File size: 2,771 Bytes
f51e197
 
c90e96d
4132514
 
 
f51e197
4132514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f51e197
 
 
 
 
b1a0d5b
f51e197
b1a0d5b
 
d38ab04
4132514
 
c90e96d
 
 
 
 
d38ab04
4132514
c90e96d
d38ab04
c90e96d
4132514
c90e96d
 
4132514
c90e96d
d38ab04
4132514
 
 
 
 
 
b1a0d5b
4132514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import streamlit as st
import pandas as pd
import numpy as np
import torch
#from transformers import AlbertTokenizer, AlbertModel
#from sklearn.metrics.pairwise import cosine_similarity

#tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
#model = AlbertModel.from_pretrained("albert-base-v2")

#def get_embedding(input_text):
#    encoded_input = tokenizer(input_text, return_tensors='pt')
#    input_ids = encoded_input.input_ids
#    input_num_tokens = input_ids.shape[1]
#
#    #print( "Number of input tokens: " + str(input_num_tokens))
#    #print("Length of input: " + str(len(input_text)))
#
#    list_of_tokens = tokenizer.convert_ids_to_tokens(input_ids.view(-1).tolist())
#
#    #print( "Tokens : " + ' '.join(list_of_tokens))
#    with torch.no_grad():
#        output = model(**encoded_input)
#
#    embedding = output.last_hidden_state[0][0]
#    return embedding.tolist()

st.title('Upload the Address Dataset')

st.markdown('Upload an Excel file to view the data in a table.')

uploaded_file = st.file_uploader('Choose a file', type='xlsx')


if uploaded_file is not None:
    data_caqh = pd.read_excel(uploaded_file, sheet_name='CAQH')
    data_ndb = pd.read_excel(uploaded_file, sheet_name='NDB')

    # Data cleaning CAQH
    data_caqh['postalcode'] = data_caqh['postalcode'].astype(str).apply(lambda x: x[:5] + '-' + x[5:] if len(x) > 5 and not '-' in x else x)
    data_caqh['full-addr'] = data_caqh['address1'].astype(str) + ', ' \
                             + np.where(data_caqh['address2'].isnull(),  '' , data_caqh['address2'].astype(str))  \
                             + data_caqh['city'].astype(str) + ', '\
                             + data_caqh['state'].astype(str) + ', ' \
                             + data_caqh['postalcode'].astype(str)

    # Data cleaning NDB
    data_ndb['zip_pls_4_cd'] = data_ndb['zip_pls_4_cd'].astype(str).apply(lambda x: x if (x[-1] != '0' and x[-1] != '1') else '')

    data_ndb['zip_cd_zip_pls_4_cd'] = data_ndb['zip_cd'].astype(str) +\
                                      np.where( data_ndb['zip_pls_4_cd'] == '', '', '-' \
                                      + data_ndb['zip_pls_4_cd'].astype(str))

    data_ndb['full-addr'] = data_ndb['adr_ln_1_txt'].astype(str).str.strip() + ', ' \
                            + data_ndb['st_cd'].astype(str) + ', ' + data_ndb['zip_cd_zip_pls_4_cd']

    # Add a matched column
    data_caqh['matched-addr'] = ''

    # App
    #data_caqh['embed'] = data_caqh['full-addr'].apply(get_embedding)

    st.dataframe(data_caqh)
    st.dataframe(data_ndb)

    # Do some matching
    #data_caqh.loc[data_caqh['full-addr'] == '1000 Vale Terrace, Vista, CA, 92084', 'matched-addr'] = '456 Main St'
    #time.sleep(10)
    #st.dataframe(data_caqh)