detect_English_language_speaking / video_accent_analyzer.py
ferhatbou's picture
Fix import issue
6cf7dc2
raw
history blame
25.6 kB
import os
import sys
import tempfile
import subprocess
import requests
import json
import warnings
import time
from pathlib import Path
from urllib.parse import urlparse
from IPython.display import display, HTML, Audio
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Suppress warnings for cleaner output
warnings.filterwarnings('ignore')
def install_if_missing(packages):
"""Install packages if they're not already available in Kaggle"""
for package in packages:
try:
package_name = package.split('==')[0].replace('-', '_')
if package_name == 'yt_dlp':
package_name = 'yt_dlp'
__import__(package_name)
except ImportError:
print(f"Installing {package}...")
subprocess.check_call([sys.executable, "-m", "pip", "install", package, "--quiet"])
# Required packages for Kaggle
required_packages = [
"yt-dlp",
"librosa",
"soundfile",
"transformers",
"torch",
"matplotlib",
"seaborn"
]
print("๐Ÿ”ง Setting up environment...")
install_if_missing(required_packages)
# Now import the packages
import torch
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification
import librosa
import soundfile as sf
import yt_dlp
class VideoAccentAnalyzer:
def __init__(self, model_name="dima806/multiple_accent_classification"):
"""Initialize the accent analyzer for Kaggle environment"""
self.model_name = model_name
# Enhanced accent labels with better mapping
self.accent_labels = [
"british", "canadian", "us", "indian", "australian", "neutral"
]
self.accent_display_names = {
'british': '๐Ÿ‡ฌ๐Ÿ‡ง British English',
'us': '๐Ÿ‡บ๐Ÿ‡ธ American English',
'australian': '๐Ÿ‡ฆ๐Ÿ‡บ Australian English',
'canadian': '๐Ÿ‡จ๐Ÿ‡ฆ Canadian English',
'indian': '๐Ÿ‡ฎ๐Ÿ‡ณ Indian English',
'neutral': '๐ŸŒ Neutral English'
}
self.temp_dir = "/tmp/accent_analyzer"
os.makedirs(self.temp_dir, exist_ok=True)
self.model_loaded = False
self._load_model()
def _load_model(self):
"""Load the accent classification model with error handling"""
print("๐Ÿค– Loading accent classification model...")
try:
self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(self.model_name)
self.model = Wav2Vec2ForSequenceClassification.from_pretrained(self.model_name)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model.to(self.device)
self.model.eval() # Set to evaluation mode
self.model_loaded = True
print(f"โœ… Model loaded successfully on {self.device}")
except Exception as e:
print(f"โŒ Error loading model: {e}")
print("๐Ÿ’ก Tip: Check your internet connection and Kaggle environment setup")
raise
def _validate_url(self, url):
"""Validate and normalize URL"""
if not url or not isinstance(url, str):
return False, "Invalid URL format"
url = url.strip()
if not url.startswith(('http://', 'https://')):
return False, "URL must start with http:// or https://"
return True, url
def download_video(self, url, max_duration=None):
"""Download video using yt-dlp with improved error handling"""
is_valid, result = self._validate_url(url)
if not is_valid:
print(f"โŒ {result}")
return None
url = result
output_path = os.path.join(self.temp_dir, "video.%(ext)s")
ydl_opts = {
'outtmpl': output_path,
'format': 'best[height<=720]/best', # Limit quality for faster download
'quiet': True,
'no_warnings': True,
'socket_timeout': 30,
'retries': 3,
}
if max_duration:
ydl_opts['match_filter'] = lambda info: None if info.get('duration',
0) <= max_duration * 2 else "Video too long"
try:
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
print(f"๐Ÿ“ฅ Downloading video from: {url}")
start_time = time.time()
ydl.download([url])
download_time = time.time() - start_time
# Find downloaded file
for file in os.listdir(self.temp_dir):
if file.startswith("video."):
video_path = os.path.join(self.temp_dir, file)
if self._is_valid_video(video_path):
print(f"โœ… Downloaded valid video: {file} ({download_time:.1f}s)")
return video_path
else:
print("โŒ Downloaded file is not a valid video")
return None
except Exception as e:
print(f"โš ๏ธ yt-dlp failed: {e}")
return self._try_direct_download(url)
def _is_valid_video(self, file_path):
"""Verify video file has valid structure"""
try:
result = subprocess.run(
['ffprobe', '-v', 'error', '-show_format', '-show_streams', file_path],
capture_output=True, text=True, timeout=10
)
return result.returncode == 0
except subprocess.TimeoutExpired:
print("โš ๏ธ Video validation timed out")
return False
except Exception as e:
print(f"โš ๏ธ Video validation error: {e}")
return False
def _try_direct_download(self, url):
"""Enhanced fallback for direct video URLs"""
try:
print("๐Ÿ”„ Trying direct download...")
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
}
response = requests.get(url, stream=True, timeout=60, headers=headers)
response.raise_for_status()
content_type = response.headers.get("Content-Type", "")
if "text/html" in content_type:
print("โš ๏ธ Received HTML instead of video - check URL access")
return None
video_path = os.path.join(self.temp_dir, "video.mp4")
file_size = 0
with open(video_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
file_size += len(chunk)
print(f"๐Ÿ“ Downloaded {file_size / (1024 * 1024):.1f} MB")
if self._is_valid_video(video_path):
print("โœ… Direct download successful")
return video_path
else:
print("โŒ Downloaded file is not a valid video")
return None
except Exception as e:
print(f"โŒ Direct download failed: {e}")
return None
def extract_audio(self, video_path, max_duration=None):
"""Extract audio with improved error handling and progress"""
audio_path = os.path.join(self.temp_dir, "audio.wav")
cmd = ['ffmpeg', '-i', video_path, '-vn', '-acodec', 'pcm_s16le',
'-ar', '16000', '-ac', '1', '-y', '-loglevel', 'error']
if max_duration:
cmd.extend(['-t', str(max_duration)])
cmd.append(audio_path)
try:
print(f"๐ŸŽต Extracting audio (max {max_duration}s)...")
start_time = time.time()
result = subprocess.run(cmd, capture_output=True, text=True, timeout=120)
extraction_time = time.time() - start_time
if result.returncode == 0 and os.path.exists(audio_path):
file_size = os.path.getsize(audio_path) / (1024 * 1024)
print(f"โœ… Audio extracted successfully ({extraction_time:.1f}s, {file_size:.1f}MB)")
return audio_path
else:
raise Exception(f"FFmpeg error: {result.stderr}")
except subprocess.TimeoutExpired:
print("โŒ Audio extraction timed out")
return None
except Exception as e:
print(f"โŒ Audio extraction failed: {e}")
return None
def classify_accent(self, audio_path):
"""Enhanced accent classification with better preprocessing"""
if not self.model_loaded:
print("โŒ Model not loaded properly")
return None
try:
print("๐Ÿ” Loading and preprocessing audio...")
audio, sr = librosa.load(audio_path, sr=16000)
# Enhanced preprocessing
if len(audio) == 0:
print("โŒ Empty audio file")
return None
# Remove silence from beginning and end
audio_trimmed, _ = librosa.effects.trim(audio, top_db=20)
# Use multiple chunks for better accuracy if audio is long
chunk_size = 16000 * 20 # 20 seconds chunks
chunks = []
if len(audio_trimmed) > chunk_size:
# Split into overlapping chunks
step_size = chunk_size // 2
for i in range(0, len(audio_trimmed) - chunk_size + 1, step_size):
chunks.append(audio_trimmed[i:i + chunk_size])
if len(audio_trimmed) % step_size != 0:
chunks.append(audio_trimmed[-chunk_size:])
else:
chunks = [audio_trimmed]
print(f"๐ŸŽฏ Analyzing {len(chunks)} audio chunk(s)...")
all_predictions = []
for i, chunk in enumerate(chunks[:3]): # Limit to 3 chunks for efficiency
inputs = self.feature_extractor(
chunk,
sampling_rate=16000,
return_tensors="pt",
padding=True,
max_length=16000 * 20,
truncation=True
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
probabilities = torch.nn.functional.softmax(logits, dim=-1)
all_predictions.append(probabilities[0].cpu().numpy())
# Average predictions across chunks
avg_probabilities = sum(all_predictions) / len(all_predictions)
predicted_idx = avg_probabilities.argmax()
predicted_idx = min(predicted_idx, len(self.accent_labels) - 1)
# Calculate English confidence (exclude 'neutral' for this calculation)
english_accents = ["british", "canadian", "us", "australian", "indian"]
english_confidence = sum(
avg_probabilities[i] * 100
for i, label in enumerate(self.accent_labels)
if label in english_accents
)
results = {
'predicted_accent': self.accent_labels[predicted_idx],
'accent_confidence': avg_probabilities[predicted_idx] * 100,
'english_confidence': english_confidence,
'audio_duration': len(audio) / 16000,
'processed_duration': len(audio_trimmed) / 16000,
'chunks_analyzed': len(all_predictions),
'all_probabilities': {
self.accent_labels[i]: avg_probabilities[i] * 100
for i in range(len(self.accent_labels))
},
'is_english_likely': english_confidence > 60,
'audio_quality_score': self._assess_audio_quality(audio_trimmed)
}
print(f"โœ… Classification complete ({results['chunks_analyzed']} chunks)")
return results
except Exception as e:
print(f"โŒ Classification failed: {e}")
return None
def _assess_audio_quality(self, audio):
"""Assess audio quality for better result interpretation"""
try:
# Simple quality metrics
rms_energy = librosa.feature.rms(y=audio)[0].mean()
zero_crossing_rate = librosa.feature.zero_crossing_rate(audio)[0].mean()
# Normalize to 0-100 scale
quality_score = min(100, (rms_energy * 1000 + (1 - zero_crossing_rate) * 50))
return max(0, quality_score)
except:
return 50 # Default moderate quality
def analyze_video_url(self, url, max_duration=30):
"""Complete pipeline with enhanced error handling"""
print(f"๐ŸŽฌ Starting analysis of: {url}")
print(f"โฑ๏ธ Max duration: {max_duration} seconds")
video_path = self.download_video(url, max_duration)
if not video_path:
return {"error": "Failed to download video", "url": url}
audio_path = self.extract_audio(video_path, max_duration)
if not audio_path:
return {"error": "Failed to extract audio", "url": url}
results = self.classify_accent(audio_path)
if not results:
return {"error": "Failed to classify accent", "url": url}
results.update({
'source_url': url,
'video_file': os.path.basename(video_path),
'audio_file': os.path.basename(audio_path),
'analysis_timestamp': time.strftime('%Y-%m-%d %H:%M:%S')
})
return results
def analyze_local_video(self, file_path, max_duration=30):
"""Enhanced local video analysis"""
print(f"๐ŸŽฌ Starting analysis of local file: {file_path}")
print(f"โฑ๏ธ Max duration: {max_duration} seconds")
if not os.path.isfile(file_path):
return {"error": f"File not found: {file_path}"}
# Check file size
file_size = os.path.getsize(file_path) / (1024 * 1024) # MB
print(f"๐Ÿ“ File size: {file_size:.1f} MB")
video_filename = os.path.basename(file_path)
print(f"โœ… Using local video: {video_filename}")
audio_path = self.extract_audio(file_path, max_duration)
if not audio_path:
return {"error": "Failed to extract audio"}
results = self.classify_accent(audio_path)
if not results:
return {"error": "Failed to classify accent"}
results.update({
'source_file': file_path,
'video_file': video_filename,
'audio_file': os.path.basename(audio_path),
'file_size_mb': file_size,
'is_local': True,
'analysis_timestamp': time.strftime('%Y-%m-%d %H:%M:%S')
})
return results
def display_results(self, results):
"""Enhanced results display with visualizations"""
if 'error' in results:
display(HTML(
f"<div style='color: red; font-size: 16px; padding: 10px; border: 1px solid red; border-radius: 5px;'>โŒ {results['error']}</div>"))
return
accent = results['predicted_accent']
confidence = results['accent_confidence']
english_conf = results['english_confidence']
duration = results['audio_duration']
processed_duration = results.get('processed_duration', duration)
quality_score = results.get('audio_quality_score', 50)
accent_display = self.accent_display_names.get(accent, accent.title())
# Enhanced HTML display
html = f"""
<div style='border: 2px solid #4CAF50; border-radius: 10px; padding: 20px; margin: 10px 0; background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);'>
<h2 style='color: #2E7D32; margin-top: 0; text-align: center;'>๐ŸŽฏ Accent Analysis Results</h2>
<div style='display: flex; flex-wrap: wrap; gap: 20px; margin-bottom: 20px;'>
<div style='flex: 1; min-width: 200px; background: white; padding: 15px; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);'>
<h3 style='color: #1976D2; margin-top: 0;'>๐ŸŽญ Primary Classification</h3>
<p style='font-size: 20px; margin: 5px 0; font-weight: bold;'>{accent_display}</p>
<p style='margin: 5px 0;'>Confidence: <strong style='color: {"#4CAF50" if confidence >= 70 else "#FF9800" if confidence >= 50 else "#F44336"};'>{confidence:.1f}%</strong></p>
</div>
<div style='flex: 1; min-width: 200px; background: white; padding: 15px; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);'>
<h3 style='color: #1976D2; margin-top: 0;'>๐ŸŒ English Proficiency</h3>
<p style='font-size: 18px; margin: 5px 0;'><strong style='color: {"#4CAF50" if english_conf >= 70 else "#FF9800" if english_conf >= 50 else "#F44336"};'>{english_conf:.1f}%</strong></p>
<p style='margin: 5px 0;'>Audio Quality: <strong>{quality_score:.0f}/100</strong></p>
</div>
<div style='flex: 1; min-width: 200px; background: white; padding: 15px; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);'>
<h3 style='color: #1976D2; margin-top: 0;'>โฑ๏ธ Processing Info</h3>
<p style='margin: 5px 0;'>Duration: <strong>{duration:.1f}s</strong></p>
<p style='margin: 5px 0;'>Processed: <strong>{processed_duration:.1f}s</strong></p>
<p style='margin: 5px 0;'>Chunks: <strong>{results.get("chunks_analyzed", 1)}</strong></p>
</div>
</div>
<div style='background: white; padding: 15px; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);'>
<h3 style='color: #1976D2; margin-top: 0;'>๐Ÿ“Š Assessment</h3>
<div style='display: flex; flex-wrap: wrap; gap: 10px;'>
<span style='background: {"#4CAF50" if english_conf >= 70 else "#FF9800" if english_conf >= 50 else "#F44336"}; color: white; padding: 5px 10px; border-radius: 15px; font-size: 14px;'>
{'โœ… Strong English Speaker' if english_conf >= 70 else 'โš ๏ธ Moderate English Confidence' if english_conf >= 50 else 'โ“ Low English Confidence'}
</span>
<span style='background: {"#4CAF50" if confidence >= 70 else "#FF9800" if confidence >= 50 else "#F44336"}; color: white; padding: 5px 10px; border-radius: 15px; font-size: 14px;'>
{'๐ŸŽฏ High Confidence' if confidence >= 70 else '๐Ÿค” Moderate Confidence' if confidence >= 50 else 'โ“ Low Confidence'}
</span>
<span style='background: {"#4CAF50" if quality_score >= 70 else "#FF9800" if quality_score >= 40 else "#F44336"}; color: white; padding: 5px 10px; border-radius: 15px; font-size: 14px;'>
{'๐ŸŽค Good Audio Quality' if quality_score >= 70 else '๐Ÿ“ข Fair Audio Quality' if quality_score >= 40 else '๐Ÿ”‡ Poor Audio Quality'}
</span>
</div>
</div>
</div>
"""
display(HTML(html))
# Create probability breakdown visualization
self._plot_probabilities(results['all_probabilities'])
# Display detailed breakdown table
prob_df = pd.DataFrame([
{
'Accent': self.accent_display_names.get(accent, accent.title()),
'Probability': f"{prob:.1f}%",
'Confidence': '๐ŸŸข High' if prob >= 70 else '๐ŸŸก Medium' if prob >= 30 else '๐Ÿ”ด Low'
}
for accent, prob in sorted(results['all_probabilities'].items(), key=lambda x: x[1], reverse=True)
])
print("\n๐Ÿ“Š Detailed Probability Breakdown:")
display(prob_df)
def _plot_probabilities(self, probabilities):
"""Create a visualization of accent probabilities"""
try:
plt.figure(figsize=(10, 6))
accents = [self.accent_display_names.get(acc, acc.title()) for acc in probabilities.keys()]
probs = list(probabilities.values())
# Create color map
colors = ['#4CAF50' if p == max(probs) else '#2196F3' if p >= 20 else '#FFC107' if p >= 10 else '#9E9E9E'
for p in probs]
bars = plt.bar(accents, probs, color=colors, alpha=0.8, edgecolor='black', linewidth=0.5)
plt.title('Accent Classification Probabilities', fontsize=16, fontweight='bold', pad=20)
plt.xlabel('Accent Type', fontsize=12)
plt.ylabel('Probability (%)', fontsize=12)
plt.xticks(rotation=45, ha='right')
plt.grid(axis='y', alpha=0.3)
# Add value labels on bars
for bar, prob in zip(bars, probs):
height = bar.get_height()
plt.text(bar.get_x() + bar.get_width() / 2., height + 0.5,
f'{prob:.1f}%', ha='center', va='bottom', fontweight='bold')
plt.tight_layout()
plt.show()
except Exception as e:
print(f"โš ๏ธ Could not create visualization: {e}")
def batch_analyze(self, urls, max_duration=30):
"""Analyze multiple videos with progress tracking"""
results = []
failed_count = 0
print(f"๐Ÿš€ Starting batch analysis of {len(urls)} videos")
for i, url in enumerate(urls, 1):
print(f"\n{'=' * 60}")
print(f"Processing video {i}/{len(urls)}")
result = self.analyze_video_url(url, max_duration)
result['video_index'] = i
if 'error' in result:
failed_count += 1
print(f"โŒ Failed: {result['error']}")
else:
print(f"โœ… Success: {result['predicted_accent']} ({result['accent_confidence']:.1f}%)")
results.append(result)
self.display_results(result)
# Small delay to prevent overwhelming servers
if i < len(urls):
time.sleep(1)
# Summary
success_count = len(urls) - failed_count
print(f"\n๐Ÿ“ˆ Batch Analysis Summary:")
print(f" โœ… Successful: {success_count}/{len(urls)}")
print(f" โŒ Failed: {failed_count}/{len(urls)}")
return results
def export_results(self, results, filename="accent_analysis_results.json"):
"""Export results to JSON file"""
try:
with open(filename, 'w') as f:
json.dump(results, f, indent=2, default=str)
print(f"๐Ÿ’พ Results exported to {filename}")
except Exception as e:
print(f"โŒ Export failed: {e}")
def cleanup(self):
"""Clean up temporary files"""
try:
import shutil
if os.path.exists(self.temp_dir):
shutil.rmtree(self.temp_dir, ignore_errors=True)
print("๐Ÿงน Cleaned up temporary files")
except Exception as e:
print(f"โš ๏ธ Cleanup warning: {e}")
# Helper Functions
def show_examples():
"""Show usage examples"""
examples = {
"YouTube": "https://youtube.com/watch?v=abc123",
"Loom": "https://www.loom.com/share/abc123def456",
"Direct MP4": "https://example.com/video.mp4",
"Local File": "/kaggle/input/dataset/video.mp4"
}
print("\n๐ŸŽฏ Supported Video Formats:")
for platform, example in examples.items():
print(f" {platform:12}: {example}")
print("\n๐Ÿ’ก Usage Tips:")
print(" โ€ข Keep videos under 2 minutes for best results")
print(" โ€ข Ensure clear audio quality")
print(" โ€ข Multiple speakers may affect accuracy")
print(" โ€ข Model works best with sustained speech")
def quick_test_local():
"""Interactive test for local files"""
print("๐Ÿ” Quick Test Mode for Local Files")
print("๐Ÿ“ Common Kaggle input paths:")
print(" /kaggle/input/your-dataset/video.mp4")
print(" /kaggle/input/video-files/sample.mp4")
file_path = input("\n๐Ÿ“Ž Enter full path to your local video: ").strip()
if not file_path:
print("โŒ No path provided.")
return None
if not os.path.exists(file_path):
print(f"โŒ File not found: {file_path}")
return None
analyzer = VideoAccentAnalyzer()
try:
results = analyzer.analyze_local_video(file_path)
analyzer.display_results(results)
return results
finally:
analyzer.cleanup()
def demo_analysis():
"""Demo function with example usage"""
print("๐ŸŽฌ Video Accent Analyzer Demo")
print("=" * 50)
# Initialize analyzer
analyzer = VideoAccentAnalyzer()
# Example analysis (replace with actual video URL)
example_url = "https://example.com/video.mp4" # Replace with real URL
print(f"\n๐ŸŽฏ Example: Analyzing {example_url}")
# Uncomment to run actual analysis
# results = analyzer.analyze_video_url(example_url, max_duration=30)
# analyzer.display_results(results)
# analyzer.cleanup()
print("\n๐Ÿ“š To use the analyzer:")
print("1. analyzer = VideoAccentAnalyzer()")
print("2. results = analyzer.analyze_video_url('your-url', max_duration=30)")
print("3. analyzer.display_results(results)")
print("4. analyzer.cleanup() # Clean up temporary files")
# Show examples on import
show_examples()