Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import torch | |
from transformers import AlbertTokenizer, AlbertModel | |
from sklearn.metrics.pairwise import cosine_similarity | |
# base is smaller, vs large | |
model_size='base' | |
tokenizer = AlbertTokenizer.from_pretrained('albert-' + model_size + '-v2') | |
model = AlbertModel.from_pretrained('albert-' + model_size + '-v2') | |
def get_embedding(input_text): | |
encoded_input = tokenizer(input_text, return_tensors='pt') | |
input_ids = encoded_input.input_ids | |
input_num_tokens = input_ids.shape[1] | |
print( "Number of input tokens: " + str(input_num_tokens)) | |
print("Length of input: " + str(len(input_text))) | |
list_of_tokens = tokenizer.convert_ids_to_tokens(input_ids.view(-1).tolist()) | |
print( "Tokens : " + ' '.join(list_of_tokens)) | |
with torch.no_grad(): | |
outputs = model(**encoded_input) | |
last_hidden_states = outputs[0] | |
sentence_embedding = torch.mean(last_hidden_states[0], dim=0) | |
#sentence_embedding = output.last_hidden_state[0][0] | |
return sentence_embedding.tolist() | |
st.title('Upload the Address Dataset') | |
st.markdown('Upload an Excel file to view the data in a table.') | |
uploaded_file = st.file_uploader('Choose a file', type='xlsx') | |
if uploaded_file is not None: | |
data_caqh = pd.read_excel(uploaded_file, sheet_name='CAQH', dtype=str) | |
data_ndb = pd.read_excel(uploaded_file, sheet_name='NDB', dtype=str) | |
# Data cleaning CAQH | |
data_caqh['postalcode'] = data_caqh['postalcode'].astype(str).apply(lambda x: x[:5] + '-' + x[5:] if len(x) > 5 and not '-' in x else x) | |
data_caqh['full-addr'] = data_caqh['address1'].astype(str) + ', ' \ | |
+ np.where(data_caqh['address2'].isnull(), '' , data_caqh['address2'].astype(str)) \ | |
+ data_caqh['city'].astype(str) + ', '\ | |
+ data_caqh['state'].astype(str) + ', ' \ | |
+ data_caqh['postalcode'].astype(str) | |
# Data cleaning NDB | |
data_ndb['zip_pls_4_cd'] = data_ndb['zip_pls_4_cd'].astype(str).apply(lambda x: x if (x[-1] != '0' and x[-1] != '1') else '') | |
data_ndb['zip_cd_zip_pls_4_cd'] = data_ndb['zip_cd'].astype(str) +\ | |
np.where( data_ndb['zip_pls_4_cd'] == '', '', '-' \ | |
+ data_ndb['zip_pls_4_cd'].astype(str)) | |
data_ndb['full-addr'] = data_ndb['adr_ln_1_txt'].astype(str).str.strip() + ', ' \ | |
+ data_ndb['city'].astype(str) + ', ' \ | |
+ data_ndb['st_cd'].astype(str) + ', ' + data_ndb['zip_cd_zip_pls_4_cd'] | |
# App | |
data_caqh['embedding'] = data_caqh['full-addr'].apply(get_embedding) | |
data_ndb['embedding'] = data_ndb['full-addr'].apply(get_embedding) | |
data_caqh['matched-addr'] = '' | |
for i, row in data_caqh.iterrows(): | |
max_similarity = 0 | |
matched_row = None | |
for j, ndb_row in data_ndb.iterrows(): | |
sim = cosine_similarity([row['embedding']], [ndb_row['embedding']]) | |
if sim > max_similarity: | |
max_similarity = sim | |
matched_row = ndb_row | |
if max_similarity >= 0.98: | |
data_caqh.at[i, 'matched-addr'] = matched_row['full-addr'] | |
data_caqh.at[i, 'similarity-score'] = max_similarity | |
else: | |
data_caqh.at[i, 'matched-addr'] = 'No Matches' | |
st.dataframe(data_caqh) | |
st.dataframe(data_ndb) | |
# calculate the embedding of each item. | |
#st.dataframe(data_caqh) | |
# Do some matching | |
#data_caqh.loc[data_caqh['full-addr'] == '1000 Vale Terrace, Vista, CA, 92084', 'matched-addr'] = '456 Main St' | |
#time.sleep(10) | |
#st.dataframe(data_caqh) | |