory {directory_path} does not exist.')

def main(image_path, b_lora_trained_folder, instance_prompt, class_prompt, training_type, training_steps):

    if is_shared_ui:
        raise gr.Error("This Space only works in duplicated instances")

    if not is_gpu_associated:
        raise gr.Error("Please associate a T4 or A10G GPU for this Space")

    if image_path == None:
        raise gr.Error("You forgot to specify an image reference")

    if b_lora_trained_folder == "":
        raise gr.Error("You forgot to specify a name for you model")

    if instance_prompt == "":
        raise gr.Error("You forgot to specify an instance prompt")

    #sleep_time = get_sleep_time(hf_token)
    #if sleep_time:
    #swap_sleep_time(hf_token, 36000)
    
    local_dir = "image_to_train"
    # Check if the directory exists and create it if necessary
    if not os.path.exists(local_dir):
        os.makedirs(local_dir)
    else :
        directory_to_clear = local_dir
        clear_directory(directory_to_clear)

    shutil.copy(image_path, local_dir)
    print(f"source image has been copied in {local_dir} directory")

    if training_type == "style":
        checkpoint_steps = 500
    elif training_type == "concept" :
        checkpoint_steps = 1000

    max_train_steps = training_steps
    
    train_dreambooth_blora_sdxl(local_dir, b_lora_trained_folder, instance_prompt, class_prompt, max_train_steps, checkpoint_steps)
    
    your_username = api.whoami(token=hf_token)["name"]

    #swap_hardware(hardware="cpu-basic")
    swap_sleep_time(300)
    
    return f"Done, your trained model has been stored in your models library: {your_username}/{b_lora_trained_folder}"

css = """
#col-container {max-width: 780px; margin-left: auto; margin-right: auto;}

div#warning-ready {
    background-color: #ecfdf5;
    padding: 0 10px 5px;
    margin: 20px 0;
}
div#warning-ready > .gr-prose > h2, div#warning-ready > .gr-prose > p {
    color: #057857!important;
}
div#warning-duplicate {
    background-color: #ebf5ff;
    padding: 0 10px 5px;
    margin: 20px 0;
}
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
    color: #0f4592!important;
}
div#warning-duplicate strong {
    color: #0f4592;
}
p.actions {
    display: flex;
    align-items: center;
    margin: 20px 0;
}
div#warning-duplicate .actions a {
    display: inline-block;
    margin-right: 10px;
}
div#warning-setgpu {
    background-color: #fff4eb;
    padding: 0 10px 5px;
    margin: 20px 0;
}
div#warning-setgpu > .gr-prose > h2, div#warning-setgpu > .gr-prose > p {
    color: #92220f!important;
}
div#warning-setgpu a, div#warning-setgpu b {
    color: #91230f;
}
div#warning-setgpu p.actions > a {
    display: inline-block;
    background: #1f1f23;
    border-radius: 40px;
    padding: 6px 24px;
    color: antiquewhite;
    text-decoration: none;
    font-weight: 600;
    font-size: 1.2em;
}
"""
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        if is_shared_ui:
            top_description = gr.HTML(f'''
                <div class="gr-prose">
                    <h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
                    Attention: this Space need to be duplicated to work</h2>
                    <p class="main-message">
                        To make it work, <strong>duplicate the Space</strong> and run it on your own profile using a <strong>private</strong> GPU (T4-small or A10G-small).<br />
                        A T4 costs <strong>US$0.60/h</strong>, so it should cost < US$1 to train most models.
                    </p>
                    <p class="actions">
                        <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true">
                            <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
                        </a>
                        to start training your own B-LoRa model
                    </p>
                </div>
            ''', elem_id="warning-duplicate")
        else:
            if(is_gpu_associated):
                top_description = gr.HTML(f'''
                        <div class="gr-prose">
                            <h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
                            You have successfully associated a {which_gpu} GPU to the B-LoRa Training Space πŸŽ‰</h2>
                            <p>
                                You can now train your model! You will be billed by the minute from when you activated the GPU until when it is turned off.
                            </p> 
                        </div>
                ''', elem_id="warning-ready")
            else:
                top_description = gr.HTML(f'''
                        <div class="gr-prose">
                        <h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
                        You have successfully duplicated the B-LoRa Training Space πŸŽ‰</h2>
                        <p>There's only one step left before you can train your model: <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a <b>T4-small or A10G-small GPU</b> to it (via the Settings tab)</a> and run the training below.
                        You will be billed by the minute from when you activate the GPU until when it is turned off.</p> 
                        <p class="actions">
                            <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">πŸ”₯ &nbsp; Set recommended GPU</a>
                        </p>
                        </div>
                ''', elem_id="warning-setgpu")
        gr.Markdown("# B-LoRa Training UI πŸ’­")        
        with gr.Row():
            image = gr.Image(label="Image Reference", sources=["upload"], type="filepath")

            with gr.Column():
                
                    with gr.Row():
                        current_sleep_time = gr.Textbox(label="current space sleep time")
                        check_sleep_time_btn = gr.Button("check", scale=1)
                    training_type = gr.Radio(label="Training type", choices=["style", "concept"], value="style", visible=False)
                    b_lora_name = gr.Textbox(label="Name your B-LoRa model", placeholder="b_lora_trained_folder", visible=False)
                    with gr.Row():
                        instance_prompt = gr.Textbox(label="Create instance prompt", placeholder="A [v42] <class_prompt>", visible=False)
                        class_prompt = gr.Textbox(label="Specify class prompt", placeholder="style | person | dog ", visible=False)
                    training_steps = gr.Number(label="Training steps", value=1000, interactive=False, visible=False)
                    checkpoint_step = gr.Number(label="checkpoint step", visible=False, value=500)

                    
        
        train_btn = gr.Button("Train B-LoRa", visible=False)
    
        status = gr.Textbox(label="status")

    check_sleep_time_btn.click(
        fn = check_sleep_time,
        inputs = None, 
        outputs = [current_sleep_time, b_lora_name, instance_prompt, class_prompt, training_type, training_steps, train_btn]
    )
    
    training_type.change(
                        fn = change_training_setup,
                        inputs = [training_type],
                        outputs = [training_steps, checkpoint_step]
                    )
    
    train_btn.click(
        fn = main,
        inputs = [image, b_lora_name, instance_prompt, class_prompt, training_type, training_steps],
        outputs = [status]
    )
    
demo.launch(debug=True)