Spaces:
Runtime error
Runtime error
| import math | |
| import random | |
| import functools | |
| import operator | |
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from torch.autograd import Function | |
| from op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d, conv2d_gradfix | |
| from model import ( | |
| ModulatedConv2d, | |
| StyledConv, | |
| ConstantInput, | |
| PixelNorm, | |
| Upsample, | |
| Downsample, | |
| Blur, | |
| EqualLinear, | |
| ConvLayer, | |
| ) | |
| def get_haar_wavelet(in_channels): | |
| haar_wav_l = 1 / (2 ** 0.5) * torch.ones(1, 2) | |
| haar_wav_h = 1 / (2 ** 0.5) * torch.ones(1, 2) | |
| haar_wav_h[0, 0] = -1 * haar_wav_h[0, 0] | |
| haar_wav_ll = haar_wav_l.T * haar_wav_l | |
| haar_wav_lh = haar_wav_h.T * haar_wav_l | |
| haar_wav_hl = haar_wav_l.T * haar_wav_h | |
| haar_wav_hh = haar_wav_h.T * haar_wav_h | |
| return haar_wav_ll, haar_wav_lh, haar_wav_hl, haar_wav_hh | |
| def dwt_init(x): | |
| x01 = x[:, :, 0::2, :] / 2 | |
| x02 = x[:, :, 1::2, :] / 2 | |
| x1 = x01[:, :, :, 0::2] | |
| x2 = x02[:, :, :, 0::2] | |
| x3 = x01[:, :, :, 1::2] | |
| x4 = x02[:, :, :, 1::2] | |
| x_LL = x1 + x2 + x3 + x4 | |
| x_HL = -x1 - x2 + x3 + x4 | |
| x_LH = -x1 + x2 - x3 + x4 | |
| x_HH = x1 - x2 - x3 + x4 | |
| return torch.cat((x_LL, x_HL, x_LH, x_HH), 1) | |
| def iwt_init(x): | |
| r = 2 | |
| in_batch, in_channel, in_height, in_width = x.size() | |
| # print([in_batch, in_channel, in_height, in_width]) | |
| out_batch, out_channel, out_height, out_width = ( | |
| in_batch, | |
| int(in_channel / (r ** 2)), | |
| r * in_height, | |
| r * in_width, | |
| ) | |
| x1 = x[:, 0:out_channel, :, :] / 2 | |
| x2 = x[:, out_channel : out_channel * 2, :, :] / 2 | |
| x3 = x[:, out_channel * 2 : out_channel * 3, :, :] / 2 | |
| x4 = x[:, out_channel * 3 : out_channel * 4, :, :] / 2 | |
| h = torch.zeros([out_batch, out_channel, out_height, out_width]).float().cuda() | |
| h[:, :, 0::2, 0::2] = x1 - x2 - x3 + x4 | |
| h[:, :, 1::2, 0::2] = x1 - x2 + x3 - x4 | |
| h[:, :, 0::2, 1::2] = x1 + x2 - x3 - x4 | |
| h[:, :, 1::2, 1::2] = x1 + x2 + x3 + x4 | |
| return h | |
| class HaarTransform(nn.Module): | |
| def __init__(self, in_channels): | |
| super().__init__() | |
| ll, lh, hl, hh = get_haar_wavelet(in_channels) | |
| self.register_buffer("ll", ll) | |
| self.register_buffer("lh", lh) | |
| self.register_buffer("hl", hl) | |
| self.register_buffer("hh", hh) | |
| def forward(self, input): | |
| ll = upfirdn2d(input, self.ll, down=2) | |
| lh = upfirdn2d(input, self.lh, down=2) | |
| hl = upfirdn2d(input, self.hl, down=2) | |
| hh = upfirdn2d(input, self.hh, down=2) | |
| return torch.cat((ll, lh, hl, hh), 1) | |
| class InverseHaarTransform(nn.Module): | |
| def __init__(self, in_channels): | |
| super().__init__() | |
| ll, lh, hl, hh = get_haar_wavelet(in_channels) | |
| self.register_buffer("ll", ll) | |
| self.register_buffer("lh", -lh) | |
| self.register_buffer("hl", -hl) | |
| self.register_buffer("hh", hh) | |
| def forward(self, input): | |
| ll, lh, hl, hh = input.chunk(4, 1) | |
| ll = upfirdn2d(ll, self.ll, up=2, pad=(1, 0, 1, 0)) | |
| lh = upfirdn2d(lh, self.lh, up=2, pad=(1, 0, 1, 0)) | |
| hl = upfirdn2d(hl, self.hl, up=2, pad=(1, 0, 1, 0)) | |
| hh = upfirdn2d(hh, self.hh, up=2, pad=(1, 0, 1, 0)) | |
| return ll + lh + hl + hh | |
| class ToRGB(nn.Module): | |
| def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]): | |
| super().__init__() | |
| if upsample: | |
| self.iwt = InverseHaarTransform(3) | |
| self.upsample = Upsample(blur_kernel) | |
| self.dwt = HaarTransform(3) | |
| self.conv = ModulatedConv2d(in_channel, 3 * 4, 1, style_dim, demodulate=False) | |
| self.bias = nn.Parameter(torch.zeros(1, 3 * 4, 1, 1)) | |
| def forward(self, input, style, skip=None): | |
| out = self.conv(input, style) | |
| out = out + self.bias | |
| if skip is not None: | |
| skip = self.iwt(skip) | |
| skip = self.upsample(skip) | |
| skip = self.dwt(skip) | |
| out = out + skip | |
| return out | |
| class Generator(nn.Module): | |
| def __init__( | |
| self, | |
| size, | |
| style_dim, | |
| n_mlp, | |
| channel_multiplier=2, | |
| blur_kernel=[1, 3, 3, 1], | |
| lr_mlp=0.01, | |
| ): | |
| super().__init__() | |
| self.size = size | |
| self.style_dim = style_dim | |
| layers = [PixelNorm()] | |
| for i in range(n_mlp): | |
| layers.append( | |
| EqualLinear( | |
| style_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu" | |
| ) | |
| ) | |
| self.style = nn.Sequential(*layers) | |
| self.channels = { | |
| 4: 512, | |
| 8: 512, | |
| 16: 512, | |
| 32: 512, | |
| 64: 256 * channel_multiplier, | |
| 128: 128 * channel_multiplier, | |
| 256: 64 * channel_multiplier, | |
| 512: 32 * channel_multiplier, | |
| 1024: 16 * channel_multiplier, | |
| } | |
| self.input = ConstantInput(self.channels[4]) | |
| self.conv1 = StyledConv( | |
| self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel | |
| ) | |
| self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False) | |
| self.log_size = int(math.log(size, 2)) - 1 | |
| self.num_layers = (self.log_size - 2) * 2 + 1 | |
| self.convs = nn.ModuleList() | |
| self.upsamples = nn.ModuleList() | |
| self.to_rgbs = nn.ModuleList() | |
| self.noises = nn.Module() | |
| in_channel = self.channels[4] | |
| for layer_idx in range(self.num_layers): | |
| res = (layer_idx + 5) // 2 | |
| shape = [1, 1, 2 ** res, 2 ** res] | |
| self.noises.register_buffer(f"noise_{layer_idx}", torch.randn(*shape)) | |
| for i in range(3, self.log_size + 1): | |
| out_channel = self.channels[2 ** i] | |
| self.convs.append( | |
| StyledConv( | |
| in_channel, | |
| out_channel, | |
| 3, | |
| style_dim, | |
| upsample=True, | |
| blur_kernel=blur_kernel, | |
| ) | |
| ) | |
| self.convs.append( | |
| StyledConv( | |
| out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel | |
| ) | |
| ) | |
| self.to_rgbs.append(ToRGB(out_channel, style_dim)) | |
| in_channel = out_channel | |
| self.iwt = InverseHaarTransform(3) | |
| self.n_latent = self.log_size * 2 - 2 | |
| def make_noise(self): | |
| device = self.input.input.device | |
| noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)] | |
| for i in range(3, self.log_size + 1): | |
| for _ in range(2): | |
| noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device)) | |
| return noises | |
| def mean_latent(self, n_latent): | |
| latent_in = torch.randn( | |
| n_latent, self.style_dim, device=self.input.input.device | |
| ) | |
| latent = self.style(latent_in).mean(0, keepdim=True) | |
| return latent | |
| def get_latent(self, input): | |
| return self.style(input) | |
| def forward( | |
| self, | |
| styles, | |
| return_latents=False, | |
| inject_index=None, | |
| truncation=1, | |
| truncation_latent=None, | |
| input_is_latent=False, | |
| noise=None, | |
| randomize_noise=True, | |
| ): | |
| if not input_is_latent: | |
| styles = [self.style(s) for s in styles] | |
| if noise is None: | |
| if randomize_noise: | |
| noise = [None] * self.num_layers | |
| else: | |
| noise = [ | |
| getattr(self.noises, f"noise_{i}") for i in range(self.num_layers) | |
| ] | |
| if truncation < 1: | |
| style_t = [] | |
| for style in styles: | |
| style_t.append( | |
| truncation_latent + truncation * (style - truncation_latent) | |
| ) | |
| styles = style_t | |
| if len(styles) < 2: | |
| inject_index = self.n_latent | |
| if styles[0].ndim < 3: | |
| latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) | |
| else: | |
| latent = styles[0] | |
| else: | |
| if inject_index is None: | |
| inject_index = random.randint(1, self.n_latent - 1) | |
| latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) | |
| latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1) | |
| latent = torch.cat([latent, latent2], 1) | |
| out = self.input(latent) | |
| out = self.conv1(out, latent[:, 0], noise=noise[0]) | |
| skip = self.to_rgb1(out, latent[:, 1]) | |
| i = 1 | |
| for conv1, conv2, noise1, noise2, to_rgb in zip( | |
| self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs | |
| ): | |
| out = conv1(out, latent[:, i], noise=noise1) | |
| out = conv2(out, latent[:, i + 1], noise=noise2) | |
| skip = to_rgb(out, latent[:, i + 2], skip) | |
| i += 2 | |
| image = self.iwt(skip) | |
| if return_latents: | |
| return image, latent | |
| else: | |
| return image, None | |
| class ConvBlock(nn.Module): | |
| def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]): | |
| super().__init__() | |
| self.conv1 = ConvLayer(in_channel, in_channel, 3) | |
| self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True) | |
| def forward(self, input): | |
| out = self.conv1(input) | |
| out = self.conv2(out) | |
| return out | |
| class FromRGB(nn.Module): | |
| def __init__(self, out_channel, downsample=True, blur_kernel=[1, 3, 3, 1]): | |
| super().__init__() | |
| self.downsample = downsample | |
| if downsample: | |
| self.iwt = InverseHaarTransform(3) | |
| self.downsample = Downsample(blur_kernel) | |
| self.dwt = HaarTransform(3) | |
| self.conv = ConvLayer(3 * 4, out_channel, 3) | |
| def forward(self, input, skip=None): | |
| if self.downsample: | |
| input = self.iwt(input) | |
| input = self.downsample(input) | |
| input = self.dwt(input) | |
| out = self.conv(input) | |
| if skip is not None: | |
| out = out + skip | |
| return input, out | |
| class Discriminator(nn.Module): | |
| def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]): | |
| super().__init__() | |
| channels = { | |
| 4: 512, | |
| 8: 512, | |
| 16: 512, | |
| 32: 512, | |
| 64: 256 * channel_multiplier, | |
| 128: 128 * channel_multiplier, | |
| 256: 64 * channel_multiplier, | |
| 512: 32 * channel_multiplier, | |
| 1024: 16 * channel_multiplier, | |
| } | |
| self.dwt = HaarTransform(3) | |
| self.from_rgbs = nn.ModuleList() | |
| self.convs = nn.ModuleList() | |
| log_size = int(math.log(size, 2)) - 1 | |
| in_channel = channels[size] | |
| for i in range(log_size, 2, -1): | |
| out_channel = channels[2 ** (i - 1)] | |
| self.from_rgbs.append(FromRGB(in_channel, downsample=i != log_size)) | |
| self.convs.append(ConvBlock(in_channel, out_channel, blur_kernel)) | |
| in_channel = out_channel | |
| self.from_rgbs.append(FromRGB(channels[4])) | |
| self.stddev_group = 4 | |
| self.stddev_feat = 1 | |
| self.final_conv = ConvLayer(in_channel + 1, channels[4], 3) | |
| self.final_linear = nn.Sequential( | |
| EqualLinear(channels[4] * 4 * 4, channels[4], activation="fused_lrelu"), | |
| EqualLinear(channels[4], 1), | |
| ) | |
| def forward(self, input): | |
| input = self.dwt(input) | |
| out = None | |
| for from_rgb, conv in zip(self.from_rgbs, self.convs): | |
| input, out = from_rgb(input, out) | |
| out = conv(out) | |
| _, out = self.from_rgbs[-1](input, out) | |
| batch, channel, height, width = out.shape | |
| group = min(batch, self.stddev_group) | |
| stddev = out.view( | |
| group, -1, self.stddev_feat, channel // self.stddev_feat, height, width | |
| ) | |
| stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8) | |
| stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2) | |
| stddev = stddev.repeat(group, 1, height, width) | |
| out = torch.cat([out, stddev], 1) | |
| out = self.final_conv(out) | |
| out = out.view(batch, -1) | |
| out = self.final_linear(out) | |
| return out | |