Spaces:
Runtime error
Runtime error
Update Time_TravelRephotography/op/fused_act.py
Browse files
Time_TravelRephotography/op/fused_act.py
CHANGED
|
@@ -1,108 +1,86 @@
|
|
| 1 |
import os
|
| 2 |
-
|
| 3 |
-
import numpy as np
|
| 4 |
import torch
|
| 5 |
-
import
|
| 6 |
-
import
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
# Add bias.
|
| 90 |
-
if b is not None:
|
| 91 |
-
assert isinstance(b, torch.Tensor) and b.ndim == 1
|
| 92 |
-
assert 0 <= dim < x.ndim
|
| 93 |
-
assert b.shape[0] == x.shape[dim]
|
| 94 |
-
x = x + b.reshape([-1 if i == dim else 1 for i in range(x.ndim)])
|
| 95 |
-
|
| 96 |
-
# Evaluate activation function.
|
| 97 |
-
alpha = float(alpha)
|
| 98 |
-
x = spec.func(x, alpha=alpha)
|
| 99 |
-
|
| 100 |
-
# Scale by gain.
|
| 101 |
-
gain = float(gain)
|
| 102 |
-
if gain != 1:
|
| 103 |
-
x = x * gain
|
| 104 |
-
|
| 105 |
-
# Clamp.
|
| 106 |
-
if clamp >= 0:
|
| 107 |
-
x = x.clamp(-clamp, clamp) # pylint: disable=invalid-unary-operand-type
|
| 108 |
-
return
|
|
|
|
| 1 |
import os
|
| 2 |
+
|
|
|
|
| 3 |
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torch.autograd import Function
|
| 6 |
+
from torch.utils.cpp_extension import load
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
module_path = os.path.dirname(__file__)
|
| 10 |
+
fused = load(
|
| 11 |
+
'fused',
|
| 12 |
+
sources=[
|
| 13 |
+
os.path.join(module_path, 'fused_bias_act.cpp'),
|
| 14 |
+
os.path.join(module_path, 'fused_bias_act_kernel.cu'),
|
| 15 |
+
],
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class FusedLeakyReLUFunctionBackward(Function):
|
| 20 |
+
@staticmethod
|
| 21 |
+
def forward(ctx, grad_output, out, negative_slope, scale):
|
| 22 |
+
ctx.save_for_backward(out)
|
| 23 |
+
ctx.negative_slope = negative_slope
|
| 24 |
+
ctx.scale = scale
|
| 25 |
+
|
| 26 |
+
empty = grad_output.new_empty(0)
|
| 27 |
+
|
| 28 |
+
grad_input = fused.fused_bias_act(
|
| 29 |
+
grad_output, empty, out, 3, 1, negative_slope, scale
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
dim = [0]
|
| 33 |
+
|
| 34 |
+
if grad_input.ndim > 2:
|
| 35 |
+
dim += list(range(2, grad_input.ndim))
|
| 36 |
+
|
| 37 |
+
grad_bias = grad_input.sum(dim).detach()
|
| 38 |
+
|
| 39 |
+
return grad_input, grad_bias
|
| 40 |
+
|
| 41 |
+
@staticmethod
|
| 42 |
+
def backward(ctx, gradgrad_input, gradgrad_bias):
|
| 43 |
+
out, = ctx.saved_tensors
|
| 44 |
+
gradgrad_out = fused.fused_bias_act(
|
| 45 |
+
gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
return gradgrad_out, None, None, None
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class FusedLeakyReLUFunction(Function):
|
| 52 |
+
@staticmethod
|
| 53 |
+
def forward(ctx, input, bias, negative_slope, scale):
|
| 54 |
+
empty = input.new_empty(0)
|
| 55 |
+
out = fused.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale)
|
| 56 |
+
ctx.save_for_backward(out)
|
| 57 |
+
ctx.negative_slope = negative_slope
|
| 58 |
+
ctx.scale = scale
|
| 59 |
+
|
| 60 |
+
return out
|
| 61 |
+
|
| 62 |
+
@staticmethod
|
| 63 |
+
def backward(ctx, grad_output):
|
| 64 |
+
out, = ctx.saved_tensors
|
| 65 |
+
|
| 66 |
+
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
|
| 67 |
+
grad_output, out, ctx.negative_slope, ctx.scale
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
return grad_input, grad_bias, None, None
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
class FusedLeakyReLU(nn.Module):
|
| 74 |
+
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
|
| 75 |
+
super().__init__()
|
| 76 |
+
|
| 77 |
+
self.bias = nn.Parameter(torch.zeros(channel))
|
| 78 |
+
self.negative_slope = negative_slope
|
| 79 |
+
self.scale = scale
|
| 80 |
+
|
| 81 |
+
def forward(self, input):
|
| 82 |
+
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
|
| 86 |
+
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|