File size: 10,516 Bytes
29d49a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# Original from: https://github.com/xavysp/TEED
# TEED: is a Tiny but Efficient Edge Detection, it comes from the LDC-B3
# with a Slightly modification
# LDC parameters:
# 155665
# TED > 58K

import torch
import torch.nn as nn
import torch.nn.functional as F

from .Fsmish import smish as Fsmish
from .Xsmish import Smish


def weight_init(m):
    if isinstance(m, (nn.Conv2d,)):
        torch.nn.init.xavier_normal_(m.weight, gain=1.0)

        if m.bias is not None:
            torch.nn.init.zeros_(m.bias)

    # for fusion layer
    if isinstance(m, (nn.ConvTranspose2d,)):
        torch.nn.init.xavier_normal_(m.weight, gain=1.0)
        if m.bias is not None:
            torch.nn.init.zeros_(m.bias)


class CoFusion(nn.Module):
    # from LDC

    def __init__(self, in_ch, out_ch):
        super(CoFusion, self).__init__()
        self.conv1 = nn.Conv2d(
            in_ch, 32, kernel_size=3, stride=1, padding=1
        )  # before 64
        self.conv3 = nn.Conv2d(
            32, out_ch, kernel_size=3, stride=1, padding=1
        )  # before 64  instead of 32
        self.relu = nn.ReLU()
        self.norm_layer1 = nn.GroupNorm(4, 32)  # before 64

    def forward(self, x):
        # fusecat = torch.cat(x, dim=1)
        attn = self.relu(self.norm_layer1(self.conv1(x)))
        attn = F.softmax(self.conv3(attn), dim=1)
        return ((x * attn).sum(1)).unsqueeze(1)


class CoFusion2(nn.Module):
    # TEDv14-3
    def __init__(self, in_ch, out_ch):
        super(CoFusion2, self).__init__()
        self.conv1 = nn.Conv2d(
            in_ch, 32, kernel_size=3, stride=1, padding=1
        )  # before 64
        # self.conv2 = nn.Conv2d(32, 32, kernel_size=3,
        #                        stride=1, padding=1)# before 64
        self.conv3 = nn.Conv2d(
            32, out_ch, kernel_size=3, stride=1, padding=1
        )  # before 64  instead of 32
        self.smish = Smish()  # nn.ReLU(inplace=True)

    def forward(self, x):
        # fusecat = torch.cat(x, dim=1)
        attn = self.conv1(self.smish(x))
        attn = self.conv3(self.smish(attn))  # before , )dim=1)

        # return ((fusecat * attn).sum(1)).unsqueeze(1)
        return ((x * attn).sum(1)).unsqueeze(1)


class DoubleFusion(nn.Module):
    # TED fusion before the final edge map prediction
    def __init__(self, in_ch, out_ch):
        super(DoubleFusion, self).__init__()
        self.DWconv1 = nn.Conv2d(
            in_ch, in_ch * 8, kernel_size=3, stride=1, padding=1, groups=in_ch
        )  # before 64
        self.PSconv1 = nn.PixelShuffle(1)

        self.DWconv2 = nn.Conv2d(
            24, 24 * 1, kernel_size=3, stride=1, padding=1, groups=24
        )  # before 64  instead of 32

        self.AF = Smish()  # XAF() #nn.Tanh()# XAF() #   # Smish()#

    def forward(self, x):
        # fusecat = torch.cat(x, dim=1)
        attn = self.PSconv1(
            self.DWconv1(self.AF(x))
        )  # #TEED best res TEDv14 [8, 32, 352, 352]

        attn2 = self.PSconv1(
            self.DWconv2(self.AF(attn))
        )  # #TEED best res TEDv14[8, 3, 352, 352]

        return Fsmish(((attn2 + attn).sum(1)).unsqueeze(1))  # TED best res


class _DenseLayer(nn.Sequential):
    def __init__(self, input_features, out_features):
        super(_DenseLayer, self).__init__()

        (
            self.add_module(
                "conv1",
                nn.Conv2d(
                    input_features,
                    out_features,
                    kernel_size=3,
                    stride=1,
                    padding=2,
                    bias=True,
                ),
            ),
        )
        (self.add_module("smish1", Smish()),)
        self.add_module(
            "conv2",
            nn.Conv2d(out_features, out_features, kernel_size=3, stride=1, bias=True),
        )

    def forward(self, x):
        x1, x2 = x

        new_features = super(_DenseLayer, self).forward(Fsmish(x1))  # F.relu()

        return 0.5 * (new_features + x2), x2


class _DenseBlock(nn.Sequential):
    def __init__(self, num_layers, input_features, out_features):
        super(_DenseBlock, self).__init__()
        for i in range(num_layers):
            layer = _DenseLayer(input_features, out_features)
            self.add_module("denselayer%d" % (i + 1), layer)
            input_features = out_features


class UpConvBlock(nn.Module):
    def __init__(self, in_features, up_scale):
        super(UpConvBlock, self).__init__()
        self.up_factor = 2
        self.constant_features = 16

        layers = self.make_deconv_layers(in_features, up_scale)
        assert layers is not None, layers
        self.features = nn.Sequential(*layers)

    def make_deconv_layers(self, in_features, up_scale):
        layers = []
        all_pads = [0, 0, 1, 3, 7]
        for i in range(up_scale):
            kernel_size = 2**up_scale
            pad = all_pads[up_scale]  # kernel_size-1
            out_features = self.compute_out_features(i, up_scale)
            layers.append(nn.Conv2d(in_features, out_features, 1))
            layers.append(Smish())
            layers.append(
                nn.ConvTranspose2d(
                    out_features, out_features, kernel_size, stride=2, padding=pad
                )
            )
            in_features = out_features
        return layers

    def compute_out_features(self, idx, up_scale):
        return 1 if idx == up_scale - 1 else self.constant_features

    def forward(self, x):
        return self.features(x)


class SingleConvBlock(nn.Module):
    def __init__(self, in_features, out_features, stride, use_ac=False):
        super(SingleConvBlock, self).__init__()
        # self.use_bn = use_bs
        self.use_ac = use_ac
        self.conv = nn.Conv2d(in_features, out_features, 1, stride=stride, bias=True)
        if self.use_ac:
            self.smish = Smish()

    def forward(self, x):
        x = self.conv(x)
        if self.use_ac:
            return self.smish(x)
        else:
            return x


class DoubleConvBlock(nn.Module):
    def __init__(
        self, in_features, mid_features, out_features=None, stride=1, use_act=True
    ):
        super(DoubleConvBlock, self).__init__()

        self.use_act = use_act
        if out_features is None:
            out_features = mid_features
        self.conv1 = nn.Conv2d(in_features, mid_features, 3, padding=1, stride=stride)
        self.conv2 = nn.Conv2d(mid_features, out_features, 3, padding=1)
        self.smish = Smish()  # nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv1(x)
        x = self.smish(x)
        x = self.conv2(x)
        if self.use_act:
            x = self.smish(x)
        return x


class TED(nn.Module):
    """Definition of  Tiny and Efficient Edge Detector
    model
    """

    def __init__(self):
        super(TED, self).__init__()
        self.block_1 = DoubleConvBlock(
            3,
            16,
            16,
            stride=2,
        )
        self.block_2 = DoubleConvBlock(16, 32, use_act=False)
        self.dblock_3 = _DenseBlock(1, 32, 48)  # [32,48,100,100] before (2, 32, 64)

        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        # skip1 connection, see fig. 2
        self.side_1 = SingleConvBlock(16, 32, 2)

        # skip2 connection, see fig. 2
        self.pre_dense_3 = SingleConvBlock(32, 48, 1)  # before (32, 64, 1)

        # USNet
        self.up_block_1 = UpConvBlock(16, 1)
        self.up_block_2 = UpConvBlock(32, 1)
        self.up_block_3 = UpConvBlock(48, 2)  # (32, 64, 1)

        self.block_cat = DoubleFusion(3, 3)  # TEED: DoubleFusion

        self.apply(weight_init)

    def slice(self, tensor, slice_shape):
        t_shape = tensor.shape
        img_h, img_w = slice_shape
        if img_w != t_shape[-1] or img_h != t_shape[2]:
            new_tensor = F.interpolate(
                tensor, size=(img_h, img_w), mode="bicubic", align_corners=False
            )

        else:
            new_tensor = tensor
        # tensor[..., :height, :width]
        return new_tensor

    def resize_input(self, tensor):
        t_shape = tensor.shape
        if t_shape[2] % 8 != 0 or t_shape[3] % 8 != 0:
            img_w = ((t_shape[3] // 8) + 1) * 8
            img_h = ((t_shape[2] // 8) + 1) * 8
            new_tensor = F.interpolate(
                tensor, size=(img_h, img_w), mode="bicubic", align_corners=False
            )
        else:
            new_tensor = tensor
        return new_tensor

    def crop_bdcn(data1, h, w, crop_h, crop_w):
        # Based on BDCN Implementation @ https://github.com/pkuCactus/BDCN
        _, _, h1, w1 = data1.size()
        assert h <= h1 and w <= w1
        data = data1[:, :, crop_h : crop_h + h, crop_w : crop_w + w]
        return data

    def forward(self, x, single_test=False):
        assert x.ndim == 4, x.shape
        # supose the image size is 352x352

        # Block 1
        block_1 = self.block_1(x)  # [8,16,176,176]
        block_1_side = self.side_1(block_1)  # 16 [8,32,88,88]

        # Block 2
        block_2 = self.block_2(block_1)  # 32 # [8,32,176,176]
        block_2_down = self.maxpool(block_2)  # [8,32,88,88]
        block_2_add = block_2_down + block_1_side  # [8,32,88,88]

        # Block 3
        block_3_pre_dense = self.pre_dense_3(
            block_2_down
        )  # [8,64,88,88] block 3 L connection
        block_3, _ = self.dblock_3([block_2_add, block_3_pre_dense])  # [8,64,88,88]

        # upsampling blocks
        out_1 = self.up_block_1(block_1)
        out_2 = self.up_block_2(block_2)
        out_3 = self.up_block_3(block_3)

        results = [out_1, out_2, out_3]

        # concatenate multiscale outputs
        block_cat = torch.cat(results, dim=1)  # Bx6xHxW
        block_cat = self.block_cat(block_cat)  # Bx1xHxW DoubleFusion

        results.append(block_cat)
        return results


if __name__ == "__main__":
    batch_size = 8
    img_height = 352
    img_width = 352

    # device = "cuda" if torch.cuda.is_available() else "cpu"
    device = "cpu"
    input = torch.rand(batch_size, 3, img_height, img_width).to(device)
    # target = torch.rand(batch_size, 1, img_height, img_width).to(device)
    print(f"input shape: {input.shape}")
    model = TED().to(device)
    output = model(input)
    print(f"output shapes: {[t.shape for t in output]}")

    # for i in range(20000):
    #     print(i)
    #     output = model(input)
    #     loss = nn.MSELoss()(output[-1], target)
    #     loss.backward()