feishen29 commited on
Commit
beaa943
·
verified ·
1 Parent(s): 9fa8b06

Upload app.py

Browse files
Files changed (1) hide show
  1. ckpt/app.py +399 -0
ckpt/app.py ADDED
@@ -0,0 +1,399 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ from PIL import Image
3
+ import gradio as gr
4
+ import numpy as np
5
+ import cv2
6
+ from modelscope.outputs import OutputKeys
7
+ from modelscope.pipelines import pipeline
8
+ from modelscope.utils.constant import Tasks
9
+ from dressing_sd.pipelines.pipeline_sd import PipIpaControlNet
10
+ from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
11
+
12
+ from torchvision import transforms
13
+ import cv2
14
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
15
+ import diffusers
16
+
17
+ from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
18
+ from adapter.attention_processor import CacheAttnProcessor2_0, RefSAttnProcessor2_0, RefLoraSAttnProcessor2_0, LoRAIPAttnProcessor2_0
19
+ from diffusers import ControlNetModel, UNet2DConditionModel, \
20
+ AutoencoderKL, DDIMScheduler
21
+ from adapter.resampler import Resampler
22
+
23
+ from transformers import (
24
+ CLIPImageProcessor,
25
+ CLIPVisionModelWithProjection,
26
+ CLIPTextModel,
27
+ CLIPTextModelWithProjection,
28
+ )
29
+ from diffusers import DDPMScheduler, AutoencoderKL, UniPCMultistepScheduler
30
+ from typing import List
31
+
32
+ import torch
33
+
34
+ import argparse
35
+ import os
36
+
37
+ from controlnet_aux import OpenposeDetector
38
+ from insightface.app import FaceAnalysis
39
+ from insightface.utils import face_align
40
+
41
+
42
+ # device = 'cuda:2' if torch.cuda.is_available() else 'cpu'
43
+
44
+ parser = argparse.ArgumentParser(description='ReferenceAdapter diffusion')
45
+ parser.add_argument('--if_resampler', type=bool, default=True)
46
+ parser.add_argument('--if_ipa', type=bool, default=True)
47
+ parser.add_argument('--if_control', type=bool, default=True)
48
+
49
+ parser.add_argument('--pretrained_model_name_or_path',
50
+ default="./ckpt/Realistic_Vision_V4.0_noVAE",
51
+ type=str)
52
+ parser.add_argument('--ip_ckpt',
53
+ default="./ckpt/ip-adapter-faceid-plus_sd15.bin",
54
+ type=str)
55
+ parser.add_argument('--pretrained_image_encoder_path',
56
+ default="./ckpt/image_encoder/",
57
+ type=str)
58
+ parser.add_argument('--pretrained_vae_model_path',
59
+ default="./ckpt/sd-vae-ft-mse/",
60
+ type=str)
61
+ parser.add_argument('--model_ckpt',
62
+ default="./ckpt/IMAGDressing-v1_512.pt",
63
+ type=str)
64
+ parser.add_argument('--output_path', type=str, default="./output_ipa_control_resampler")
65
+ # parser.add_argument('--device', type=str, default="cuda:0")
66
+ args = parser.parse_args()
67
+
68
+ # svae path
69
+ output_path = args.output_path
70
+
71
+ if not os.path.exists(output_path):
72
+ os.makedirs(output_path)
73
+
74
+ device = "cuda" if torch.cuda.is_available() else "cpu"
75
+ args.device = device
76
+
77
+ base_path = 'feishen29/IMAGDressing-v1'
78
+
79
+ generator = torch.Generator(device=args.device).manual_seed(42)
80
+ vae = AutoencoderKL.from_pretrained(args.pretrained_vae_model_path).to(dtype=torch.float16, device=args.device)
81
+ tokenizer = CLIPTokenizer.from_pretrained("./ckpt/tokenizer")
82
+ text_encoder = CLIPTextModel.from_pretrained("./ckpt/text_encoder").to(
83
+ dtype=torch.float16, device=args.device)
84
+ image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.pretrained_image_encoder_path).to(
85
+ dtype=torch.float16, device=args.device)
86
+ unet = UNet2DConditionModel.from_pretrained("./ckpt/unet").to(
87
+ dtype=torch.float16,device=args.device)
88
+
89
+ image_face_fusion = pipeline('face_fusion_torch', model='damo/cv_unet_face_fusion_torch', model_revision='v1.0.3')
90
+
91
+ #face_model
92
+ app = FaceAnalysis(providers=[('CUDAExecutionProvider', {"device_id": args.device})]) ##使用GPU:0, 默认使用buffalo_l就可以了
93
+ app.prepare(ctx_id=0, det_size=(640, 640))
94
+
95
+ # def ref proj weight
96
+ image_proj = Resampler(
97
+ dim=unet.config.cross_attention_dim,
98
+ depth=4,
99
+ dim_head=64,
100
+ heads=12,
101
+ num_queries=16,
102
+ embedding_dim=image_encoder.config.hidden_size,
103
+ output_dim=unet.config.cross_attention_dim,
104
+ ff_mult=4
105
+ )
106
+ image_proj = image_proj.to(dtype=torch.float16, device=args.device)
107
+
108
+ # set attention processor
109
+ attn_procs = {}
110
+ st = unet.state_dict()
111
+ for name in unet.attn_processors.keys():
112
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
113
+ if name.startswith("mid_block"):
114
+ hidden_size = unet.config.block_out_channels[-1]
115
+ elif name.startswith("up_blocks"):
116
+ block_id = int(name[len("up_blocks.")])
117
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
118
+ elif name.startswith("down_blocks"):
119
+ block_id = int(name[len("down_blocks.")])
120
+ hidden_size = unet.config.block_out_channels[block_id]
121
+ # lora_rank = hidden_size // 2 # args.lora_rank
122
+ if cross_attention_dim is None:
123
+ attn_procs[name] = RefLoraSAttnProcessor2_0(name, hidden_size)
124
+ else:
125
+ attn_procs[name] = LoRAIPAttnProcessor2_0(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
126
+
127
+ unet.set_attn_processor(attn_procs)
128
+ adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
129
+ adapter_modules = adapter_modules.to(dtype=torch.float16, device=args.device)
130
+ del st
131
+
132
+ ref_unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet").to(
133
+ dtype=torch.float16,
134
+ device=args.device)
135
+ ref_unet.set_attn_processor(
136
+ {name: CacheAttnProcessor2_0() for name in ref_unet.attn_processors.keys()}) # set cache
137
+
138
+ # weights load
139
+ model_sd = torch.load(args.model_ckpt, map_location="cpu")["module"]
140
+
141
+ ref_unet_dict = {}
142
+ unet_dict = {}
143
+ image_proj_dict = {}
144
+ adapter_modules_dict = {}
145
+ for k in model_sd.keys():
146
+ if k.startswith("ref_unet"):
147
+ ref_unet_dict[k.replace("ref_unet.", "")] = model_sd[k]
148
+ elif k.startswith("unet"):
149
+ unet_dict[k.replace("unet.", "")] = model_sd[k]
150
+ elif k.startswith("proj"):
151
+ image_proj_dict[k.replace("proj.", "")] = model_sd[k]
152
+ elif k.startswith("adapter_modules") and 'ref' in k:
153
+ adapter_modules_dict[k.replace("adapter_modules.", "")] = model_sd[k]
154
+ else:
155
+ print(k)
156
+
157
+ ref_unet.load_state_dict(ref_unet_dict)
158
+ image_proj.load_state_dict(image_proj_dict)
159
+ adapter_modules.load_state_dict(adapter_modules_dict, strict=False)
160
+
161
+ noise_scheduler = DDIMScheduler(
162
+ num_train_timesteps=1000,
163
+ beta_start=0.00085,
164
+ beta_end=0.012,
165
+ beta_schedule="scaled_linear",
166
+ clip_sample=False,
167
+ set_alpha_to_one=False,
168
+ steps_offset=1,
169
+ )
170
+ # noise_scheduler = UniPCMultistepScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
171
+
172
+ control_net_openpose = ControlNetModel.from_pretrained(
173
+ "/home/sf/control_v11p_sd15_openpose",
174
+ torch_dtype=torch.float16).to(device=args.device)
175
+ # pipe = PipIpaControlNet(unet=unet, reference_unet=ref_unet, vae=vae, tokenizer=tokenizer,
176
+ # text_encoder=text_encoder, image_encoder=image_encoder,
177
+ # ip_ckpt=args.ip_ckpt,
178
+ # ImgProj=image_proj, controlnet=control_net_openpose,
179
+ # scheduler=noise_scheduler,
180
+ # safety_checker=StableDiffusionSafetyChecker,
181
+ # feature_extractor=CLIPImageProcessor)
182
+
183
+ img_transform = transforms.Compose([
184
+ transforms.Resize([640, 512], interpolation=transforms.InterpolationMode.BILINEAR),
185
+ transforms.ToTensor(),
186
+ transforms.Normalize([0.5], [0.5]),
187
+ ])
188
+
189
+ openpose_model = OpenposeDetector.from_pretrained("/home/sf/ControlNet").to(args.device)
190
+
191
+ def resize_img(input_image, max_side=640, min_side=512, size=None,
192
+ pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
193
+ w, h = input_image.size
194
+ ratio = min_side / min(h, w)
195
+ w, h = round(ratio*w), round(ratio*h)
196
+ ratio = max_side / max(h, w)
197
+ input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
198
+ w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
199
+ h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
200
+ input_image = input_image.resize([w_resize_new, h_resize_new], mode)
201
+ return input_image
202
+
203
+ def tryon_process(garm_img, face_img, pose_img, prompt, cloth_guidance_scale, caption_guidance_scale,
204
+ face_guidance_scale,self_guidance_scale, cross_guidance_scale,if_ipa, if_post, if_control, denoise_steps, seed=42):
205
+ # prompt = prompt + ', confident smile expression, fashion, best quality, amazing quality, very aesthetic'
206
+ if prompt is None:
207
+ prompt = "a photography of a model"
208
+ prompt = prompt + ', best quality, high quality'
209
+ print(prompt, cloth_guidance_scale, if_ipa, if_control, denoise_steps, seed)
210
+ clip_image_processor = CLIPImageProcessor()
211
+ # clothes_img = garm_img.convert("RGB")
212
+ if not garm_img:
213
+ raise gr.Error("请上传衣服 / Please upload garment")
214
+ clothes_img = resize_img(garm_img)
215
+ vae_clothes = img_transform(clothes_img).unsqueeze(0)
216
+ # print(vae_clothes.shape)
217
+ ref_clip_image = clip_image_processor(images=clothes_img, return_tensors="pt").pixel_values
218
+
219
+ if if_ipa:
220
+ # image = cv2.imread(face_img)
221
+ faces = app.get(face_img)
222
+
223
+ if not faces:
224
+ raise gr.Error("人脸检测异常,尝试其他肖像 / Abnormal face detection. Try another portrait")
225
+ faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
226
+ face_image = face_align.norm_crop(face_img, landmark=faces[0].kps, image_size=224) # you can also segment the face
227
+
228
+ # face_img = face_image[:, :, ::-1]
229
+ # face_img = Image.fromarray(face_image.astype('uint8'))
230
+ # face_img.save('face.png')
231
+
232
+ face_clip_image = clip_image_processor(images=face_image, return_tensors="pt").pixel_values
233
+ else:
234
+ faceid_embeds = None
235
+ face_clip_image = None
236
+
237
+ if if_control:
238
+ pose_img = openpose_model(pose_img.convert("RGB"))
239
+ # pose_img.save('pose.png')
240
+ pose_image = diffusers.utils.load_image(pose_img)
241
+ else:
242
+ pose_image = None
243
+ # print(if_ipa, if_control)
244
+ # pipe, generator = prepare_pipeline(args, if_ipa, if_control, unet, ref_unet, vae, tokenizer, text_encoder,
245
+ # image_encoder, image_proj, control_net_openpose)
246
+
247
+ noise_scheduler = DDIMScheduler(
248
+ num_train_timesteps=1000,
249
+ beta_start=0.00085,
250
+ beta_end=0.012,
251
+ beta_schedule="scaled_linear",
252
+ clip_sample=False,
253
+ set_alpha_to_one=False,
254
+ steps_offset=1,
255
+ )
256
+ # noise_scheduler = UniPCMultistepScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
257
+ pipe = PipIpaControlNet(unet=unet, reference_unet=ref_unet, vae=vae, tokenizer=tokenizer,
258
+ text_encoder=text_encoder, image_encoder=image_encoder,
259
+ ip_ckpt=args.ip_ckpt,
260
+ ImgProj=image_proj, controlnet=control_net_openpose,
261
+ scheduler=noise_scheduler,
262
+ safety_checker=StableDiffusionSafetyChecker,
263
+ feature_extractor=CLIPImageProcessor)
264
+ output = pipe(
265
+ ref_image=vae_clothes,
266
+ prompt=prompt,
267
+ ref_clip_image=ref_clip_image,
268
+ pose_image=pose_image,
269
+ face_clip_image=face_clip_image,
270
+ faceid_embeds=faceid_embeds,
271
+ null_prompt='',
272
+ negative_prompt='bare, naked, nude, undressed, monochrome, lowres, bad anatomy, worst quality, low quality',
273
+ width=512,
274
+ height=640,
275
+ num_images_per_prompt=1,
276
+ guidance_scale=caption_guidance_scale,
277
+ image_scale=cloth_guidance_scale,
278
+ ipa_scale=face_guidance_scale,
279
+ s_lora_scale= self_guidance_scale,
280
+ c_lora_scale= cross_guidance_scale,
281
+ generator=generator,
282
+ num_inference_steps=denoise_steps,
283
+ ).images
284
+
285
+ if if_post and if_ipa:
286
+ # 将 PIL 图像转换为 NumPy 数组
287
+ output_array = np.array(output[0])
288
+ # 将 RGB 图像转换为 BGR 图像
289
+ bgr_array = cv2.cvtColor(output_array, cv2.COLOR_RGB2BGR)
290
+ # 将 NumPy 数组转换为 PIL 图像
291
+ bgr_image = Image.fromarray(bgr_array)
292
+ result = image_face_fusion(dict(template=bgr_image, user=Image.fromarray(face_image.astype('uint8'))))
293
+ return result[OutputKeys.OUTPUT_IMG]
294
+ return output[0]
295
+
296
+ example_path = os.path.dirname(__file__)
297
+
298
+ garm_list = os.listdir(os.path.join(example_path, "cloth", 'cloth'))
299
+ garm_list_path = [os.path.join(example_path, "cloth", 'cloth', garm) for garm in garm_list]
300
+
301
+ face_list = os.listdir(os.path.join(example_path, "face", 'face'))
302
+ face_list_path = [os.path.join(example_path, "face", 'face', face) for face in face_list]
303
+
304
+ pose_list = os.listdir(os.path.join(example_path, "pose", 'pose'))
305
+ pose_list_path = [os.path.join(example_path, "pose", 'pose', pose) for pose in pose_list]
306
+
307
+
308
+
309
+ ##default human
310
+
311
+
312
+ image_blocks = gr.Blocks().queue()
313
+ with image_blocks as demo:
314
+ gr.Markdown("## IMAGDressing-v1: Customizable Virtual Dressing 👕👔👚")
315
+ gr.Markdown(
316
+ "Customize your virtual look with ease—adjust your appearance, pose, and garment as you like<br>."
317
+ "If you enjoy this project, please check out the [source codes](https://github.com/muzishen/IMAGDressing) and [model](https://huggingface.co/feishen29/IMAGDressing). Do not hesitate to give us a star. Thank you!<br>"
318
+ "Your support fuels the development of new versions."
319
+ )
320
+ with gr.Row():
321
+ with gr.Column():
322
+ garm_img = gr.Image(label="Garment", sources='upload', type="pil")
323
+ example = gr.Examples(
324
+ inputs=garm_img,
325
+ examples_per_page=8,
326
+ examples=garm_list_path)
327
+
328
+ with gr.Column():
329
+ imgs = gr.Image(label="Face", sources='upload', type="numpy")
330
+
331
+ with gr.Row():
332
+ is_checked_face = gr.Checkbox(label="Yes", info="Use face ", value=False)
333
+ example = gr.Examples(
334
+ inputs=imgs,
335
+ examples_per_page=10,
336
+ examples=face_list_path
337
+ )
338
+ with gr.Row():
339
+ is_checked_postprocess = gr.Checkbox(label="Yes", info="Use postprocess ", value=False)
340
+
341
+ with gr.Column():
342
+ pose_img = gr.Image(label="Pose", sources='upload', type="pil")
343
+ with gr.Row():
344
+ is_checked_pose = gr.Checkbox(label="Yes", info="Use pose ", value=False)
345
+
346
+ example = gr.Examples(
347
+ inputs=pose_img,
348
+ examples_per_page=8,
349
+ examples=pose_list_path)
350
+
351
+ # with gr.Column():
352
+ # # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
353
+ # masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False)
354
+ with gr.Column():
355
+ # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
356
+ image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
357
+ # Add usage tips below the output image
358
+ gr.Markdown("""
359
+ ### Usage Tips
360
+ - **Upload Images**: Upload your desired garment, face, and pose images in the respective sections.
361
+ - **Select Options**: Use the checkboxes to include face and pose in the generated output.
362
+ - **View Output**: The resulting image will be displayed in the Output section.
363
+ - **Examples**: Click on example images to quickly load and test different configurations.
364
+ - **Advanced Settings**: Click on **Advanced Settings** to edit captions and adjust hyperparameters.
365
+ - **Feedback**: If you have any issues or suggestions, please let us know through the [GitHub repository](https://github.com/muzishen/IMAGDressing).
366
+ """)
367
+ with gr.Column():
368
+ try_button = gr.Button(value="Dressing")
369
+ with gr.Accordion(label="Advanced Settings", open=False):
370
+ with gr.Row(elem_id="prompt-container"):
371
+ with gr.Row():
372
+ prompt = gr.Textbox(placeholder="Description of prompt ex) A beautiful woman dress Short Sleeve Round Neck T-shirts",value='A beautiful woman',
373
+ show_label=False, elem_id="prompt")
374
+ # with gr.Row():
375
+ # neg_prompt = gr.Textbox(placeholder="Description of neg prompt ex) Short Sleeve Round Neck T-shirts",
376
+ # show_label=False, elem_id="neg_prompt")
377
+ with gr.Row():
378
+ cloth_guidance_scale = gr.Slider(label="Cloth guidance Scale", minimum=0.0, maximum=1.0, value=0.9, step=0.1,
379
+ visible=True)
380
+ with gr.Row():
381
+ caption_guidance_scale = gr.Slider(label="Prompt Guidance Scale", minimum=1, maximum=10., value=7.0, step=0.1,
382
+ visible=True)
383
+ with gr.Row():
384
+ face_guidance_scale = gr.Slider(label="Face Guidance Scale", minimum=0.0, maximum=2.0, value=0.9, step=0.1,
385
+ visible=True)
386
+ with gr.Row():
387
+ self_guidance_scale = gr.Slider(label="Self-Attention Lora Scale", minimum=0.0, maximum=0.5, value=0.2, step=0.1,
388
+ visible=True)
389
+ with gr.Row():
390
+ cross_guidance_scale = gr.Slider(label="Cross-Attention Lora Scale", minimum=0.0, maximum=0.5, value=0.2, step=0.1,
391
+ visible=True)
392
+ with gr.Row():
393
+ denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=50, value=30, step=1)
394
+ seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=20240508)
395
+
396
+ try_button.click(fn=tryon_process, inputs=[garm_img, imgs, pose_img, prompt, cloth_guidance_scale, caption_guidance_scale, face_guidance_scale,self_guidance_scale, cross_guidance_scale, is_checked_face, is_checked_postprocess, is_checked_pose, denoise_steps, seed],
397
+ outputs=[image_out], api_name='tryon')
398
+
399
+ image_blocks.launch(server_port=20021) # 指定固定端口