import os import random import uuid from base64 import b64encode from datetime import datetime from mimetypes import guess_type from pathlib import Path from typing import Optional import json import spaces import spaces import gradio as gr from feedback import save_feedback, scheduler from gradio.components.chatbot import Option from huggingface_hub import InferenceClient from pandas import DataFrame from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM BASE_MODEL = os.getenv("MODEL", "CohereForAI/aya-expanse-8b") ZERO_GPU = ( bool(os.getenv("ZERO_GPU", False)) or True if str(os.getenv("ZERO_GPU")).lower() == "true" else False ) TEXT_ONLY = ( bool(os.getenv("TEXT_ONLY", False)) or True if str(os.getenv("TEXT_ONLY")).lower() == "true" else False ) def create_inference_client( model: Optional[str] = None, base_url: Optional[str] = None ) -> InferenceClient | dict: """Create an InferenceClient instance with the given model or environment settings. This function will run the model locally if ZERO_GPU is set to True. This function will run the model locally if ZERO_GPU is set to True. Args: model: Optional model identifier to use. If not provided, will use environment settings. base_url: Optional base URL for the inference API. Returns: Either an InferenceClient instance or a dictionary with pipeline and tokenizer """ if ZERO_GPU: tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL) model = AutoModelForCausalLM.from_pretrained(BASE_MODEL, load_in_8bit=True) return { "pipeline": pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=2000, ), "tokenizer": tokenizer } else: return InferenceClient( token=os.getenv("HF_TOKEN"), model=model if model else (BASE_MODEL if not base_url else None), base_url=base_url, ) CLIENT = create_inference_client() def get_persistent_storage_path(filename: str) -> tuple[Path, bool]: """Check if persistent storage is available and return the appropriate path. Args: filename: The name of the file to check/create Returns: A tuple containing (file_path, is_persistent) """ persistent_path = Path("/data") / filename local_path = Path(__file__).parent / filename # Check if persistent storage is available and writable use_persistent = False if Path("/data").exists() and Path("/data").is_dir(): try: # Test if we can write to the directory test_file = Path("/data/write_test.tmp") test_file.touch() test_file.unlink() # Remove the test file use_persistent = True except (PermissionError, OSError): print("Persistent storage exists but is not writable, falling back to local storage") use_persistent = False return (persistent_path if use_persistent else local_path, use_persistent) def load_languages() -> dict[str, str]: """Load languages from JSON file or persistent storage""" languages_path, use_persistent = get_persistent_storage_path("languages.json") local_path = Path(__file__).parent / "languages.json" # If persistent storage is available but file doesn't exist yet, copy the local file to persistent storage if use_persistent and not languages_path.exists(): try: if local_path.exists(): import shutil shutil.copy(local_path, languages_path) print(f"Copied languages to persistent storage at {languages_path}") else: with open(languages_path, "w", encoding="utf-8") as f: json.dump({"English": "You are a helpful assistant."}, f, ensure_ascii=False, indent=2) print(f"Created new languages file in persistent storage at {languages_path}") except Exception as e: print(f"Error setting up persistent storage: {e}") languages_path = local_path # Fall back to local path if any error occurs if not languages_path.exists() and local_path.exists(): languages_path = local_path if languages_path.exists(): with open(languages_path, "r", encoding="utf-8") as f: return json.load(f) else: default_languages = {"English": "You are a helpful assistant."} return default_languages LANGUAGES = load_languages() USER_AGREEMENT = """ You have been asked to participate in a research study conducted by Lingo Lab from the Computer Science and Artificial Intelligence Laboratory at the Massachusetts Institute of Technology (M.I.T.), together with huggingface. The purpose of this study is the collection of multilingual human feedback to improve language models. As part of this study you will interat with a language model in a langugage of your choice, and provide indication to wether its reponses are helpful or not. Your name and personal data will never be recorded. You may decline further participation, at any time, without adverse consequences.There are no foreseeable risks or discomforts for participating in this study. Note participating in the study may pose risks that are currently unforeseeable. If you have questions or concerns about the study, you can contact the researchers at leshem@mit.edu. If you have any questions about your rights as a participant in this research (E-6610), feel you have been harmed, or wish to discuss other study-related concerns with someone who is not part of the research team, you can contact the M.I.T. Committee on the Use of Humans as Experimental Subjects (COUHES) by phone at (617) 253-8420, or by email at couhes@mit.edu. Clicking on the next button at the bottom of this page indicates that you are at least 18 years of age and willingly agree to participate in the research voluntarily. """ def add_user_message(history, message): if isinstance(message, dict) and "files" in message: for x in message["files"]: history.append({"role": "user", "content": {"path": x}}) if message["text"] is not None: history.append({"role": "user", "content": message["text"]}) else: history.append({"role": "user", "content": message}) return history, gr.Textbox(value=None, interactive=False) def format_system_message(language: str, history: list): system_message = [ { "role": "system", "content": LANGUAGES.get(language, LANGUAGES["English"]), } ] if history and history[0]["role"] == "system": history = history[1:] history = system_message + history return history def format_history_as_messages(history: list): messages = [] current_role = None current_message_content = [] if TEXT_ONLY: for entry in history: messages.append({"role": entry["role"], "content": entry["content"]}) return messages if TEXT_ONLY: for entry in history: messages.append({"role": entry["role"], "content": entry["content"]}) return messages for entry in history: content = entry["content"] if entry["role"] != current_role: if current_role is not None: messages.append( {"role": current_role, "content": current_message_content} ) current_role = entry["role"] current_message_content = [] if isinstance(content, tuple): # Handle file paths for temp_path in content: if space_host := os.getenv("SPACE_HOST"): url = f"https://{space_host}/gradio_api/file%3D{temp_path}" else: url = _convert_path_to_data_uri(temp_path) current_message_content.append( {"type": "image_url", "image_url": {"url": url}} ) elif isinstance(content, str): # Handle text current_message_content.append({"type": "text", "text": content}) if current_role is not None: messages.append({"role": current_role, "content": current_message_content}) return messages def _convert_path_to_data_uri(path) -> str: mime_type, _ = guess_type(path) with open(path, "rb") as image_file: data = image_file.read() data_uri = f"data:{mime_type};base64," + b64encode(data).decode("utf-8") return data_uri def _is_file_safe(path) -> bool: try: return Path(path).is_file() except Exception: return "" def _process_content(content) -> str | list[str]: if isinstance(content, str) and _is_file_safe(content): return _convert_path_to_data_uri(content) elif isinstance(content, list) or isinstance(content, tuple): return _convert_path_to_data_uri(content[0]) return content def _process_rating(rating) -> int: if isinstance(rating, str): return 0 elif isinstance(rating, int): return rating else: raise ValueError(f"Invalid rating: {rating}") def add_fake_like_data( history: list, conversation_id: str, session_id: str, language: str, liked: bool = False, ) -> None: data = { "index": len(history) - 1, "value": history[-1], "liked": liked, } _, dataframe = wrangle_like_data( gr.LikeData(target=None, data=data), history.copy() ) submit_conversation( dataframe=dataframe, conversation_id=conversation_id, session_id=session_id, language=language, ) @spaces.GPU def call_pipeline(messages: list, language: str): """Call the appropriate model pipeline based on configuration""" if ZERO_GPU: tokenizer = CLIENT["tokenizer"] formatted_prompt = tokenizer.apply_chat_template( messages, tokenize=False, ) response = CLIENT["pipeline"]( formatted_prompt, clean_up_tokenization_spaces=False, max_length=2000, return_full_text=False, ) return response[0]["generated_text"] else: response = CLIENT( messages, clean_up_tokenization_spaces=False, max_length=2000, ) return response[0]["generated_text"][-1]["content"] def respond( history: list, language: str, temperature: Optional[float] = None, seed: Optional[int] = None, ) -> list: """Respond to the user message with a system message Return the history with the new message""" messages = format_history_as_messages(history) if ZERO_GPU: content = call_pipeline(messages, language) else: response = CLIENT.chat.completions.create( messages=messages, max_tokens=2000, stream=False, seed=seed, temperature=temperature, ) content = response.choices[0].message.content message = gr.ChatMessage(role="assistant", content=content) history.append(message) return history def update_dataframe(dataframe: DataFrame, history: list) -> DataFrame: """Update the dataframe with the new message""" data = { "index": 9999, "value": None, "liked": False, } _, dataframe = wrangle_like_data( gr.LikeData(target=None, data=data), history.copy() ) return dataframe def wrangle_like_data(x: gr.LikeData, history) -> DataFrame: """Wrangle conversations and liked data into a DataFrame""" if isinstance(x.index, int): liked_index = x.index else: liked_index = x.index[0] output_data = [] for idx, message in enumerate(history): if isinstance(message, gr.ChatMessage): message = message.__dict__ if idx == liked_index: if x.liked is True: message["metadata"] = {"title": "liked"} elif x.liked is False: message["metadata"] = {"title": "disliked"} if not isinstance(message["metadata"], dict): message["metadata"] = message["metadata"].__dict__ rating = message["metadata"].get("title") if rating == "liked": message["rating"] = 1 elif rating == "disliked": message["rating"] = -1 else: message["rating"] = 0 message["chosen"] = "" message["rejected"] = "" if message["options"]: for option in message["options"]: if not isinstance(option, dict): option = option.__dict__ message[option["label"]] = option["value"] else: if message["rating"] == 1: message["chosen"] = message["content"] elif message["rating"] == -1: message["rejected"] = message["content"] output_data.append( dict( [(k, v) for k, v in message.items() if k not in ["metadata", "options"]] ) ) return history, DataFrame(data=output_data) def wrangle_edit_data( x: gr.EditData, history: list, dataframe: DataFrame, conversation_id: str, session_id: str, language: str, ) -> list: """Edit the conversation and add negative feedback if assistant message is edited, otherwise regenerate the message Return the history with the new message""" if isinstance(x.index, int): index = x.index else: index = x.index[0] original_message = gr.ChatMessage( role="assistant", content=dataframe.iloc[index]["content"] ).__dict__ if history[index]["role"] == "user": # Add feedback on original and corrected message add_fake_like_data( history=history[: index + 2], conversation_id=conversation_id, session_id=session_id, language=language, liked=True, ) add_fake_like_data( history=history[: index + 1] + [original_message], conversation_id=conversation_id, session_id=session_id, language=language, ) history = respond( history=history[: index + 1], language=language, temperature=random.randint(1, 100) / 100, seed=random.randint(0, 1000000), ) return history else: add_fake_like_data( history=history[: index + 1], conversation_id=conversation_id, session_id=session_id, language=language, liked=True, ) add_fake_like_data( history=history[:index] + [original_message], conversation_id=conversation_id, session_id=session_id, language=language, ) history = history[: index + 1] history[-1]["options"] = [ Option(label="chosen", value=x.value), Option(label="rejected", value=original_message["content"]), ] return history def wrangle_retry_data( x: gr.RetryData, history: list, dataframe: DataFrame, conversation_id: str, session_id: str, language: str, ) -> list: """Respond to the user message with a system message and add negative feedback on the original message Return the history with the new message""" add_fake_like_data( history=history, conversation_id=conversation_id, session_id=session_id, language=language, ) # Return the history without a new message history = respond( history=history[:-1], language=language, temperature=random.randint(1, 100) / 100, seed=random.randint(0, 1000000), ) return history, update_dataframe(dataframe, history) def submit_conversation(dataframe, conversation_id, session_id, language): """ "Submit the conversation to dataset repo""" if dataframe.empty or len(dataframe) < 2: gr.Info("No feedback to submit.") return (gr.Dataframe(value=None, interactive=False), []) dataframe["content"] = dataframe["content"].apply(_process_content) dataframe["rating"] = dataframe["rating"].apply(_process_rating) conversation = dataframe.to_dict(orient="records") conversation_data = { "conversation": conversation, "timestamp": datetime.now().isoformat(), "session_id": session_id, "conversation_id": conversation_id, "language": language, } save_feedback(input_object=conversation_data) return (gr.Dataframe(value=None, interactive=False), []) def open_add_language_modal(): return gr.Group(visible=True) def close_add_language_modal(): return gr.Group(visible=False) def save_new_language(lang_name, system_prompt): """Save the new language and system prompt to persistent storage if available, otherwise to local file.""" global LANGUAGES languages_path, use_persistent = get_persistent_storage_path("languages.json") local_path = Path(__file__).parent / "languages.json" if languages_path.exists(): with open(languages_path, "r", encoding="utf-8") as f: data = json.load(f) else: data = {} data[lang_name] = system_prompt with open(languages_path, "w", encoding="utf-8") as f: json.dump(data, f, ensure_ascii=False, indent=2) if use_persistent and local_path != languages_path: try: with open(local_path, "w", encoding="utf-8") as f: json.dump(data, f, ensure_ascii=False, indent=2) except Exception as e: print(f"Error updating local backup: {e}") LANGUAGES.update({lang_name: system_prompt}) return gr.Group(visible=False), gr.HTML(""), gr.Dropdown(choices=list(LANGUAGES.keys())) css = """ .options.svelte-pcaovb { display: none !important; } .option.svelte-pcaovb { display: none !important; } .retry-btn { display: none !important; } /* Style for the add language button */ button#add-language-btn { padding: 0 !important; font-size: 30px !important; font-weight: bold !important; } /* Style for the user agreement container */ .user-agreement-container { box-shadow: 0 2px 5px rgba(0,0,0,0.1) !important; } """ with gr.Blocks(css=css) as demo: # State variable to track if user has consented user_consented = gr.State(False) # Landing page with user agreement with gr.Group(visible=True) as landing_page: gr.Markdown("# Welcome to FeeL") with gr.Group(elem_classes=["user-agreement-container"]): gr.Markdown(USER_AGREEMENT) consent_btn = gr.Button("I agree") # Main application interface (initially hidden) with gr.Group(visible=False) as main_app: ############################## # Chatbot ############################## gr.Markdown(""" # ♾️ FeeL - a real-time Feedback Loop for LMs """) with gr.Accordion("About") as explanation: gr.Markdown(f""" FeeL is a collaboration between Hugging Face and MIT. It is a community-driven project to provide a real-time feedback loop for VLMs, where your feedback is continuously used to fine-tune the underlying models. The [dataset](https://huggingface.co/datasets/{scheduler.repo_id}), [code](https://github.com/huggingface/feel) and [models](https://huggingface.co/collections/feel-fl/feel-models-67a9b6ef0fdd554315e295e8) are public. Start by selecting your language, chat with the model with text and images and provide feedback in different ways. - ✏️ Edit a message - πŸ‘/πŸ‘Ž Like or dislike a message - πŸ”„ Regenerate a message """) with gr.Column(): gr.Markdown("Select your language or add a new one:") with gr.Row(): language = gr.Dropdown( choices=list(load_languages().keys()), container=False, show_label=False, scale=8 ) add_language_btn = gr.Button( "+", elem_id="add-language-btn", size="sm" ) # Create a hidden group instead of a modal with gr.Group(visible=False) as add_language_modal: gr.Markdown(" Add New Language") new_lang_name = gr.Textbox(label="Language Name", lines=1) new_system_prompt = gr.Textbox(label="System Prompt", lines=4) with gr.Row(): with gr.Column(scale=1): save_language_btn = gr.Button("Save") with gr.Column(scale=1): cancel_language_btn = gr.Button("Cancel") refresh_html = gr.HTML(visible=False) session_id = gr.Textbox( interactive=False, value=str(uuid.uuid4()), visible=False, ) conversation_id = gr.Textbox( interactive=False, value=str(uuid.uuid4()), visible=False, ) chatbot = gr.Chatbot( elem_id="chatbot", editable="all", bubble_full_width=False, value=[ { "role": "system", "content": LANGUAGES[language.value], } ], type="messages", feedback_options=["Like", "Dislike"], ) chat_input = gr.Textbox( interactive=True, placeholder="Enter message or upload file...", show_label=False, submit_btn=True, ) with gr.Accordion("Collected feedback", open=False): dataframe = gr.Dataframe(wrap=True, label="Collected feedback") submit_btn = gr.Button(value="πŸ’Ύ Submit conversation", visible=False) # Function to show main app after consent def show_main_app(): return gr.Group(visible=False), gr.Group(visible=True), True # Connect consent button to show main app consent_btn.click( fn=show_main_app, inputs=[], outputs=[landing_page, main_app, user_consented] ) ############################## # Deal with feedback ############################## language.change( fn=format_system_message, inputs=[language, chatbot], outputs=[chatbot], ) chat_input.submit( fn=add_user_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], ).then(respond, inputs=[chatbot, language], outputs=[chatbot]).then( lambda: gr.Textbox(interactive=True), None, [chat_input] ).then(update_dataframe, inputs=[dataframe, chatbot], outputs=[dataframe]).then( submit_conversation, inputs=[dataframe, conversation_id, session_id, language], ) chatbot.like( fn=wrangle_like_data, inputs=[chatbot], outputs=[chatbot, dataframe], like_user_message=False, ).then( submit_conversation, inputs=[dataframe, conversation_id, session_id, language], ) chatbot.retry( fn=wrangle_retry_data, inputs=[chatbot, dataframe, conversation_id, session_id, language], outputs=[chatbot, dataframe], ) chatbot.edit( fn=wrangle_edit_data, inputs=[chatbot, dataframe, conversation_id, session_id, language], outputs=[chatbot], ).then(update_dataframe, inputs=[dataframe, chatbot], outputs=[dataframe]) gr.on( triggers=[submit_btn.click, chatbot.clear], fn=submit_conversation, inputs=[dataframe, conversation_id, session_id, language], outputs=[dataframe, chatbot], ).then( fn=lambda x: str(uuid.uuid4()), inputs=[conversation_id], outputs=[conversation_id], ) def on_app_load(): global LANGUAGES LANGUAGES = load_languages() language_choices = list(LANGUAGES.keys()) return str(uuid.uuid4()), gr.Dropdown(choices=language_choices, value=language_choices[0]) demo.load( fn=on_app_load, inputs=None, outputs=[session_id, language] ) add_language_btn.click( fn=lambda: gr.Group(visible=True), outputs=[add_language_modal] ) cancel_language_btn.click( fn=lambda: gr.Group(visible=False), outputs=[add_language_modal] ) save_language_btn.click( fn=save_new_language, inputs=[new_lang_name, new_system_prompt], outputs=[add_language_modal, refresh_html, language] ) demo.launch()