Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,516 Bytes
29d49a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
# Original from: https://github.com/xavysp/TEED
# TEED: is a Tiny but Efficient Edge Detection, it comes from the LDC-B3
# with a Slightly modification
# LDC parameters:
# 155665
# TED > 58K
import torch
import torch.nn as nn
import torch.nn.functional as F
from .Fsmish import smish as Fsmish
from .Xsmish import Smish
def weight_init(m):
if isinstance(m, (nn.Conv2d,)):
torch.nn.init.xavier_normal_(m.weight, gain=1.0)
if m.bias is not None:
torch.nn.init.zeros_(m.bias)
# for fusion layer
if isinstance(m, (nn.ConvTranspose2d,)):
torch.nn.init.xavier_normal_(m.weight, gain=1.0)
if m.bias is not None:
torch.nn.init.zeros_(m.bias)
class CoFusion(nn.Module):
# from LDC
def __init__(self, in_ch, out_ch):
super(CoFusion, self).__init__()
self.conv1 = nn.Conv2d(
in_ch, 32, kernel_size=3, stride=1, padding=1
) # before 64
self.conv3 = nn.Conv2d(
32, out_ch, kernel_size=3, stride=1, padding=1
) # before 64 instead of 32
self.relu = nn.ReLU()
self.norm_layer1 = nn.GroupNorm(4, 32) # before 64
def forward(self, x):
# fusecat = torch.cat(x, dim=1)
attn = self.relu(self.norm_layer1(self.conv1(x)))
attn = F.softmax(self.conv3(attn), dim=1)
return ((x * attn).sum(1)).unsqueeze(1)
class CoFusion2(nn.Module):
# TEDv14-3
def __init__(self, in_ch, out_ch):
super(CoFusion2, self).__init__()
self.conv1 = nn.Conv2d(
in_ch, 32, kernel_size=3, stride=1, padding=1
) # before 64
# self.conv2 = nn.Conv2d(32, 32, kernel_size=3,
# stride=1, padding=1)# before 64
self.conv3 = nn.Conv2d(
32, out_ch, kernel_size=3, stride=1, padding=1
) # before 64 instead of 32
self.smish = Smish() # nn.ReLU(inplace=True)
def forward(self, x):
# fusecat = torch.cat(x, dim=1)
attn = self.conv1(self.smish(x))
attn = self.conv3(self.smish(attn)) # before , )dim=1)
# return ((fusecat * attn).sum(1)).unsqueeze(1)
return ((x * attn).sum(1)).unsqueeze(1)
class DoubleFusion(nn.Module):
# TED fusion before the final edge map prediction
def __init__(self, in_ch, out_ch):
super(DoubleFusion, self).__init__()
self.DWconv1 = nn.Conv2d(
in_ch, in_ch * 8, kernel_size=3, stride=1, padding=1, groups=in_ch
) # before 64
self.PSconv1 = nn.PixelShuffle(1)
self.DWconv2 = nn.Conv2d(
24, 24 * 1, kernel_size=3, stride=1, padding=1, groups=24
) # before 64 instead of 32
self.AF = Smish() # XAF() #nn.Tanh()# XAF() # # Smish()#
def forward(self, x):
# fusecat = torch.cat(x, dim=1)
attn = self.PSconv1(
self.DWconv1(self.AF(x))
) # #TEED best res TEDv14 [8, 32, 352, 352]
attn2 = self.PSconv1(
self.DWconv2(self.AF(attn))
) # #TEED best res TEDv14[8, 3, 352, 352]
return Fsmish(((attn2 + attn).sum(1)).unsqueeze(1)) # TED best res
class _DenseLayer(nn.Sequential):
def __init__(self, input_features, out_features):
super(_DenseLayer, self).__init__()
(
self.add_module(
"conv1",
nn.Conv2d(
input_features,
out_features,
kernel_size=3,
stride=1,
padding=2,
bias=True,
),
),
)
(self.add_module("smish1", Smish()),)
self.add_module(
"conv2",
nn.Conv2d(out_features, out_features, kernel_size=3, stride=1, bias=True),
)
def forward(self, x):
x1, x2 = x
new_features = super(_DenseLayer, self).forward(Fsmish(x1)) # F.relu()
return 0.5 * (new_features + x2), x2
class _DenseBlock(nn.Sequential):
def __init__(self, num_layers, input_features, out_features):
super(_DenseBlock, self).__init__()
for i in range(num_layers):
layer = _DenseLayer(input_features, out_features)
self.add_module("denselayer%d" % (i + 1), layer)
input_features = out_features
class UpConvBlock(nn.Module):
def __init__(self, in_features, up_scale):
super(UpConvBlock, self).__init__()
self.up_factor = 2
self.constant_features = 16
layers = self.make_deconv_layers(in_features, up_scale)
assert layers is not None, layers
self.features = nn.Sequential(*layers)
def make_deconv_layers(self, in_features, up_scale):
layers = []
all_pads = [0, 0, 1, 3, 7]
for i in range(up_scale):
kernel_size = 2**up_scale
pad = all_pads[up_scale] # kernel_size-1
out_features = self.compute_out_features(i, up_scale)
layers.append(nn.Conv2d(in_features, out_features, 1))
layers.append(Smish())
layers.append(
nn.ConvTranspose2d(
out_features, out_features, kernel_size, stride=2, padding=pad
)
)
in_features = out_features
return layers
def compute_out_features(self, idx, up_scale):
return 1 if idx == up_scale - 1 else self.constant_features
def forward(self, x):
return self.features(x)
class SingleConvBlock(nn.Module):
def __init__(self, in_features, out_features, stride, use_ac=False):
super(SingleConvBlock, self).__init__()
# self.use_bn = use_bs
self.use_ac = use_ac
self.conv = nn.Conv2d(in_features, out_features, 1, stride=stride, bias=True)
if self.use_ac:
self.smish = Smish()
def forward(self, x):
x = self.conv(x)
if self.use_ac:
return self.smish(x)
else:
return x
class DoubleConvBlock(nn.Module):
def __init__(
self, in_features, mid_features, out_features=None, stride=1, use_act=True
):
super(DoubleConvBlock, self).__init__()
self.use_act = use_act
if out_features is None:
out_features = mid_features
self.conv1 = nn.Conv2d(in_features, mid_features, 3, padding=1, stride=stride)
self.conv2 = nn.Conv2d(mid_features, out_features, 3, padding=1)
self.smish = Smish() # nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv1(x)
x = self.smish(x)
x = self.conv2(x)
if self.use_act:
x = self.smish(x)
return x
class TED(nn.Module):
"""Definition of Tiny and Efficient Edge Detector
model
"""
def __init__(self):
super(TED, self).__init__()
self.block_1 = DoubleConvBlock(
3,
16,
16,
stride=2,
)
self.block_2 = DoubleConvBlock(16, 32, use_act=False)
self.dblock_3 = _DenseBlock(1, 32, 48) # [32,48,100,100] before (2, 32, 64)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# skip1 connection, see fig. 2
self.side_1 = SingleConvBlock(16, 32, 2)
# skip2 connection, see fig. 2
self.pre_dense_3 = SingleConvBlock(32, 48, 1) # before (32, 64, 1)
# USNet
self.up_block_1 = UpConvBlock(16, 1)
self.up_block_2 = UpConvBlock(32, 1)
self.up_block_3 = UpConvBlock(48, 2) # (32, 64, 1)
self.block_cat = DoubleFusion(3, 3) # TEED: DoubleFusion
self.apply(weight_init)
def slice(self, tensor, slice_shape):
t_shape = tensor.shape
img_h, img_w = slice_shape
if img_w != t_shape[-1] or img_h != t_shape[2]:
new_tensor = F.interpolate(
tensor, size=(img_h, img_w), mode="bicubic", align_corners=False
)
else:
new_tensor = tensor
# tensor[..., :height, :width]
return new_tensor
def resize_input(self, tensor):
t_shape = tensor.shape
if t_shape[2] % 8 != 0 or t_shape[3] % 8 != 0:
img_w = ((t_shape[3] // 8) + 1) * 8
img_h = ((t_shape[2] // 8) + 1) * 8
new_tensor = F.interpolate(
tensor, size=(img_h, img_w), mode="bicubic", align_corners=False
)
else:
new_tensor = tensor
return new_tensor
def crop_bdcn(data1, h, w, crop_h, crop_w):
# Based on BDCN Implementation @ https://github.com/pkuCactus/BDCN
_, _, h1, w1 = data1.size()
assert h <= h1 and w <= w1
data = data1[:, :, crop_h : crop_h + h, crop_w : crop_w + w]
return data
def forward(self, x, single_test=False):
assert x.ndim == 4, x.shape
# supose the image size is 352x352
# Block 1
block_1 = self.block_1(x) # [8,16,176,176]
block_1_side = self.side_1(block_1) # 16 [8,32,88,88]
# Block 2
block_2 = self.block_2(block_1) # 32 # [8,32,176,176]
block_2_down = self.maxpool(block_2) # [8,32,88,88]
block_2_add = block_2_down + block_1_side # [8,32,88,88]
# Block 3
block_3_pre_dense = self.pre_dense_3(
block_2_down
) # [8,64,88,88] block 3 L connection
block_3, _ = self.dblock_3([block_2_add, block_3_pre_dense]) # [8,64,88,88]
# upsampling blocks
out_1 = self.up_block_1(block_1)
out_2 = self.up_block_2(block_2)
out_3 = self.up_block_3(block_3)
results = [out_1, out_2, out_3]
# concatenate multiscale outputs
block_cat = torch.cat(results, dim=1) # Bx6xHxW
block_cat = self.block_cat(block_cat) # Bx1xHxW DoubleFusion
results.append(block_cat)
return results
if __name__ == "__main__":
batch_size = 8
img_height = 352
img_width = 352
# device = "cuda" if torch.cuda.is_available() else "cpu"
device = "cpu"
input = torch.rand(batch_size, 3, img_height, img_width).to(device)
# target = torch.rand(batch_size, 1, img_height, img_width).to(device)
print(f"input shape: {input.shape}")
model = TED().to(device)
output = model(input)
print(f"output shapes: {[t.shape for t in output]}")
# for i in range(20000):
# print(i)
# output = model(input)
# loss = nn.MSELoss()(output[-1], target)
# loss.backward()
|