Spaces:
Sleeping
Sleeping
Riddhi Bhagwat
commited on
Commit
·
b79d85c
1
Parent(s):
4b82d89
refined evaluation master function and ensured functionality
Browse files- ml/eval/alpaca.py +1 -2
- ml/eval/bt.py +13 -18
- ml/eval/evaluation_pipeline.py +27 -14
ml/eval/alpaca.py
CHANGED
@@ -33,10 +33,9 @@ def judge_responses(response1, response2, prompt):
|
|
33 |
|
34 |
|
35 |
|
36 |
-
def alpaca_evaluator(model_name,
|
37 |
results = run_evaluation(
|
38 |
model=model_name,
|
39 |
-
model_path=model_path,
|
40 |
num_samples=num_samples, # fewer samples for quick testing
|
41 |
reference_model="gpt-4", # Compare against GPT-4 (optional)
|
42 |
)
|
|
|
33 |
|
34 |
|
35 |
|
36 |
+
def alpaca_evaluator(model_name, num_samples=200):
|
37 |
results = run_evaluation(
|
38 |
model=model_name,
|
|
|
39 |
num_samples=num_samples, # fewer samples for quick testing
|
40 |
reference_model="gpt-4", # Compare against GPT-4 (optional)
|
41 |
)
|
ml/eval/bt.py
CHANGED
@@ -52,19 +52,19 @@ def bradley_terry_comparison(old_rewards, new_rewards):
|
|
52 |
probabilities = []
|
53 |
|
54 |
for ix in range(len(old_rewards)):
|
55 |
-
old =
|
56 |
-
new =
|
57 |
|
58 |
# Ensure prompts match
|
59 |
assert old['prompt'] == new['prompt'], f"ERROR: Prompts at index {ix} do not match."
|
60 |
|
61 |
# Compute Bradley-Terry probability
|
62 |
-
new_reward = torch.tensor(
|
63 |
-
old_reward = torch.tensor(
|
64 |
-
prob_new_preferred = torch.sigmoid(
|
65 |
|
66 |
probabilities.append(prob_new_preferred)
|
67 |
-
preferred_model = 'new' if
|
68 |
|
69 |
# Count preferences
|
70 |
if preferred_model == 'new':
|
@@ -75,12 +75,12 @@ def bradley_terry_comparison(old_rewards, new_rewards):
|
|
75 |
# Log results
|
76 |
bt_result = {
|
77 |
'prompt': old['prompt'],
|
78 |
-
'old_output':
|
79 |
-
'new_output':
|
80 |
-
'old_reward':
|
81 |
-
'new_reward':
|
82 |
'preferred': preferred_model,
|
83 |
-
'prob_new_preferred':
|
84 |
}
|
85 |
results.append(bt_result)
|
86 |
|
@@ -88,8 +88,8 @@ def bradley_terry_comparison(old_rewards, new_rewards):
|
|
88 |
total_examples = len(old_rewards)
|
89 |
metrics = {
|
90 |
'total_examples': total_examples,
|
91 |
-
'new_preferred_percentage': 100 *
|
92 |
-
'old_preferred_percentage': 100 *
|
93 |
'avg_probability_new_preferred': sum(probabilities) / total_examples
|
94 |
}
|
95 |
|
@@ -128,10 +128,8 @@ def print_metrics(metrics):
|
|
128 |
####################################
|
129 |
|
130 |
def main():
|
131 |
-
# Initialize script arguments
|
132 |
args = ScriptArguments()
|
133 |
|
134 |
-
# Load data
|
135 |
print("Loading data...")
|
136 |
old_rewards = load_rewards(args.sft_generations_file)
|
137 |
new_rewards = load_rewards(args.kto_generations_file)
|
@@ -140,10 +138,7 @@ def main():
|
|
140 |
print("Performing Bradley-Terry comparison...")
|
141 |
results, metrics = bradley_terry_comparison(old_rewards, new_rewards)
|
142 |
|
143 |
-
# Save results
|
144 |
save_results(results, args.output_file)
|
145 |
-
|
146 |
-
# Print metrics
|
147 |
print_metrics(metrics)
|
148 |
|
149 |
|
|
|
52 |
probabilities = []
|
53 |
|
54 |
for ix in range(len(old_rewards)):
|
55 |
+
old = old_rewards[ix]
|
56 |
+
new = new_rewards[ix]
|
57 |
|
58 |
# Ensure prompts match
|
59 |
assert old['prompt'] == new['prompt'], f"ERROR: Prompts at index {ix} do not match."
|
60 |
|
61 |
# Compute Bradley-Terry probability
|
62 |
+
new_reward = torch.tensor(old['reward'], dtype=torch.float32)
|
63 |
+
old_reward = torch.tensor(new['reward'], dtype=torch.float32)
|
64 |
+
prob_new_preferred = torch.sigmoid(new_reward - old_reward).item()
|
65 |
|
66 |
probabilities.append(prob_new_preferred)
|
67 |
+
preferred_model = 'new' if prob_new_preferred > 0.5 else 'old'
|
68 |
|
69 |
# Count preferences
|
70 |
if preferred_model == 'new':
|
|
|
75 |
# Log results
|
76 |
bt_result = {
|
77 |
'prompt': old['prompt'],
|
78 |
+
'old_output': old['output'],
|
79 |
+
'new_output': new['output'],
|
80 |
+
'old_reward': old['reward'],
|
81 |
+
'new_reward': new['reward'],
|
82 |
'preferred': preferred_model,
|
83 |
+
'prob_new_preferred': prob_new_preferred
|
84 |
}
|
85 |
results.append(bt_result)
|
86 |
|
|
|
88 |
total_examples = len(old_rewards)
|
89 |
metrics = {
|
90 |
'total_examples': total_examples,
|
91 |
+
'new_preferred_percentage': 100 * new_preferred_count / total_examples,
|
92 |
+
'old_preferred_percentage': 100 * old_preferred_count / total_examples,
|
93 |
'avg_probability_new_preferred': sum(probabilities) / total_examples
|
94 |
}
|
95 |
|
|
|
128 |
####################################
|
129 |
|
130 |
def main():
|
|
|
131 |
args = ScriptArguments()
|
132 |
|
|
|
133 |
print("Loading data...")
|
134 |
old_rewards = load_rewards(args.sft_generations_file)
|
135 |
new_rewards = load_rewards(args.kto_generations_file)
|
|
|
138 |
print("Performing Bradley-Terry comparison...")
|
139 |
results, metrics = bradley_terry_comparison(old_rewards, new_rewards)
|
140 |
|
|
|
141 |
save_results(results, args.output_file)
|
|
|
|
|
142 |
print_metrics(metrics)
|
143 |
|
144 |
|
ml/eval/evaluation_pipeline.py
CHANGED
@@ -3,16 +3,11 @@
|
|
3 |
###########
|
4 |
from reward_eval import process_evaluation
|
5 |
from generate import generate_files
|
6 |
-
from alpaca import alpaca_evaluator
|
7 |
-
from bt import bradley_terry_comparison,
|
8 |
from evaluate_arguments import EvalArguments
|
9 |
-
|
10 |
-
|
11 |
-
##################
|
12 |
-
# M-REWARD BENCH #
|
13 |
-
##################
|
14 |
-
|
15 |
-
|
16 |
|
17 |
#############
|
18 |
# EVALUATOR #
|
@@ -25,21 +20,39 @@ eval_dataset: list of dictionaries that contain the prompt and response in the s
|
|
25 |
[{"prompt": "How are you?", "output": "I'm doing great!"}, {"prompt": "What's your name?", "output": "Assistant"}]
|
26 |
reward_output_filepath: string (must end in .json) that represents the path of the output of the reward score evaluation
|
27 |
model: base model that is being evaluated (defaults to starter base model - Aya-23-8B )
|
|
|
|
|
28 |
|
|
|
29 |
'''
|
30 |
def evaluator_master_fn(eval_dataset: list[dict],
|
31 |
reward_output_filepath: str,
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
# 1. Reward score evaluation:
|
35 |
args = EvalArguments(bfloat16=True,
|
36 |
reward_output_fmt='1-0',
|
37 |
apply_sigmoid_to_reward=False,
|
38 |
per_device_batch_size=8,
|
39 |
-
output_filepath=
|
40 |
result_filename=None,
|
41 |
-
model_name_or_path=
|
42 |
-
process_evaluation(args, model_name=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
|
|
|
3 |
###########
|
4 |
from reward_eval import process_evaluation
|
5 |
from generate import generate_files
|
6 |
+
from alpaca import alpaca_evaluator, judge_responses
|
7 |
+
from bt import bradley_terry_comparison, load_rewards
|
8 |
from evaluate_arguments import EvalArguments
|
9 |
+
import pandas as pd
|
10 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
#############
|
13 |
# EVALUATOR #
|
|
|
20 |
[{"prompt": "How are you?", "output": "I'm doing great!"}, {"prompt": "What's your name?", "output": "Assistant"}]
|
21 |
reward_output_filepath: string (must end in .json) that represents the path of the output of the reward score evaluation
|
22 |
model: base model that is being evaluated (defaults to starter base model - Aya-23-8B )
|
23 |
+
all_responses: should be a path to a csv file that has all the model's responses and their corresponding prompts with the following
|
24 |
+
format: response1 --> col 1, response2 --> col 2, prompt --> col 3
|
25 |
|
26 |
+
language: which language is being used for this model (needs to be a valid FeeLLanguage object once FeeLLanguage class is updated)
|
27 |
'''
|
28 |
def evaluator_master_fn(eval_dataset: list[dict],
|
29 |
reward_output_filepath: str,
|
30 |
+
all_responses: str,
|
31 |
+
language: str,
|
32 |
+
new_model,
|
33 |
+
old_model="CohereForAI/aya-expanse-8b"):
|
34 |
+
# language is string for now, will be an object later with FeeLLanguage class definition with specific lanugage
|
35 |
+
# functionalities (will also store latest model)
|
36 |
|
37 |
# 1. Reward score evaluation:
|
38 |
args = EvalArguments(bfloat16=True,
|
39 |
reward_output_fmt='1-0',
|
40 |
apply_sigmoid_to_reward=False,
|
41 |
per_device_batch_size=8,
|
42 |
+
output_filepath="new_evaluation",
|
43 |
result_filename=None,
|
44 |
+
model_name_or_path=new_model)
|
45 |
+
reward_score_result = process_evaluation(args, model_name=new_model, eval_data_list_dict=eval_dataset)
|
46 |
+
|
47 |
+
# 2. Alpaca Eval - Judging Responses
|
48 |
+
judge_df = pd.read_csv(all_responses)
|
49 |
+
judge_df["winner"] = judge_df.apply(lambda r: judge_responses(r["response1"], r["response2"], r["prompt"]), axis = 1) # axis = 1 -- loops rows
|
50 |
+
|
51 |
+
# 3. Alpaca Eval - model comparison
|
52 |
+
alpaca_results = alpaca_evaluator(new_model, num_samples=200) # can adjust num_samples as needed, potentially based on language
|
53 |
+
|
54 |
+
# 4. Bradley Terry Evaluation
|
55 |
+
bt_results = bradley_terry_comparison(load_rewards(old_model), load_rewards(new_model))
|
56 |
|
57 |
+
return reward_score_result, judge_df, alpaca_results, bt_results
|
58 |
|